Studies of the Calibration Light Source for nEXO's Outer Detector

Irina Nitu

Supervised by Professor Thomas Brunner and Samin Majidi

CASST 2024

Irina Nitu - CASST 2024

nEXO Experiment

nEXO Outer Detector

- 12.8 m x 12.3 m tank of ultrapure water
- Neutron moderation
- Shielding from gamma radiation
- Muon veto

PMT assembly (nEXO Pre-Conceptual Design Report)

Fusion360 model of nEXO outer detector (Samin Majidi)

nEXO Outer Detector Calibration

- Ensure proper PMTs function over time
- Monitor water properties

Calibration Configuration

- 4-5 diffuser balls
- Intensity of 2 million photons
- Wavelength of 390 nm
- Each PMT must receive at least 10 photons for calibration

Chroma

- GPU-based Monte Carlo ray-tracing package
- Specify component materials and material's optical properties
- Photon bomb light generator

Chroma outer detector light simulation (Samin Majidi)

Light Distribution

Outer detector diagram

Photon Count Fluctuations

	PMT #70 Photon Count	PMT #83 Photon Count	
μ	8.73 ± 0.38	9.75 ± 0.35	

Diffuser Ball Configurations Analysis

Configuration ID	5.0	5.1	5.2	5.3	5.4
Uncalibrated PMT IDs	#70 (8.91 ± 0.38) -	-	-	-
Configuratio	on ID	4.1	4.2	4.3	4.4
Uncalibrated P	MT IDs	#8 (7.61 ± 0.33) #70 (8.91 ± 0.38) #83 (10.39 ± 0.43)	#8 (7.61 ± 0.33) #70 (8.91 ± 0.38)	#70 (9.76 ± 0.33) #83 (9.33 ± 0.33)	-

Diffuser Ball Isotropy

- Goal: verify the isotropy of the device
- Put together light simulations
 - Model device geometry
 - Input in Chroma

Diffuser Ball Design

Diffuser Ball Chroma Simulation

- Specify component materials and material optical properties
- Laser beam light generator

Integrating Sphere and Plug

Simulation Geometry

• Detecting surface: hemisphere shell

Isotropy Analysis

1.0

Light Intensity

0.4

0.2

1.0

Light Intensity

0.4

0.2

1.0

Light Intensity

0.4

0.2

Ó

Ó

Ó

20

20

20

Light intensity per solid angle as a function zenith angle

40

40

40

θ

θ

θ

60

60

60

80

80

80% reflectivity

50% reflectivity

0% reflectivity

80

Conclusion

- Future work on diffuser ball configuration will involve analyzing robustness of selected configuration
- Reflectivity of inner metal diffuser ball components has significant impact on the isotropy of the diffuser ball
- Absorptive coating is required to ensure device isotropy
- Further diffuser ball simulations can be used to quantify attenuation through device for estimates of light intensity requirements

Thank you!

irina.nitu@mail.mcgill.ca

