MAssive Timing Hodoscope for detection of Ultra-Stable neutraL pArticles https://mathusla-experiment.web.cern.ch/

The Search for Long-Lived Particles: Construction of MATHUSLA Test Stand

Speaker: Alex Lau

Supervisor: Dr. Miriam Diamond

Large Hadron Collider (LHC)

- Operated by CERN (European Organization for Nuclear Research)
- World's largest particle collider
- Beams of protons
- Higgs Boson discovered here!

Long-Lived Particles (LLPs)

- Open problems: dark matter, hierarchy problem, baryogenesis
- Many **Beyond the Standard Model** (BSM) theories involve LLPs
- <u>Weakly coupled</u> \rightarrow <u>Long-lived</u>
- May be produced in the LHC!
- MATHUSLA would be orders of magnitude more sensitive than the current ATLAS searches

Updated MATHUSLA Sensitivity Graph

Detection Mechanism

- Ionizing radiation passing through plastic scintillator bars deposit energy
- **Fluor** molecules (PPO and POPOP) • emit light
- Wavelength-shifting fibre (WSF) collects and shifts light
- Silicon photomultipliers (SiPMs) produce signal

Plastic

Detection Mechanism

- **Timing resolution** is crucial!
- Distinguish upward and downward going tracks
- Identifying location of hits in detector
- Alternating layer orientations
- Nanosecond precision

Layer of Test stand

Charged Particle

UofT Test stand

Time Synchronization with Cosmic Rays

- Entire detector (~100,000 bars) can be synchronized at once
- Fits coordinates of hits to a **track reconstruction**, then fits the **times** of the hits to the distances of the hit along track reconstruction
- 150 seconds of data-taking, synchronization uncertainty down to ±0.10ns

Time Resolution

Factors that affect our time resolution:

- 1. SiPM Signal & Trigger Threshold
- 2. SiPM Dark Counts
- 3. Light Output / Scintillator Quality
- 4. DAQ (Data Acquisition System) Board & Cabling

Component	Model & Dimensions
SiPM	Hamamatsu S14160-3050HS 3.0mm x 3.0mm
Wavelength Shifting Fibers	Saint-Gobain BCF-92XL Attenuation length: 530 cm, 1.5mm diameter
Scintillator Bars	Fermilab Extruded polystyrene 1cm x 4cm x 100cm
DAQ Board	PETsys TOFPET2

SiPM Signal

- **Rise time** should be as fast as possible
- Fall time should not be too long. Otherwise dark counts will pile up!
- Minimize **noise** and distortion:
 - Shield signal layer
 - Decoupling capacitors
 - Make sure components are close together
 - Minimize trace lengths

Pre-Amplifier V.5

SiPM Signal

- **Rise time** should be as fast as possible
- Fall time should not be too long. Otherwise dark counts will pile up!
- Minimize **noise** and distortion:
 - Shield signal layer
 - Decoupling capacitors
 - Make sure components are close together
 - Minimize trace lengths

Trigger Threshold

• Trigger: 1.5 photoelectrons

- Bar quality differed between batches!
- How do we prove this?
- Built a cosmic ray trigger to isolate signals from cosmic rays
- Issue with the TiO₂ coating process and polystyrene source

Cosmic Ray Trigger

- Bar quality differed between batches!
- How do we prove this?
- Built a cosmic ray trigger to isolate signals from cosmic rays
- Issue with the TiO₂ coating process and polystyrene source

- Bar quality differed between batches!
- How do we prove this?
- Built a cosmic ray trigger to isolate signals from cosmic rays
- Issue with the TiO₂ coating process and polystyrene source

• 3D visualization of the hits within our detector!

• Hits in our detector with uncertainties, plotted with the results of track reconstruction algorithm

- Hits in our detector with uncertainties, plotted with the results of track reconstruction algorithm
- Preliminary results suggest
 88% efficiency

Simulated Track Angular Distribution

- Hits in our detector with uncertainties, plotted with the results of track reconstruction algorithm
- Preliminary results suggest
 88% efficiency

Test Stand Track Angular Distribution

Next Steps?

- Preparing technical design report
- Seeking funding for 10m x
 10m first module at CERN
- Aim to run during High Luminosity LHC in a few years

Superconducting Magnet for HL-LHC

Collaboration

Canadian Groups:

Pls: David Curtin (UofT), Miriam Diamond (UofT), Heather Russell (UVic), Steven Robertson (McGill)

Postdocs: Caleb Miller, Tom Ren

Students: Gabriel Owh, Alex Lau, Caleb Gemmell, Andrija Rasovic, Zhihan Yuan, ...

References & Readings

- The lifetime frontier. EP News. (n.d.). <u>https://ep-news.web.cern.ch/content/lifetime-frontier</u>
- Fermilab. (n.d.). <u>https://www.fnal.gov/</u>
- The MATHUSLA experiment. Home | mathusla.web.cern.ch. (n.d.). <u>https://mathusla-experiment.web.cern.ch/</u>
- MATHUSLA LHCC letter of intent: <u>arXiv:1811.00927, 2009.01693</u>
- MATHUSLA Physics Case: <u>arXiv:1806.07396</u>
- LLP decays in MATHUSLA: arXiv:2308.05860
- Analysis of Long Lived Particle Decays with the MATHUSLA Detector: <u>https://arxiv.org/abs/1705.06327</u>
- On the Origin of Long-Lived Particles: <u>https://arxiv.org/abs/2007.05538</u>
- Recent Progress and Next Steps for the MATHUSLA LLP Detector: <u>https://arxiv.org/abs/2203.08126</u>

Supplementary Slides

SiPM Dark Count

- Thermal noise in SiPMs
- Layers should be light-tight
 - Spray-painted insides black
 - Lined edges with **black foam**
 - Taped edges of the box
- Calibrated our data acquisition board trigger to ignore dark counts

Picture of Layers

- Issue with the TiO₂ coating process and polystyrene source
- Tried wrapping the bars in different materials

	Old Bar	New Bar	Mylar, Adhesive Side In	Mylar, Adhesive Side Out	Teflon	Tyvek	Mylar and Teflon	Printer Paper	Aluminum Foil
Near End	34.6	24.7	24.4	29.3	28.9	25.2	28.8	28.2	28.2
Far End	14.2	9.7	7.5	8.7	8.9	8.2	8.6	8.2	7.7

