

Ab initio Combined Neutrino Mass Limits from Neutrinoless Double-Beta Decay

Taiki Shickele TRIUMF CASST 2024 Aug. 20, 2024

Discovery, accelerated

1

∂TRIUMF

∂TRIUMF

Neutrinoless Double-beta Decay ($0v\beta\beta$)

- Requires the neutrino to be its own antiparticle – Majorana particle
- A lepton-number violating process
 - Baryon asymmetry of the universe
- Other exotic new physics

 $(A,Z)
ightarrow (A,Z+2) + 2e^- + 2\overline{
u}_e$

Neutrinoless Double-beta Decay (0v\beta\beta)

$$\frac{1}{T_{1/2}^{0\nu}} = g_A^4 G^{0\nu} |M^{0\nu\beta\beta}|^2 \left(\frac{m_{\beta\beta}}{m_{\rm e}}\right)^2$$

Neutrinoless Double-beta Decay (0v\beta\beta)

$$\frac{1}{T_{1/2}^{0\nu}} = g_A^4 G^{0\nu} |M^{0\nu\beta\beta}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
Nuclear Matrix
Element (NME)

4

% TRIUMF

Nuclear Matrix Elements (NMEs) from *ab initio* Nuclear Theory

- Phenomenological methods make uncontrolled approximations – no way to obtain uncertainties
- Ab initio methods compute NMEs from first principles – controlled uncertainties

A. Belley, T. Miyagi, S.R. Stroberg, and J. D. Holt, arXiv:2307.15156

5

Neutrinoless Double-beta Decay ($0v\beta\beta$)

∂TRIUMF

The Majorana Neutrino Mass and Combined Limits

7

A. Belley et al. Phys. Rev. Lett. 132 (2024) 18, 182502, M. Agostini et al. Phys. Rev. Lett. 125 (2020) 25 252502, D. Q. Adams, et al. arXiv:2404.04453, A. Gisela, et al. Phys. Rev. Lett. 123 (2019) 16, 161802, S. Abe, et al. arXiv:2406.11438 (2024).

Combined Neutrino Mass Limits

8

%TRIUMF

Bayes' Theorem and Likelihood Functions

• Likelihoods from experiments in terms of decay rate converted to $m_{\beta\beta}$

9

$$m_{\beta\beta} = \frac{m_{\rm e}}{g_{\rm A}^2 |M^{0\nu}|} \sqrt{\frac{\Gamma^{0\nu}}{G^{0\nu} \log 2}}$$

 Likelihoods allow us to obtain a combined limit on m_{ββ} thru Bayes' theorem:

S. D. Biller, Phys. Rev. D 104 (2021) 1 012002.

∂TRIUMF

Combined Neutrino Mass Limits

∂TRIUMF

Next-Generation Sensitivities

A predicted exclusion reach of next-generation experiments

 Poisson counting analysis utilized to obtain sensitivities

G. Adhikari et al 2022 J. Phys. G: Nucl. Part. Phys. 49 015104

Next-Generation Sensitivities

N. Abgrall, et al. arXiv:2107.11462 (2021), G. Adhikari et al 2022 J. Phys. G: Nucl. Part. Phys. 49 015104

Heavy Sterile Neutrino Exchange

Heavy Sterile Neutrino Exchange

V. Cirigliano, W. Dekens, J. de Vries et al. J. High Energ. Phys. 2018, 97 (2018)

∂TRIUMF

Heavy Sterile Neutrino Exchange

- Combined constraint on heavy neutrino mass of $M_{\beta\beta} \ge 2.87 \times 10^8 \text{ GeV}$
- Orders of magnitude above energies accessible to accelerators
- Potential candidate for dark matter at $> 10^8$ GeV scale

A. Todd, T. Shickele, A. Belley, J.D. Holt (in progress)

Summary

- The combined constraint on the effective neutrino mass from current and next-generation experiments is $m_{\beta\beta} \leq 113 \text{meV}$ and $m_{\beta\beta} \leq 13 \text{meV}$ respectively
- Combined limits lead to >10% improvement over the most stringent individual constraints

Outlook

- Propagation of uncertainties from NMEs to final combined limits
- Sensitivities for other next-generation experiments
- Varying uninformative Bayesian priors

∂ TRIUMF

Thank you Merci

tshickele@triumf.ca Collaborators: Lotta Jokiniemi Antoine Belley

Alex Todd

Jason Holt

Discovery, accelerated

17

∂ TRIUMF

Questions?

tshickele@triumf.ca

Discovery, accelerated

Backup Slides

Bayes' Theorem and Likelihood Functions

$$P(\theta|\text{Data}) = \frac{P(\text{Data}|\theta)P(\text{Data})}{P(\theta)}$$
$$\mathcal{L}(\theta) \quad \text{Each experiment has an associated likelihood function}$$

∂TRIUMF

Constructing Likelihood Functions

• Wilks' theorem allows us to obtain likelihoods from $\Delta \chi^2$ profiles

S. Algeri, et al. Nat. Rev. Phys. 2, 245–252 (2020).

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING COMPOSITE HYPOTHESES¹

By S. S. Wilks

By applying the principle of maximum likelihood, J. Neyman and E. S. Pearson³ have suggested a method for obtaining functions of observations for testing what are called composite statistical hypotheses, or simply composite hypotheses. The procedure is essentially as follows: A population K is assumed in which a variate x (x may be a vector with each component representing a variate) has a distribution function $f(x, \theta_1, \theta_2, \dots, \theta_h)$, which depends on the parameters $\theta_1, \theta_2 \dots \theta_h$. A simple hypotheses is considered which consists of a set of simple hypotheses. Geometrically, Ω may be represented as a region in the h-dimensional space of the θ 's. A set ω of simple hypotheses is specified by taking all simple hypotheses of the set Ω for which $\theta_i = \theta_{0i}, i = m + 1, m + 2, \dots h$.

A random sample O_n of n individuals is considered from K. O_n may be geometrically represented as a point in an n-dimensional space of the x's. The probability density function associated with O_n is

$$P = \prod_{\alpha=1}^{n} f(x_{\alpha}, \theta_{1}, \theta_{2}, \cdots, \theta_{h})$$

Let $P_{\Omega}(O_n)$ be the least upper bound of P for the simple hypotheses in Ω , and $P_{\omega}(O_n)$ the least upper bound of P for those in ω . Then

$$\lambda = \frac{P_{\omega}(O, P_{\alpha}(O, P_{\alpha$$

(1)

(2)

is defined as the likelihood ratio for testing the composite hypothesis H that O_n is from a population with a distribution characterized by values of the θ_i for some simple hypothesis in the set ω . When we say that H is true, we shall mean that O_n is from some population of the set just described. In most of the cases of any practical importance, P and its first and second derivatives with respect to the θ_i are continuous functions of the θ_i almost everywhere in a certain region of the θ -space for almost all possible samples O_n . We shall only consider the case in which $P_n(O_n)$ and $P_\omega(O_n)$ can be determined from the first and second order derivatives with respect to the θ 's.

¹ Presented to the American Mathmatical Society, March 26, 1937. ³ Phil. Trans. Roy. Soc. London, Ser. A, Vol. 231, p. 295.

Combined Neutrino Mass Limits

S. D. Biller, Phys. Rev. D 104 (2021) 1 012002.

Heavy Sterile Neutrino Exchange

Heavy Sterile Neutrino Mass Lower Bounds

	Phenomenological Limit (GeV)	Ab initio Limit (GeV)
GERDA	2.28×10^8	1.35×10^8
CUORE	2.58×10^8	$1.29 imes 10^8$
KamLAND-Zen	3.16×10^8	$2.78 imes 10^8$
Exo-200	1.51×10^8	1.33×10^8
Combined	3.73×10^8	2.87×10^8