

Testing Photomultiplier Tubes for nEXO's Outer Detector

2024 CASST Competition Lazar Paroski Queen's University August 19 2024

Outline

- Introduction to 0vββ and nEXO
- Designing the PMT testing Setup Cooling Loop o Intro to the PMT Testing Setup •

 - Initial Design Ideas Ο
 - Calculations 0
 - Bill of Materials and Concerns 0
 - Improved Design 0
 - Calculations 0
 - Final Bill of Materials 0
- Future Setup
 - Design Ο
 - Calculations 0
 - **Bill of Materials** Ο
- Data Analysis Script Improvements
 - Data Management Improvements
 FFT and Peak Isolation Stress Test
- Conclusion

 $0\nu\beta\beta$ signature is peak at nucleus Q value

 $2\nu\beta\beta$ spectrum measured in 136 Xe with EXO-200!

nEXO Experiment

- 5-tonne single-phase liquid Xenon Time Projection
 Chamber (TPC)
- Enriched to 90% in isotope ¹³⁶Xe
- OD used for passive and active shielding
- Target half-life sensitivity of $1.35 \cdot 10^{28}$ years

Source: https://nexo.llnl.gov/nexo-overview

Introduction to $0v\beta\beta$ and nEXO

nEXO Outer Detector (OD)

- Passive and active shielding
- Q value for $0\nu\beta\beta^{136}Xe \rightarrow {}^{136}Ba$ is 2458 keV [1]
- Muons passing through TPC can create neutrons that can create energy signatures around Q value :(
- OD is veto for TPC by detecting Cherenkov radiation :)

^[1] Search for double-beta decay of 136Xe to excited states of 136Ba with the KamLAND-Zen experiment https://arxiv.org/pdf/1509.03724

The PMT Testing Setup

- Located at Laurentian University
- PMT attached to barrel lid
- Barrel lid in dark enclosure
- This will help learn for future setups

The PMT Testing Setup

- Barrel needs a way to change and keep

stable temperature

- OD will be held at 12°C
- PolyScience AP15R-40-A11B refrigerated

circulator

Initial Design Ideas

Design Ideas

- Coil Inside Barrel
- Coil Outside Barrel
- Each setup has some pros/cons
- I updated CAD models in Fusion 360

Calculations

Calculations — Simple

Time to cool barrel from 25 °C to 10 °C, P = 956 W (Cooling Capacity at 17.5 °C)

Time with no heat leaking in barrel :

$$Q = mc\Delta T \qquad t = \frac{Q}{P}$$

t = 4.07 Hours

$$\frac{dQ}{dt} = U \cdot A \cdot \Delta T = \frac{1}{R} \cdot A \cdot \Delta T$$

t = 4.14 Hours

Calculations

Calculations — Coil in Barrel

$$\frac{d}{dt}Q = U \cdot A \cdot \Delta T \qquad A = 0.0127 \cdot \pi \cdot L$$

- 1. dQ/dt < 956 W Area of coil is bottleneck cooling
- 2. dQ/dt = 956 W Coil exchanges heat at the same rate as the

3. **dQ/dt > 956 W** – Making coil longer has no cooling benefits

Will Cool in 4.14 Hours if more than 4m of tubing is used

Calculations — Coil Outside of Barrel

$$A = L \cdot 0.002$$

- Too Long to cool
- Don't want to use more than

15m of coil

Bill of Materials

- Still concerns with setup
- Coil in barrel could interfere with detection
- Setup has additional Issues...

			DESIGN A				
Material	Link	Quantity	Supplier	Part Number	Cost/Unit (USD)		Total (USD)
			Section 1				
						1	
	https://www.mcmas						
Barbed Fitting	ter.com/5357K39/	2	McMaster-CARR	5357K39	\$ 5.36	\$	10.
Hose Clamp (10	https://www.mcmas						
pack)	ter.com/5415K33/	1	McMaster-CARR	5415K33	\$ 11.84	Ś	11.
			Section 2				
						T	
Soft PVC Tubbing	https://www.mcmas						
(50 ft)	ter.com/5231K89/	1	McMaster-CARR	5231K89	\$ 69.00	\$	69.
(==)		-	inentation of anti-	02021100		*	
Soft PVC Tubbing	https://www.mcmas						
Insulation (6 ft)	ter.com/44745K23/	7	McMaster-CARR	44745K23	\$ 11.72	s	82.
insulation (one)	terrebility in the total of	,	Section 3	447451125		~	02.
	1		500000		1	Г	
Through Wall	https://www.mcmas					1	
Connector	ter.com/6696K58/	2	McMaster-CARR	6696K58	\$ 126.86	Ś	253.
connector	https://www.mcmas	2	WICHIASTEL-CARK	0090K38	Ş 120.00	Ŷ	255.
	ter.com/44665K151						
NPT (Male) X NPT	ter.com/44665K151		Manhan CARR	446658454	c 2.47	~	12
(Male) connector	L	4	McMaster-CARR	44665K151	\$ 3.47	\$	13.
Barbed Fitting (5	https://www.mcmas						
pack)	ter.com/5346k38/	1	McMaster-CARR	5346K38	\$ 16.92	\$	16.
	I		Section 4		1		
Through Wall	https://www.mcmas						
Connector	ter.com/6696K58/	2	McMaster-CARR	6696K58	\$ 126.86	\$	253.
Quick Connect Body	atersystems.com/pr						
(NPT Male) (IN	oducts/lg6d10006bl						
CAD)	u-valved-pipe-thread-	4	Fresh Water Systems	LQ6D10006BLU	\$ 104.00	\$	416.
Quick Connect	atersystems.com/pr						
Stem (Barbed) (IN	oducts/lg6d22006bl						
CAD)	u-valved-in-line-	2	Fresh Water Systems	LQ6D22006BLU	\$ 73.00	\$	146.
Quick Connect	https://www.usplast						
Stem (NPT Male)	ic.com/catalog/item.						
(IN CAD)	aspx?itemid=102531	2	USP	LQ6D24006BLU	\$ 115.88	\$	231.
Push-to-Connect to	https://www.mcmas						
NPT Female	ter.com/5483K47/	2	McMaster-CARR	5483K37	\$ 7.99	Ś	15.
in i rendic	teneoni prosterry	-	Section 5	54651657		Ŷ	10.
						T	
	https://www.mcmas						
Barrel Insulation	ter.com/9349K9/	8	McMaster-CARR	9349K9	\$ 30.67	Ś	245.
burrer moulation		0	WICIVIASCEI-CARR	334313	2 30.67	2	243.
Coppor Tubbing (50	https://www.mcmas						
Copper Tubbing (50 ft)	ter.com/5174K24- 5174K6/		McMaster-CARR	5174K24	\$ 159.91	~	159.
		1				\$	

1,926.85

Subtotal (USD) \$

Quick Connect Concerns

Cooler max Pressure: 4.35 Psi

Cooler max Flow Rate: 20.1 lpm

$$q = N_1 C_v \sqrt{\frac{\Delta p}{G}}$$

Series	Spillage cm ³
QTM2	0.1
QTM4	0.2
QTM8	1.0

Improved Design

Improved Design

- TRACIT-1100 heat transfer compound
- Heat transfer coefficient: 114-227 W/m^{2*}K
- Relatively inexpensive solution
- Avoids quick connect flow and spillage issues
- Avoids coil interfering with detection issues

Calculations

Calculations

- Used thermal resistance
- Putty buffer is amount of putty on either side of tubing
- Cooling time reasonable making this

option feasible

Heat Transfer Coefficient	Area
$U_{\text{copper-putty}} = 114 \text{W}/(\text{m}^2 \cdot \text{K})$	$A_{\rm cp} = 0.0127 \cdot \pi \cdot L$
$U_{\text{steel-water}} = 400 \text{W}/(\text{m}^2 \cdot \text{K})$	$A_{\rm sw} = L \cdot 2 \cdot B$
$U_{\text{putty-steel}} = 114 \text{W}/(\text{m}^2 \cdot \text{K})$	$A_{\rm ps} = L \cdot 2 \cdot B$

$$R_{tot} = \sum \frac{1}{U \cdot A} \qquad \qquad \frac{dQ}{dt} = \frac{\Delta T}{R_{tot}}$$

Hours to Cool the Barrel from 25°C to 10°C with Respect to Putty Buffer and Coil Length with Insulation with an R Value of 2

Final Bill of Materials

Final Bill of Materials

- Avoids issues with previous set up by putting coil outside of barrel
- BOM was ordered

Name	Description	Link	Quantity	Supplier	Part Number	Cost/Unit (USD)	Total (USD)	Image	Diagram Letter
	Aluminum, Hose ID			Se	ction 1	1	1	-	1
	1/2", 1/4" NPT	https://www.mcma						and the second second	
Barbed Fitting	Male	ster.com/5357K39/	2	McMaster-CARR	5357K39	\$ 5.36	\$ 10.72		A
barbearriting	marc	https://www.mcma	-	memoster crutt	55571155	<i>\$</i> 5.5			~
		ster.com/45945K63							
Hose Clamps	5/8"-15/16"	/	10	McMaster-CARR	45945K63	\$ 6.4	\$ 64.70		в
		· · ·			ction 2	1.4	1.		
	25 ft/unit, ID 1/2",	https://www.mcma							
Soft PVC Tubing	OD 3/4"	ster.com/5231K89/	1	McMaster-CARR	5231K89	\$ 34.5	\$ 34.50		A
		https://www.mcma							
		ster.com/44745K23							
Tubing Insulation	6 ft/unit, R value 2	6	4	McMaster-CARR	44745K23	\$ 11.7	\$ 46.88	в	В
								1	
	Fit up to 3 1/4"	https://www.mcma							
Cable Holder	Diamiter	ster.com/6912K45/	5	McMaster-CARR	6912K45	\$ 7.8	\$ 39.00	0	С
				Se	ction 3				
		a set of the set of the set						31	
Through Wall	3/8" NPT Female,	https://www.mcma							
Connector	Stainless Steel	ster.com/6696K58/	2	McMaster-CARR	6696K58	\$ 126.8	5 \$ 253.72	2	A
	Aluminum, Hose ID								
De la delativit	1/2", 3/8" NPT	https://www.mcma					2		
Barbed Fitting	Male	ster.com/5357K41/	4	McMaster-CARR	5357K41	\$ 5.6	\$ 22.56		В
	Free 2 (01 to by 17			Se	ction 4	1	1	1	1
Denne Durch A	For 3/8" tube ID	hanne (fear and a second				1		-T-	1
Brass Push-to-	and 1/2" tube OD,	https://www.mcma	2	Makdantas Cross	FADDKAT	\$ 7.9			
Connect Fitting	1/2" NPT Male	ster.com/5483K47/	2	McMaster-CARR	5483K47	\$ 7.9	\$ 15.98	8	A
NPT Female Barbed	11 ID 4 /28 4 /28	han 11							
	Hose ID 1/2", 1/2" NPT Female, Brass	https://www.mcma ster.com/5346K57/	2		5346K57	\$ 4.3			в
Fitting	NPT Female, Brass	ster.com/5346K57/	2	McMaster-CARR	5346K57 ction 5	\$ 4.3.	\$ 8.66		В
		1		Se	ction 5	1	1		-
	ID 3/8", OD 1/2",	https://www.mcma ster.com/5174K24-							
Copper Tubing	50 ft/unit	ster.com/51/4K24- 5174K6/		McMaster-CARR	5174K24	\$ 159.9	\$ 159.91		A
copper lubing	50 ft/unit	51/4K0/	1	MCMaster-CARR	51/4K24	\$ 159.9	\$ 159.91	1	A
	1 Gallon, Look at	https://www.mcma						Constant -	
Heat-Transfer Putty	SDS for more info	ster.com/3568K43/	2	McMaster-CARR	3568K43	\$ 98.3	\$ 196.66		в
riede rialisier rutty	3031011101011110	ster.com/sousk43/	2	WICIVIASTEL-CAUN	3308643	ý 30.3.	5 150.00		5
Instant-Bonding		https://www.mcma						8.8	
Adhesive	2 FL. oz /container	ster.com/7605a13/	1	McMaster-CARR	7605A13	\$ 7.8	\$ 7.87	, 11	с
Addresive	2 FL. 02 / container	https://www.home	1	WICHIGSTEL-CARR	7603A13	Ş 7.0	2 /.0/	/	
Tube Clamps (Price	Copper, 10 Clamps/	depot.ca/product/d							
is CAD)	Bag	ahl-1-2-tube-	2	The Home Depot	1000148597	\$ 6.7	\$ 13.40) 🔍 🐚	D
					ction 6				
								all a	
Bubble Sheet	48"x25 ft, For all	https://www.mcma				1		1000	
Insulation	sides, 4.2 R value	ster.com/9367K21/	1	McMaster-CARR	9367K21	\$ 79.3	\$ 79.37	7	A
						1		6 A.	
Fiberglass	48"x10 ft, For sides,	https://www.mcma				1		1	1
Insulation	3.8 R value	ster.com/9346K11/	1	McMaster-CARR	9346K11	\$ 25.1	\$ 25.16	6	В
						1			
Hard Foam	4 Feet x 48", 1"	https://www.mcma							
Insulation	Thick, 5 R value	ster.com/9255K11/	1	McMaster-CARR	9255K11	\$ 49.5	\$ 49.58	в	с
	1/2" Thick, 36"	https://www.mcma							
Soft Foam	Wide, 4 Feet Long,	ster.com/93265K46							
Insulation	2 R value	L	1	McMaster-CARR	93265K46	\$ 25.2	\$ 25.20		D
	For fiberglass								
		https://www.mcma							
	insulation,			McMaster-CARR	1066T22	\$ 4.6	\$ 9.22	2	E
Bags	insulation, 55"x45"x85"	ster.com/1066T22/	2						
Bags			2		Other				
Bags	55"x45"x85"	https://www.mcma	2		Other				
	55"x45"x85" Paper, 12 Rolls/		2					4	
Bags Paper Towel	55"x45"x85"	https://www.mcma	1		4501T202	\$ 53.5	\$ 53.57	7	
	55"x45"x85" Paper, 12 Rolls/	https://www.mcma ster.com/4501T202 /				\$ 53.5	\$ 53.57	7	-
Paper Towel	55"x45"x85" Paper, 12 Rolls/ Pack	https://www.mcma ster.com/4501T202 L https://www.mcma	1	McMaster-CARR	4501T202			Ro	-
	55"x45"x85" Paper, 12 Rolls/	https://www.mcma ster.com/4501T202 /				\$ 53.5		Ro	
Paper Towel	55"x45"x85" Paper, 12 Rolls/ Pack	https://www.mcma ster.com/4501T202 L https://www.mcma	1	McMaster-CARR	4501T202			Ro	

Future Setup

Design

- Same as successful barrel design
- Heat transfer putty will be used, and coil is outside pressure vessel
- I made CAD model for PV from scratch in Fusion

360

Future Setup

Calculations Fast cooling time Can use less coil for PV due to this This is good for space reasons since PV is smaller than barrel

Heat Transfer Coefficient or Thermal Conductivity	Area
$U_{\text{copper-putty}} = 114 \text{W}/(\text{m}^2 \cdot \text{K})$	$A_{\rm cp} = 0.0127 \cdot \pi \cdot L$
$U_{\text{steel-water}} = 400 \text{W}/(\text{m}^2 \cdot \text{K})$	$A_{\rm sw} = L \cdot 2 \cdot B$
$U_{\text{putty-steel}} = 114 \text{W}/(\text{m}^2 \cdot \text{K})$	$A_{\rm ps} = L \cdot 2 \cdot B$
$K_{\text{wall}} = 45 \text{W}/(\text{m}\cdot\text{K})$	$A_{\rm W} = L \cdot 2 \cdot B$

 $R = \frac{d}{k \cdot A} = \frac{1}{U \cdot A}$

Hours to Cool the PV from 25°C to 10°C with Respect to Putty Buffer and Coil Length with Insulation with an R Value of 2

Bill of Materials

- Very affordable BOM
- Can reuse parts from barrel setup

Name	Description	Link	Quantity	Supplier	Part Number	Cost/U	nit (USD)	Тс	otal (USD)	Image	Diagram Letter
				Secti	ion 1						
	For 3/8" tube ID	https://www.mcm									
Brass Push-to-	and 1/2" tube OD,	aster.com/5483K4									
Connect Fitting	1/2" NPT Male	7/	2	McMaster-CARR	5483K47	\$	7.99	\$	15.98		A
		https://www.mcm									
NPT Female	Hose ID 1/2", 1/2"	aster.com/5346K5									
Barbed Fitting	NPT Female, Brass	7/	2	McMaster-CARR	5346K57	\$	4.33	\$	8.66		В
		https://www.mcm									
	10 pack, 5/8"-1	aster.com/5076K4								a tot	
Hose Clamps	1/16"	3/	1	McMaster-CARR	5076K43	\$	12.23	\$	12.23		С
				Secti	ion 2						
		https://www.mcm									
Heat-Transfer	1 Gallon, Look at	aster.com/3568K4									
Putty	SDS for more info	3/	1	McMaster-CARR	3568K43	\$	98.33	\$	98.33		A
	10 Clamps /pack,	edepot.ca/product									
Tube Clamps	For 1/2" OD tube,	/dahl-1-2-tube-		The Home Depot							
(COST IN CAD)	Copper	clamps-solid-	1	Canada	1000148597	S	6.70	S	6.70		В
		https://www.mcm									
	ID 3/8", OD 1/2",	aster.com/5174K2									
Copper Tubbing	50 ft/unit	4-5174K6/	1	McMaster-CARR	5174K24	\$	159.91	\$	159.91		С
		https://www.mcm								A	
Instant-Bonding	0.9 FL. oz	aster.com/5551T7								8	
Adhesive	/container	<u>3/</u>	3	McMaster-CARR	5551T73	\$	9.43	\$	28.29		D
				Secti	ion 3						
		https://www.mcm									
Bubble Sheet	48"x25 ft, For all	aster.com/9367K2									
Insulation	sides, 4.2 R value	1/	1	McMaster-CARR	9367K21	\$	79.37	\$	79.37	and the second	A
		https://www.mcm								1	
Fiberglass	48"x10 ft, For	aster.com/9346K1				~					
Insulation	sides, 3.8 R value	1/	1	McMaster-CARR	9346K11	\$	25.16	\$	25.16	ALC REAL	В
	For fiberglass	https://www.mcm									
1211.22	insulation,	aster.com/1066T2		Contraction and							
Bags	55"x45"x85"	2/	2	McMaster-CARR	1066T22	\$	4.61	\$	9.22		С
							(USD pre		and a second second		
							tax)	\$	443.85	1	

How the Code Works

- The oscilloscope captures chunks of PMT data
- FFT is applied to convert the data to the frequency domain for filtering
- Inverse FFT brings it back to time domain
- Peak detection marks the start and end of peaks based on set amplitude thresholds
- I made a script that lets me analyze what is happening visually

Issue Found through Testing

- Code is marking peaks that are too small as signals -
- Easy fix! -
- Can adjust thresholds for peak detection to ->-0.0005 V (peaks are negative)
- Can verify if it works with visualization code I made -

Improvement Results

- Quick fix, but important issue to discover
- Would have had incorrect dark rate

Conclusion

Conclusion

- Designed multiple potential cooling systems
- Made CAD models for the various setups
- Did calculations to identify the best approach
- Made bills of materials for multiple designs and ordered parts for the final design
- Did the above for the future testing setup (Pressure Vessel)
- Made improvements to how data is managed for data analysis
- Stress tested FFT and peak isolation scripts and made improvements

Conclusion

Acknowledgements

Thank you to:

- Dr. Erica Caden
- Anita Masuskapoe
- Dr. Ubi Wichoski
- SNOLAB and the nEXO collaboration for making this great summer possible!

nEX(

Backups

Double Beta Decay – 2vββ

- $2\nu\beta\beta$ decay is rare
- Candidate isotopes: even-even nuclei where single β decay is forbidden
- Observed in 14 isotopes

Isotopes that can Undergo $2\nu\beta\beta$

Nuclide	Half-life, 10 ²¹ years	Mode	Transition	Method	Experiment
⁴⁸ Ca	$0.064^{+0.007}_{-0.006} \pm ^{+0.012}_{-0.009}$	β-β-		direct	NEMO-3 ^[11]
⁷⁶ Ge	1.926 ±0.094	β ⁻ β ⁻		direct	GERDA ^[10]
⁷⁸ Kr	$9.2^{+5.5}_{-2.6} \pm 1.3$	33		direct	BAKSAN ^[10]
⁸² Se	0.096 ± 0.003 ± 0.010	β-β-		direct	NEMO-3 ^[10]
⁹⁶ Zr	0.0235 ± 0.0014 ± 0.0016	β-β-		direct	NEMO-3 ^[10]
¹⁰⁰ Mo	0.00693 ± 0.00004	β ⁻ β ⁻			NEMO-3 ^[10]
Mo	$0.69^{+0.10}_{-0.08} \pm 0.07$	β ⁻ β ⁻	$0^+ \rightarrow 0^+_1$	direct	Ge coincidence ^[10]
¹¹⁶ Cd	$\begin{array}{c} 0.028 \pm 0.001 \pm 0.003 \\ 0.026 \substack{+0.009 \\ -0.005} \end{array}$	β ⁻ β ⁻		direct	NEMO-3 ^[10] ELEGANT IV ^[10]
¹²⁸ Te	7200 ± 400 1800 ± 700	β ⁻ β ⁻		geochemical	[10]
¹³⁰ Te	0.82 ± 0.02 ± 0.06	β ⁻ β ⁻		direct	CUORE-0 ^[12]
¹²⁴ Xe	18 ± 5 ± 1	33		direct	XENON1T ^[13]
¹³⁶ Xe	2.165 ± 0.016 ± 0.059	β-β-		direct	EXO-200 ^[10]
¹³⁰ Ba	(0.5 – 2.7)	33	12	geochemical	[14][15]
¹⁵⁰ Nd	$0.00911^{+0.00025}_{-0.00022} \pm 0.00063$	β-β-		dia at	NEMO-3 ^[10]
Nd	0.107 ^{+0.046} -0.026	β ⁻ β ⁻	$0^+ \rightarrow 0^+_1$	direct	Ge coincidence ^[10]
²³⁸ U	2.0 ± 0.6	β-β-		radiochemical	[10]

Linear Interpolation for Cooling Capacity

- Most Calculations Look at cooling time from 25 °C to 10 °C
- Middle is 17.5 °C
- Cooling Capacity at 20 °C is 1000 W and at 0 °C is 650 W

Average Cooling Capacity is: **956 W**

Calculations - Simple

Time to cool from 25 °C to 10 °C

Simple Calculation Perfect Insulation:

$$55GAL \cdot \frac{3.78L}{GAL} + 15L = 208L + 15L = 223L$$

$$Q = mc\Delta T = 223 \,\mathrm{kg} \cdot 4184 \,\frac{\mathrm{J}}{\mathrm{kg}^{\circ}\mathrm{C}} \cdot 15^{\circ}\mathrm{C} = 14 \cdot 10^{6} \,\mathrm{J}$$

Coolers Max Cooling Capacity is 956 W

$$t = \frac{Q}{P} = \frac{14 \cdot 10^6 \,\mathrm{J}}{956 \,\frac{\mathrm{J}}{\mathrm{s}}} \cdot \frac{1 \,\mathrm{h}}{3600 \,\mathrm{s}} \approx 4.07 \,\mathrm{hours}$$

Simple Calculation with R-Value 2 Insulation:

$$\frac{dQ}{dt} = U \cdot A \cdot \Delta T = \frac{1}{R} \cdot A \cdot \Delta T$$
$$\frac{dQ}{dt} = \frac{1}{2 \text{ m}^2 \text{K}} \cdot 2.27 \text{ m}^2 \cdot 15 \text{ K} = 17.0 \text{ W}$$
$$956 \text{ W} - 17 \text{ W} = 939 \text{ W}$$
$$t = \frac{Q}{P} = \frac{14 \cdot 10^6 \text{ J}}{939 \frac{\text{J}}{\text{s}}} \cdot \frac{1 \text{ h}}{3600 \text{ s}} \approx 4.14 \text{ hours}$$

Calculations — Coil in Barrel

$$\frac{d}{dt}Q = U \cdot A \cdot \Delta T$$

Cooling Capacity depends only on A. This gives 3 cases for dQ/dt that only depend on A:

- 1. dQ/dt < 956 W Area of coil is bottleneck cooling
- 2. dQ/dt = 956 W Coil exchanges heat at the same rate as the cooler
- 3. dQ/dt > 956 W Making coil longer has no cooling benefits

 $A = 0.0127 \cdot \pi \cdot L$

 $\frac{d}{dt}Q = U \cdot 0.0127 \cdot \pi \cdot L \cdot \Delta T$ $L = \frac{\frac{d}{dt}Q}{U \cdot 0.0127 \cdot \pi \cdot \Delta T}$ $L = \frac{956 \text{ W}}{400 \frac{\text{W}}{\text{m}^2\text{K}} \cdot 0.0127 \text{ m} \cdot \pi \cdot 15 \text{ K}} = 4 \text{ m}$

Increasing coil length past 4m has no benefits

Calculations — Coil Outside of Barrel

$$A = L \cdot 0.002$$
$$\frac{d}{dt}Q = 400 \frac{W}{m^2 K} \cdot (0.002 \cdot L) m^2 \cdot 15 K$$
$$t = \frac{14 \cdot 10^6}{3600 \left(\frac{dQ}{dt} - 17W\right)}$$
$$t = \frac{14 \cdot 10^6}{3600 \cdot (400 \cdot 0.002 \cdot L \cdot 15 - 17)}$$

Quick Connect Concerns

Series	Spillage cm ³
QTM2	0.1
QTM4	0.2
QTM8	1.0

$$q = N_1 C_v \sqrt{\frac{\Delta p}{G}}$$

$$q_{QTM2} = 3.7854 \cdot 0.8 \sqrt{\frac{4.35}{1}} = 6.32 \, \text{lpm}$$

$$q_{QTM4} = 3.7854 \cdot 1.6 \sqrt{\frac{4.35}{1}} = 12.63 \, \text{lpm}$$

Calculations Outside Barrel Final

$$R_{tot} = \sum \frac{1}{U \cdot A}$$

$$\frac{dQ}{dt} = \frac{\Delta T}{R_{tot}}$$

Heat Transfer Coefficient	Area
$U_{\text{copper-putty}} = 114 \text{W}/(\text{m}^2 \cdot \text{K})$	$A_{\rm cp} = 0.0127 \cdot \pi \cdot L$
$U_{\text{steel-water}} = 400 \text{W}/(\text{m}^2 \cdot \text{K})$	$A_{ m sw} = L \cdot 2 \cdot B$
$U_{\text{putty-steel}} = 114 \text{W}/(\text{m}^2 \cdot \text{K})$	$A_{\rm ps} = L \cdot 2 \cdot B$

SNOLAB

Calculations PV

$$Q = mc\Delta T = 84.28 \,\mathrm{kg} \cdot 4181 \,\frac{\mathrm{J}}{\mathrm{kg}^{\circ}\mathrm{C}} \cdot 15^{\circ}\mathrm{C}$$

$$Q = 53 \cdot 10^5 \,\mathrm{J}$$

$$t = \frac{53 \cdot 10^5}{939 \cdot 3600} = 1.57 \text{ hours}$$

Heat Transfer Coefficient or Thermal Conductivity	Area
$U_{\text{copper-putty}} = 114 \mathrm{W}/(\mathrm{m}^2 \cdot \mathrm{K})$	$A_{\rm cp} = 0.0127 \cdot \pi \cdot L$
$U_{\text{steel-water}} = 400 \text{W}/(\text{m}^2 \cdot \text{K})$	$A_{\rm sw} = L \cdot 2 \cdot B$
$U_{\text{putty-steel}} = 114 \text{W}/(\text{m}^2 \cdot \text{K})$	$A_{\rm ps} = L \cdot 2 \cdot B$
$K_{\text{wall}} = 45 \text{W}/(\text{m}\cdot\text{K})$	$A_{\mathbf{w}} = L \cdot 2 \cdot B$

$$R_{\text{tot}} = \frac{d_{\text{w}}}{k_{\text{w}} \cdot A_{\text{w}}} + \frac{1}{U_{\text{cp}} \cdot A_{\text{cp}}} + \frac{1}{U_{\text{ps}} \cdot A_{\text{ps}}} + \frac{1}{U_{\text{sw}} \cdot A_{\text{sw}}}$$

$$t = \frac{53 \cdot 10^5}{3600 \left(\left(\frac{15}{\frac{0.025}{45 \cdot L \cdot 2B} + \frac{1}{114 \cdot 0.0127 \cdot \pi \cdot L} + \frac{1}{114 \cdot 2B \cdot L} + \frac{1}{400 \cdot 2B \cdot L} \right) - 17 \right)}$$

Time for Exterior to Heat Barrel by 1 °C wrt R-Value

$$Q = mc\Delta T = 223.175 \text{ kg} \cdot 4181 \frac{\text{J}}{\text{kg}^{\circ}\text{C}} \cdot 1^{\circ}\text{C}$$

$$Q = 93.3 \cdot 10^{4} \text{ J}$$

$$t = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

$$I = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

$$I = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

$$I = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

$$I = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

$$I = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

$$I = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

$$I = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

$$I = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

$$I = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

$$I = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

$$I = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

$$I = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R$$

Time to Heat Barrel that is 10°C colder than Surroundings by 1°C with Respect to R-Value of Insulation

Data Management Improvements

Data Management Improvements

Only having to put things in the right folder when you change something.

Data File Example

1 > pm1	t-1560_noise_closed_loff-2023-11-23 > 🗧 C2pmt-1560-noise-
1	LECROYWS3054z,46730,Waveform
	Segments,1,SegmentSize,10000002
	Segment,TrigTime,TimeSinceSegment1
	#1,23-Nov-2023 14:47:51,0
	Time,Ampl
	-0.005000000467,0.000266666667
	-0.004999999467,0.000266666667
	-0.004999998467,0.0002
	-0.004999997467,0.0002
	-0.004999996467,0.000266666667
11	-0.004999995467,0.000266666667
12	-0.004999994467,0.000266666667
	-0.004999993467,0.000266666667
	-0.004999992467,0.00033333333
	-0.004999991467,0.00033333333
	-0.004999990467,0.00033333333
	-0.004999989467,0.000266666667
	-0.004999988467,0.0002
	-0.004999987467,0.0002
	-0.004999986467,0.000266666667
21	-0.004999985467,0.000266666667
22	-0.004999984467,0.000266666667
	-0.004999983467,0.000266666667
	-0.004999982467,0.000266666667
	-0.004999981467,0.00033333333
	-0.004999980467,0.000266666667
	-0.004999979467,0.000266666667
	-0.004999978467,0.0002
	-0.004999977467,0.0002
	-0.004999976467,0.0002
	-0.004999975467,0.000266666667
32	-0.004999974467,0.000266666667
	-0.004999973467,0.000266666667
	-0.004999972467,0.000266666667
	-0.004999971467,0.000266666667
	-0.004999970467,0.000266666667
	-0.004999969467,0.0002