

Testing Photomultiplier Tubes for nEXO's Outer Detector

2024 CASST Competition Lazar Paroski Queen's University August 19 2024

Outline

-
- Introduction to 0νββ and nEXO

Designing the PMT testing Setup Cooling Loop

Intro to the PMT Testing Setup

Initial Design Ideas

Galculations

Bill of Materials and Concerns

Improved Design

Calculatio
	-
	-
	-
	-
	-
	-
	-
- -
	-
	-
- -
	-
-

0vββ signature is peak at nucleus Q value

2νββ spectrum measured in 136 Xe with EXO-200!

nEXO Experiment

- 5-tonne single-phase liquid Xenon Time Projection Chamber (TPC)
- Enriched to 90% in isotope ¹³⁶Xe
- OD used for passive and active shielding
- Target half-life sensitivity of $1.35 \cdot 10^{28}$ years

Source: <https://nexo.llnl.gov/nexo-overview>

Introduction to 0vββ and nEXO

nEXO Outer Detector (OD)

Passive and active shielding

<https://arxiv.org/pdf/1509.03724>

- $\overline{}$ Q value for 0νββ¹³⁶Xe → ¹³⁶Ba is **2458 keV** [1]
- Muons passing through TPC can create neutrons that can create energy signatures around Q value :(
- OD is veto for TPC by detecting Cherenkov radiation :)

^[1] Search for double-beta decay of 136Xe to excited states of 136Ba with the KamLAND-Zen experiment

The PMT Testing Setup

- Located at Laurentian University
- PMT attached to barrel lid
- Barrel lid in dark enclosure
- This will help learn for future setups

The PMT Testing Setup

- Barrel needs a way to change and keep

stable temperature

- OD will be held at 12°C
- PolyScience AP15R-40-A11B refrigerated

circulator

Initial Design Ideas

Design Ideas

- Coil Inside Barrel
- Coil Outside Barrel
- Each setup has some pros/cons
- I updated CAD models in Fusion 360

Calculations

Calculations — Simple

Time to cool barrel from 25 °C to 10 °C, $P = 956 W$ (Cooling Capacity at 17.5 °C)

Time with no heat leaking in barrel : Time with Insulation with an R-Value of 2:

$$
Q = mc\Delta T \qquad t = \frac{Q}{P}
$$

 $t = 4.07$ Hours $t = 4.14$ Hours

$$
\frac{dQ}{dt} = U \cdot A \cdot \Delta T = \frac{1}{R} \cdot A \cdot \Delta T
$$

Calculations

Calculations — Coil in Barrel

$$
\frac{d}{dt}Q = U \cdot A \cdot \Delta T \qquad \qquad A = 0.0127 \cdot \pi \cdot L
$$

- 1. **dQ/dt < 956 W** Area of coil is bottleneck cooling
- 2. **dQ/dt = 956 W** Coil exchanges heat at the same rate as the

3. **dQ/dt > 956 W** – Making coil longer has no cooling benefits

Will Cool in 4.14 Hours if more than 4m of tubing is used

Calculations — Coil Outside of Barrel

$$
A = L \cdot 0.002
$$

- Too Long to cool
- Don't want to use more than

15m of coil

Bill of Materials

- Still concerns with setup
- Coil in barrel could interfere with detection
- Setup has additional Issues…

Quick Connect Concerns

Cooler max Pressure: **4.35 Psi**

Cooler max Flow Rate: **20.1 lpm**

$$
q = N_1 C_v \sqrt{\frac{\Delta p}{G}}
$$

Improved Design

Improved Design

- TRACIT-1100 heat transfer compound
- Heat transfer coefficient: 114-227 W/m^{2*}K
- Relatively inexpensive solution
- Avoids quick connect flow and spillage issues
- Avoids coil interfering with detection issues

Calculations

Calculations

- Used thermal resistance
- Putty buffer is amount of putty on either side of tubing
- Cooling time reasonable making this

option feasible

$$
R_{tot} = \sum \frac{1}{U \cdot A} \qquad \qquad \frac{dQ}{dt} = \frac{\Delta T}{R_{tot}}
$$

Hours to Cool the Barrel from 25°C to 10°C with Respect to Putty Buffer and Coil Length with Insulation with an R Value of 2

Final Bill of Materials

Final Bill of Materials

- Avoids issues with previous set up by putting coil outside of barrel
- BOM was ordered

16

Future Setup

Design

- Same as successful barrel design
- Heat transfer putty will be used, and coil is outside pressure vessel
- I made CAD model for PV from scratch in Fusion

360

Future Setup

$$
R = \frac{d}{k \cdot A} = \frac{1}{U \cdot A}
$$

Bill of Materials

- Very affordable BOM
- Can reuse parts from barrel setup

How the Code Works

- The oscilloscope captures chunks of PMT data
- FFT is applied to convert the data to the frequency domain for filtering
- Inverse FFT brings it back to time domain
- Peak detection marks the start and end of peaks based on set amplitude thresholds
- I made a script that lets me analyze what is happening visually

Issue Found through Testing

- Code is marking peaks that are too small as signals
- Easy fix!
- Can adjust thresholds for peak detection to >-0.0005 V (peaks are negative)
- Can verify if it works with visualization code I made

Improvement Results

- Quick fix, but important issue to discover
- Would have had incorrect dark rate

Conclusion

Conclusion

- Designed multiple potential cooling systems
- Made CAD models for the various setups
- Did calculations to identify the best approach
- Made bills of materials for multiple designs and ordered parts for the final design
- Did the above for the future testing setup (Pressure Vessel)
- Made improvements to how data is managed for data analysis
- Stress tested FFT and peak isolation scripts and made improvements

Conclusion

Acknowledgements

Thank you to:

- Dr. Erica Caden
- Anita Masuskapoe
- Dr. Ubi Wichoski
- SNOLAB and the nEXO collaboration for making this great summer possible!

nEX

Backups

Double Beta Decay – 2vββ

- 2vββ decay is rare
- Candidate isotopes: even-even nuclei where single β decay is forbidden
- Observed in 14 isotopes

Isotopes that can Undergo 2vββ

Linear Interpolation for Cooling Capacity

- Most Calculations Look at cooling time from 25 °C to 10 °C
- Middle is 17.5 °C
- Cooling Capacity at 20 °C is 1000 W and at 0 °C is 650 W

Average Cooling Capacity is: **956 W**

Calculations - Simple

Time to cool from 25 °C to 10 °C

$$
55 \text{GAL} \cdot \frac{3.78 \text{L}}{\text{GAL}} + 15 \text{L} = 208 \text{L} + 15 \text{L} = 223 \text{L}
$$

$$
Q = mc\Delta T = 223 \,\text{kg} \cdot 4184 \, \frac{\text{J}}{\text{kg}^{\circ}\text{C}} \cdot 15^{\circ}\text{C} = 14 \cdot 10^6 \,\text{J}
$$

Coolers Max Cooling Capacity is **956 W**

$$
t = \frac{Q}{P} = \frac{14 \cdot 10^6 \text{ J}}{956 \frac{\text{J}}{\text{s}}} \cdot \frac{1 \text{ h}}{3600 \text{ s}} \approx 4.07 \text{ hours}
$$

Simple Calculation Perfect Insulation: Simple Calculation with R-Value 2 Insulation:

$$
\frac{dQ}{dt} = U \cdot A \cdot \Delta T = \frac{1}{R} \cdot A \cdot \Delta T
$$

$$
\frac{dQ}{dt} = \frac{1}{2 \text{ m}^2 \text{K}} \cdot 2.27 \text{ m}^2 \cdot 15 \text{ K} = 17.0 \text{ W}
$$

$$
956 \text{ W} - 17 \text{ W} = 939 \text{ W}
$$

$$
t = \frac{Q}{P} = \frac{14 \cdot 10^6 \text{ J}}{939 \frac{1}{s}} \cdot \frac{1 \text{ h}}{3600 \text{ s}} \approx 4.14 \text{ hours}
$$

Calculations — Coil in Barrel

$$
\frac{d}{dt}Q=U\cdot A\cdot \Delta T
$$

Cooling Capacity depends only on A. This gives 3 cases for dQ/dt that only depend on A:

- 1. dQ/dt < 956 W Area of coil is bottleneck cooling
- 2. $dQ/dt = 956 W Coil$ exchanges heat at the same rate as the cooler
- 3. dQ/dt > 956 W Making coil longer has no cooling benefits

 $A = 0.0127 \cdot \pi \cdot L$

 $\frac{d}{dt}Q = U \cdot 0.0127 \cdot \pi \cdot L \cdot \Delta T$ $L = \frac{\frac{d}{dt}Q}{U \cdot 0.0127 \cdot \pi \cdot \Delta T}$ $L = \frac{956 \text{ W}}{400 \frac{\text{W}}{\text{m}^2 \text{K}} \cdot 0.0127 \text{ m} \cdot \pi \cdot 15 \text{ K}}$ $\pm 4m$

> Increasing coil length past 4m has no benefits

Calculations — Coil Outside of Barrel

$$
A = L \cdot 0.002
$$

$$
\frac{d}{dt}Q = 400 \frac{W}{m^2 K} \cdot (0.002 \cdot L) m^2 \cdot 15 K
$$

$$
t = \frac{14 \cdot 10^6}{3600 \left(\frac{dQ}{dt} - 17 W\right)}
$$

$$
t = \frac{14 \cdot 10^6}{3600 \cdot (400 \cdot 0.002 \cdot L \cdot 15 - 17)}
$$

Quick Connect Concerns

$$
q = N_1 C_v \sqrt{\frac{\Delta p}{G}}
$$

$$
q_{QTM2}=3.7854\cdot0.8\sqrt{\frac{4.35}{1}}=6.32\,\mathrm{lpm}
$$

$$
q_{QTM4}=3.7854\cdot1.6\sqrt{\frac{4.35}{1}}=12.63\,\mathrm{lpm}
$$

Calculations Outside Barrel Final

$$
R_{tot} = \sum \frac{1}{U \cdot A}
$$

$$
\frac{dQ}{dt} = \frac{\Delta T}{R_{tot}}
$$

.
AB SNa

Calculations PV

$$
Q = mc\Delta T = 84.28 \,\text{kg} \cdot 4181 \,\frac{\text{J}}{\text{kg}^{\circ}\text{C}} \cdot 15^{\circ}\text{C}
$$

$$
Q=53\cdot 10^5\,\mathrm{J}
$$

$$
t = \frac{53 \cdot 10^5}{939 \cdot 3600} = 1.57 \text{ hours}
$$

$$
R_{\text{tot}} = \frac{d_{\text{w}}}{k_{\text{w}} \cdot A_{\text{w}}} + \frac{1}{U_{\text{cp}} \cdot A_{\text{cp}}} + \frac{1}{U_{\text{ps}} \cdot A_{\text{ps}}} + \frac{1}{U_{\text{sw}} \cdot A_{\text{sw}}}
$$

$$
t = \frac{53 \cdot 10^5}{3600 \left(\left(\frac{15}{\frac{0.025}{45 \cdot L \cdot 2B} + \frac{1}{114 \cdot 0.0127 \cdot \pi \cdot L} + \frac{1}{114 \cdot 2B \cdot L} + \frac{1}{400 \cdot 2B \cdot L}} \right) - 17} \right)
$$

Time to Heat Barrel that is 10°C colder than Surroundings

Time for Exterior to Heat Barrel by 1 °C wrt R-Value

$$
Q = mc\Delta T = 223.175 \text{ kg} \cdot 4181 \frac{\text{J}}{\text{kg}^{\circ}\text{C}} \cdot 1^{\circ}\text{C}
$$

\n
$$
Q = 93.3 \cdot 10^{4} \text{ J}
$$

\n
$$
t = \frac{Q}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R
$$

\n
$$
\frac{V}{\text{S}^{4}} = \frac{V}{\frac{d}{dt}Q} = \frac{93.3 \cdot 10^{4}}{86400 \cdot 2.27 \cdot 10} R = \frac{93.3}{196} R
$$

\n
$$
\frac{V}{\text{S}^{4}} = \frac{V}{\frac{d}{dt}Q}
$$

\n $$

Data Management Improvements

Having to hard code file and folder names every time you change something.

Data Management Improvements

Only having to put things in the right folder when you change something.

Data File Example

