Motives	Introduction and that's why …	What is $f(R)$	Our f(R) type	Next and be

Further analysis with metric-affine f(R) gravity

Rafid Hasan Dejrah

rafid.dejrah@gmail.com

In: Rafid Hasan Dejrah | www.rafid-hasan.com Physics Department Ankara University, Turkey

August 19, 2024

Further analysis with metric-affine f(R) gravity

Image: August 19, 2024

Motives	Introduction and that's why ···	What is $f(R)$	Our f(R) type	Next and beyond the horizons …	Biblography
00	00	00	000	00	00000

- **2** Introduction and that's why …
- **3** What is f(R)
- **4** Our f(R) type
- **5** Next and beyond the horizons ····

6 Biblography

э

Motives	Introduction and that's why …	What is $f(R)$	Our f(R) type	Next and beyond the horizons ···	Biblography
●0	oo	00	000	oo	00000

- **2** Introduction and that's why \cdots
- **3** What is f(R)
- **4** Our f(R) type
- **5** Next and beyond the horizons …
- **6** Biblography

э

• • = • • = •

Motives	Introduction and that's why …	What is $f(R)$	Our f(R) type	Next and beyond the horizons ···	Biblography
○●	00	00	000	00	00000
Backgrou	Ind and Motivation				

Why this topic:

- If we check our main goal, and set back for a while!
- Basically we need some presentations of this category.
- It does really root in even unimaginable levels.
- For a batter understanding of our universe.

Motives	Introduction and that's why \cdots	What is $f(R)$	Our f(R) type	Next and beyond the horizons …	Biblography
00	$\bullet \circ$	00	000	00	00000

- **2** Introduction and that's why …
- **3** What is f(R)
- **4** Our f(R) type
- **5** Next and beyond the horizons …
- 6 Biblography

э.

• • • • • • •

- Studying cosmology and pontificating through it has been our horizon, especially lately.
- As we gain more knowledge, many obstacles come across our trajectory.
- Some of these problems is: the late Universe acceleration.
- Many attmepts has been proposed. E.g., models that requires exotic sources AND; on the other hand, modified gravity via non-Einsteinian dynamics.
- The Hubble issue.

Motives	Introduction and that's why …	What is $f(R) = 0$	Our f(R) type	Next and beyond the horizons …	Biblography
00	00		000	00	00000

2 Introduction and that's why \cdots

3 What is f(R)

4 Our f(R) type

5 Next and beyond the horizons …

6 Biblography

э.

- GR had a wide range of acceptance then, but it took physicists only 4 year to start questioning its uniqueness!
- Early vs. Late Universe.
- Some modification on the Einstein-Hilbert action.
- It is not that easy task, the competition is hard.
- There are mainly two variational principles to derive Einstein's equations from the Einstein-Hilbert action; Metric variation & Palatini variation.

Motives	Introduction and that's why ···	What is $f(R)$	Our f(R) type	Next and beyond the horizons …	Biblography
00	00	00	●○○	oo	00000

2 Introduction and that's why \cdots

3 What is f(R)

4 Our f(R) type

5 Next and beyond the horizons …

6 Biblography

э

• • = • • = •

Motives Introduction and that's why \cdots What is f(R) Our f(R) type Next and beyond the horizons \cdots Biblography ocoor metric-affine f(R):

• But there is a third one; when the assumption of the Independence of matter action from the connection \rightarrow **metric-affine** f(R) **gravity** which makes it the most general!

$$S_{MA} = \frac{1}{2\kappa} \int d^4x \sqrt{-g} f(\mathcal{R}) + S_M(g_{\mu\nu}, \Gamma^{\lambda}_{\mu\nu}, \psi)$$

- where $\kappa \equiv 8\pi G$, *G* is the gravitational constant, *g* is the determinant of the metric, ψ collectively denotes the matter fields, $\mathcal{R} = g^{\mu\nu} \mathcal{R}_{\mu\nu}$.
- We need **hypermomentum** to mimics the definition of the stress-energy tensor as following

$$\Delta_{\lambda}^{\mu\nu} \equiv -\frac{2}{\sqrt{-g}} \frac{\delta S_M}{\delta \Gamma_{\mu\nu}^{\lambda}}$$

• The way is long from here \cdots

Further analysis with metric-affine f(R) gravity

Motives	Introduction and that's why …	What is $f(R)$	Our $f(R)$ type	Next and beyond the horizons ····	Biblography
00	oo	00		00	00000
Illustrati	on:				

[5]

Further analysis with metric-affine f(R) gravity

ъ

11 / 18

- E

August 19, 2024

Motives	Introduction and that's why …	What is $f(R)$	Our f(R) type	Next and beyond the horizons …	Biblography
00	00	00	000	●○	00000

- **2** Introduction and that's why …
- **3** What is f(R)
- 4 Our f(R) type
- **5** Next and beyond the horizons ····

6 Biblography

æ

Motives	Introduction and that's why …	What is $f(R)$	Our f(R) type	Next and beyond the horizons …	Biblography
00	00	00	000	○●	00000
The Hor	izons:				

- It is the most general case of f(R) for its enriched phenomenology, e.g., matter-induced, non-metricity, and torsion, which comes quite naturally since it is introduced by particles with spin.
- It is not a metric theory, hence the name! $\rightarrow T^{\mu\nu}$ is not divergence-free with respect to the covariant derivative defined with the Levi-Civita connection (nor with $\bar{\nabla}_{\mu}$)
- The physics meaning of the last statement is questionable and **further analysis** *is needed* since in the metric-affine gravity $T_{\mu\nu}$ does not really carry the usual stress-energy tensor, and we already have the hypermomentum which describes matter characteristics.
- Viability, representations, and Post-Newtonian limits

Motives	Introduction and that's why ···	What is $f(R)$	Our f(R) type	Next and beyond the horizons …	Biblography
00	00	00	000	00	●0000

- **2** Introduction and that's why …
- **3** What is f(R)
- **4** Our f(R) type
- **5** Next and beyond the horizons …

6 Biblography

э

• • = • • = •

Motives	Introduction and that's why …	What is $f(R)$	Our f(R) type	Next and beyond the horizons ···	Biblography
00	00	00	000	00	○●●○○

[1] A. S. Eddington.

The Mathematical Theory of Relativity. The University Press, Cambridge [Eng.], 1923.

[2] C. W. Misner, K. S. Thorne, and J. A. Wheeler. *Gravitation*.

W. H. Freeman, San Francisco, 1973.

- [3] G. Montani, M. DeăAngelis, F. Bombacigno, and N. Carlevaro.
 Metric f(r) gravity with dynamical dark energy as a scenario for the hubble tension. Monthly Notices of the Royal Astronomical Society: Letters, 527(1):L156L161, Oct. 2023.
- [4] G. Sardanashvily.

International journal of geometric methods in modern physics: Preface. 6:v–viii, 12 2009.

[5] T. P. Sotiriou and V. Faraoni.

Reviews of Modern Physics, 82(1):451497, Mar. 2010.

[6] T. P. Sotiriou and S. Liberati.

The metric-affine formalism off(r) gravity. Journal of Physics: Conference Series, 68:012022, May 2007.

[7] R. M. Wald.

General Relativity. Chicago Univ. Pr., Chicago, USA, 1984.

[8] S. Weinberg. *Cosmology*.

2008.

[9] H. Weyl.

A New Extension of Relativity Theory. *Annalen Phys.*, 59:101–133, 1919.

Motives	Introduction and that's why …	What is $f(R)$	Our f(R) type	Next and beyond the horizons …	Biblography
00	00		000	oo	000●0

Thanks a bundle !

Don't hesitate reaching me out for any questions or collaboration

Rafid Hasan Dejrah

rafid.dejrah@gmail.com | In: Rafid Hasan Dejrah | www.rafid-hasan.com

Further analysis with metric-affine f(R) gravity

August 19, 2024

Motives Introduction and that's why ··· oo oo	What is $f(R)$	Our f(R) type	Next and beyond the horizons ··· 00
--	----------------	---------------	--

Further analysis with metric-affine f(R) gravity

Rafid Hasan Dejrah

rafid.dejrah@gmail.com

In: Rafid Hasan Dejrah | www.rafid-hasan.com Physics Department Ankara University, Turkey

August 19, 2024

Further analysis with metric-affine f(R) gravity

Image: Image