

Measurements of a Magnetically Shielded Room for a Neutron EDM Experiment

Thomas Hepworth

University of Winnipeg/TRIUMF on behalf of the TUCAN collaboration

Overview

In this talk I will:

- 1. Introduce the search for a non-zero neutron electric dipole moment (nEDM) at TRIUMF using ultracold neutrons (UCN)
- 2. Motivate the need for a magnetically shielded room (MSR), and the required specs for the nEDM measurement
- 3. Go over magnetically shielded room status: Results of our testing and next steps

The Experiment

- An nEDM measurement searches for new sources of T and CP symmetry violation
- This has implications on <u>new physics</u> scenarios
- Current world best limit is 1.8 *10⁻²⁶ e·cm (90% CL)
- TUCAN aims for 10⁻²⁷ e·cm (factor of 10 improvement)

Experimental Technique

TUCAN

 ω : precession freq. of neutron μ_n : neutron magnetic moment B: magnetic field E: electric field d_n : neutron electric dipole moment

MSR Design

Layer	Thickness	External side length
1- Outer	4 mm (2 x 2 mm)	3.5 m
2	3 mm (2 x 1.5 mm)	3 m
3	3 mm (2 x 1.5 mm)	2.6 m
4 - Cu	8 mm	2.46 m
5 - Inner	2 mm (2 x 1 mm)	2.39 m

 $\frac{350 \ \mu T \text{ background field (Cyclotron)}}{1 \ \mu T \text{ inner field requirement}}$

MSR Field requirements

- Residual field of < 1 nT within the 1 m^3 central volume
- Internal gradient must be < 100 pT/m
- 1pT stability over 100s of sec
- To achieve this stability, field inside MSR needs to be around 50,000 times smaller

• Basic principle:

TUCAN

- We also include several correction factors in this calculation
- We previously measured perturbation coil field to be $18 \ \mu T$ (amplitude) AC field at center.
- Example: we measure a field of 18 nT $SF = \frac{18 \times 10^{-6}}{18 \times 10^{-9}} = 1,000$

• Basic principle:

TUCAN

- We also include several correction factors in this calculation
- We previously measured perturbation coil field to be $18 \ \mu T$ (amplitude) AC field at center.
- Example: we measure a field of 18 nT $SF = \frac{18 \times 10^{-6}}{18 \times 10^{-9}} = 1,000$

• Basic principle:

- We also include several correction factors in this calculation
- We previously measured perturbation coil field to be $18 \ \mu T$ (amplitude) AC field at center.
- Example: we measure a field of 18 nT $SF = \frac{18 \times 10^{-6}}{18 \times 10^{-9}} = 1,000$

• Basic principle:

- We also include several correction factors in this calculation
- We previously measured perturbation coil field to be $18 \ \mu T$ (amplitude) AC field at center.
- Example: we measure a field of 18 nT $SF = \frac{18 \times 10^{-6}}{18 \times 10^{-9}} = 1,000$

Results

- Internal field: 6 nT
- SF is a factor of 5 _ smaller than needed
- Simulated SF were all > 100,000 at all frequencies of interest

Cyclotron is ON $\approx 350 \ \mu T$ background field. Cyclotron is OFF $\approx Earth's$ background field.

12

When in doubt add more layers!

- We believe simulations were too optimistic when guessing the relative permeability of shielding materials
- We are adding an additional inner most mu-metal layer
 - Completion by August 2024
- According to COMSOL simulations, this should improve the SF by around a factor of 10 at low frequencies.
 - Why is this the best course of action?

Conclusion:

- TUCAN is working toward world best 10⁻²⁷ e⋅cm nEDM measurement at TRIUMF
- We need to improve our magnetic environment i.e. the MSR
- We are adding a 6th mu-metal layer to boost our SF to an acceptable level

Acknowledgements

 Thanks to the NSERC USRA program, TUCAN, and the B. G. Hogg Scholarship in Physics for supporting me in this research and attending this conference

