Staying Cool: the Thermoelectic Cooling of SiPMs

Julien Hacot-Slonosky

Supervisor: Thomas Brunner

CASST 2024

Contact: julien.hacot-slonosky@mail.mcgill.ca

The nEXO Experiment

- A proposed search for the hypothetical neutrinoless double beta decay $(0\nu\beta\beta)$, proposed to be at SNOLAB
 - 5 tonnes LXe enriched to 90% ¹³⁶ Xe
 - The time projection chamber houses ~10⁴ silicon photomultipliers (SiPMs) to detect scintillation light from $0\nu\beta\beta$
- Projected half-life sensitivity of 1.35×10²⁸ years at 90% C.L.
- Characterize how silicon photomultipliers (SiPMs) act at LXe temperatures

https://nexo.llnl.gov/nexo-overview

2

SiPM Characterization at Low Temperatures

- Silicon photomultipliers (SiPMs) in nEXO will work to detect scintillation light from ββ decay events at LXe temperatures (~ -100°C).
- One part of testing SiPMs is measuring their sensitivity to a single photon at low temperatures, and so we want to suppress the dark count rate.
- -40°C is a low enough temperature where the dark counts can be neglected.
- Can reach -40°C much more easily with thermoelectric coolers (TECs).

How Do Thermoelectric Coolers Work?

• TEC employ the Peltier effect:

- When current passes through two dissimilar semiconductors (n-type and p-type), a temperature gradient forms across the junctions, depending on the direction of the current.
- TE coolers pass direct current from N-type to P-type semiconductors.
- Modules are made of many semiconductors arranged thermally in parallel, but electrically in series.

Initial Tests

1 TEC pressed between a pc chip water cooling block and an aluminum thermal load.

water

Closed loop cooling

Thermistor Aluminum block

Stainless steel bolts

TEC

PC water cooling block Hacot-Slonosky, McGill, Thermoelectric Cooling of SiPMs, CASST 2024

12V water pump

cooling module

Initial Tests

- The original setup works:
 - As the water temperature increased, so did the temperature of the aluminum block.
 - Recycled water from closed loop decreases the amount of heat able to be pulled away.
 - Single unit gave a constant $\Delta T \sim 30^{\circ}$ C.

Upgrading the System

- Two avenues for improvement:
 - **1**. Better heat sink
 - 2. More heat moved
- **1**. Better heat sink:
 - Closed loop recycles warm water with limited heat dissipation
 - Open loop from the building chilled water supply allows for cooler water at constant temperature
- 2. More heat moved
 - Using more units allows for greater ΔT
 - Stacking units loses efficiency quickly

The Trouble With Stacking TECs

 The thermal load on an individual TEC increases the further down the stack it is until it cannot cool the load any further.

The Trouble With Stacking TECs

 $\Delta T = 37^{\circ}$ C $8 \vee \times 3 A = 24 \vee \text{W}$ used For first unit 24 $\vee \text{U}$ used + 13 $\vee \text{PUMped} = 37 \vee \text{V}$ total

 $\Delta T = 3^{\circ}$ C 6 V x 3 A = 18 W used

For second unit 18 W used + 13 W pumped = 31 W total

In total, 18 W used + 21 W used = 39W total for a $\Delta T = 40^{\circ}$ C

How to Stack TECs

11

First Trials

Tested a 3-stack with open loop cooling with water from the tap

Clearly something is not working as intended...

Back to Basics

- The 3-stack method only works if all the units are the same, these were not...
- Replaced the 3-stack with one TEC1-12704k10 unit
- Replaced the stainless steel bolts with plastic bolts
- Used open loop water cooling

Latest Attempt With 3-Stack

- Stacked 3 TEC1-12704k10
- Used 3D printed spacers between the bolts
- Used open loop cooling

Moving Forwards

- Find better ways to thermally isolate the load from the environment, hot side
- Prevent the buildup of ice crystals that will envelop the SiPM
- Incorporate the open loop cooling with the building chilled water supply

Acknowledgements

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

Professor Thomas Brunner And all the McGill Physics department technical staff

The Trouble With Stacking TECs

Hacot-Slonosky, McGill, Thermoelectric Cooling of SiPMs, CASST 2024

Laird Thermal Systems, Multistage series electric cooler

https://www.lairdthermal. com/datasheets/datashee t-MS2-049-14-14-15-15-11-W8.pdfr