

2025/02/04

Oscura (DAMIC and SENSEI)

Juan Estrada Oscura Project Manager (DOE PI) DAMIC and SENSEI Collaborator

This talk

- DAMIC Experiment from Alvaro Chavarria
- SENSEI Experiment from Javier Tiffenberg
- Oscura from Juan Estrada

varo Chavarria avier Tiffenberg

DANIC: 2023-2024

- Two back-thinned 24 Mpix skipper CCDs installed in July 2023.
- Performed several background studies:
- 1) Demonstrated that surface backgrounds come from the copper facing the CCDs and not the CCD surfaces.
- 2) No measurable increase in dark current from the back thinning process.
- Developed readout mode to identify columns that contribute most single-electron events.

- UW group demonstrated capability of CCDs to discriminate between NR/ER by thermal stimulation of crystal defects left behind by NRs.
- Proposing to improve and extend technique to lower energy
- + implement and demonstrate NR/ER discrimination in DAMIC with minimal hardware intervention.
- A final science run could check whether the "DAMIC Excess" are ERs on NRs.

➡ PRL 125 (2020) 241803
PRD 105 (2022) 062003
PRD 109 (2024) 062007

Highlighted results from SENSEI @ SNOLAB:

PRL Editors' suggestion

EDITORS' SUGGESTION

First Direct-Detection Results on Sub-GeV Dark Matter Using the SENSEI Detector at SNOLAB

Prakruth Adari^{1,2}, Itay M. Bloch^{3,4}, Ana M. Botti⁵, Mariano Cababie^{6,5}, Gustavo <u>Cancelo⁵</u>, <u>Brenda A. Cervantes-Vergara</u>⁷, <u>Michael Crisler⁵, Miguel Daal⁸, Ansh Desai⁹ et</u> al. (SENSEI Collaboration)

PHYS.ORG Featured

Sub-GeV dark matter hunt: SENSEI collaboration reports first findings

by Ingrid Fadelli , Phys.org

World-leading results using data collected at Snolab

Fermilab .⊘⁄ensei

Lowest Dark Count rate (1 e⁻/pix every 200 yrs!)

arXiv:2410.18716 (astro-ph)

[Submitted on 24 Oct 2024]

SENSEI at SNOLAB: Single-Electron Event **Rate and Implications for Dark Matter**

Itay M. Bloch, Ana M. Botti, Mariano Cababie, Gustavo Cancelo, Brenda A. Cervantes-Vergara, Miguel Daal, Ansh Desai, Alex Drlica-Wagner, Rouven Essig, Juan Estrada, Erez Etzion, Guillermo Fernandez Moroni, Stephen E. Holland, Jonathan Kehat, Ian Lawson, Steffon Luoma, Aviv Orly, Santiago E. Perez, Dario Rodrigues, Nathan A. Saffold, Silvia Scorza, Miguel Sofo-Haro, Kelly Stifter, Javier Tiffenberg, Sho Uemura, Edgar Marrufo Villalpando, Tomer Volansky, Federico Winkel, Yikai Wu, Tien-Tien Yu

Status and plans:

- New cryo-cooler has arrived to Snolab
 - Preparations being made to replace it (Thanks to Ian and Steffon) Ο
 - Plan is to resume data taking as soon as possible Ο (data was great when the previous cryocooler broke)
- Packaging of additional sensors ongoing at Fermilab
 - We plan is to deploy additional sensors mid-2024 Ο
- **SENSEI original Space Allocation Request has expired**
 - Requested extension until mid-2026 Ο

- As always we deeply thank Snolab for all the support

Skipper-CCD DM program

Experiment	Mass [kg]	#CCDs	Radiation bkgd [dru]	Instrumental bkgd [e-/pix/day]	Commission
SENSEI @ MINOS	~0.002	1	3400	1.6 x 10-4	late-2019
DAMIC @ SNOLAB	~0.02	2	~10	3 x 10-3	late-2021
DAMIC-M LBC	~0.02	2	10	3 x 10-3	late-2021
SENSEI-100	~0.1	50	10 (goal)		mid-2022
DAMIC-M	~1	200	0.1 (goal)		~2023
OSCURA	~10	20,000	0.01 (goal)	1 x 10 ⁻⁶ (goal)	~2028

Oscura is an ambitious program that brings together the DAMIC, SENSEI and DAMIC-M teams for the development of ultimate DM experiment with skipper-CCDs.

Skipper-CCD DM program

Mass [kg]	#CCDs	Radiation bkgd [dru]	Instrumental bkgd [e-/pix/day]	Commission	
~0.02	2	~10	3 x 10 ⁻³	late-2021	
~0.1	50	10 (goal)		mid-2022	
~10	20,000	0.01 (goal)	1 x 10 ⁻⁶ (goal)	~2028	
	Mass [kg] ~0.02 ~0.1	Mass [kg] #CCDs ~0.02 2 ~0.1 50 ~10 20,000	Mass [kg] #CCDs Radiation bkgd [dru] ~0.02 2 ~10 ~0.1 50 10 (goal) ~10 20,000 0.01 (goal)	Mass [kg] #CCDs Radiation bkgd [dru] Instrumental bkgd [e-/pix/day] ~0.02 2 ~10 3 x 10 ⁻³ ~0.1 50 10 (goal)	

THIS IS A SNOLAB PROGRAM!

i	r	า	g	75	
•					

"Key Milestone" represent well-motivated sub-GeV DM models, highlighted in the recommendations of the Basic Research Needs report [5].

Figure 1. Approximate projected sensitivity for Oscura to DM-electron scattering at 90% C.L. assuming a 30 kg-year exposure, zero background events with $2e^-$ or more, a $1e^-$ threshold and a fixed $1e^-$ event rate of $10^{-6}e^{-1}$ /pix/day (blue). To build this curve, 100% efficiency was assumed for the reconstruction of events above $2e^{-}$. The left (right) plot assumes a heavy (light) mediator in the DM-electron interaction. Approximate projected sensitivities for SENSEI (DAMIC-M) are shown in cyan (red) [1, 5, 12, 18, 21, 22]. Existing constraints from skipper-CCDs from SENSEI [13–15] and DAMIC-M [16] are shaded in pink. Shaded gray regions are constrained by several other experiments (some shown explicitly) [19, 23–33]. Existing limits come directly from publications; reader should look at them for specific assumptions. Orange regions labeled

We have been working with SNOLAB engineering team to plan installation at SNOLAB (Paul Gryll main contact)

Technical progress last year **Mechanical**

- New vessel demonstrated for Oscura Integration Test
- Sensors
 - Oscura sensors deployed in CONNIE (Reactor)
 - Oscura sensors being deployed in MINOS beam (mCP)
- Electronics
 - 16 channel MIDNA ASIC (partially funded by microelectronics initiative) demonstrated with skipper-CCDs
- Integration
 - System with 256 sensors demonstrated at the FNAL CCD lab

"New" vessel

This can fit upto 6 supermodules with 6" of lead shield. Maybe a bit more if we take advantage of MIDNA3.

Demonstrated to operate cold with Nitrogen gas at 15 PSI. For the moment using a recycled cryocooler PT415. The plan is to get an AL630 to get the full capacity. Need about 50W from the sensors + electronics inside.

CONNIE detector at Reactor in Brazil. First science test of Oscura sensors and electronics. Not low background!

Should be familiar to SNOLAB, it is a "copy" of your DAMIC.

SNOLAB **CONNIE detector at** Reactor in Brazil.

DarkBeats in MINOS(FNAL)

Fermilab

DarkBeats

SENSEI@MINOS

Home > Journal of High Energy Physics > Article

Searching for millicharged particles with 1 kg of Skipper-CCDs using the NuMI beam at

Regular Article – Experimental Physics | Open access | Published: 13 February 2024

Volume 2024, article number 72, (2024) Cite this article

Experiment to search for mCP in the beam, also daily modulations. Should be familiar to SNOLAB, it is a "copy" of your SENSEI.

To start running in the coming month. Beam will be back on in 2026.

MIDNA v2 : 4 per MCM

MIDNA v3 has been tested and works. This makes all our electronics simpler.

1 per MCM

system DAQ ø ADC

Integration Test (one full Super module)

File Edit View	v Frame Bin 7	Zoom Scale Color	Region WCS Analy	sis Help			🕅 SAOIn	nage ds9							
File	proc_MCM_J16	proc_MCM_j16_Demuxed_test_T195_ansamp1_nrow10_img2.fits.fits[6]												1	
Object Value WCS	x 33.5161 y		256 SENSOR			system (130a) operating at FNAL (~90% vield							vield		
Physical Image Frame 103	x 413.000 x 413.000 x 1	Y 59.875 Y 59.875 0													
file		edit	view	frame	bin		zoom	scale	color	e data	region	wcs	ana	lysis	help
ine		iog	power		sqit	squ	ared	asinn		sinn	nistogra		min max		ZSCale
		/			<u> </u>	4			<u> </u>					1.	<u> </u>
-	1				-:	71	\	/\	/	~	<	\		N I	
			$\langle \rangle$	-	γ /	/		/	1				:	1)	-
IJ)	01		3	$\overline{\mathbf{v}}$)		4		·	<i> </i> ∽	/	
-					/			1		$\langle \rangle$					/
•		· ·		5							° \	P		/	
,		1. 3		λ	4			1			~~~	. ,	`		, .
	11		1	Υ.	1	~ \	1		7				,		· ~
1 1		•	/		-X			/	5	1	.15			/	~
				·	. ~	1	',	-		1.	1	• `	1.		
5/			Ľ			1.		``				1.		, C	
		- \	1	/~	,	•		4	/	/		17	V.		~
'	`		1	12		- 1	· ۲	Ł	$\mathbf{\lambda}$	/		1		•	•
/	1×		17	$ \leq$	/	`			-1	*		-	25	X	1
1	- /		/		1	1	1			1			- 7		1
5	(1			~	1	>	<u>۲</u>	1	1	4	•			1
	77		91	100		106	11	0	114		117	120		122	7

333 Mpixel camera!! Most massive array built so far with CCDs...

Budget/Project plans

- April 2024 review (FNAL/SNOLAB). Main outcome:
 - Technically good (more work needed in cryogenics)
 - Lots of work is needed to have a solid Project Execution Plan.
- DOE funding:
 - Until now, DOE has provided ~\$500k/year R&D funding with DMNI
 - Now that we believe we are ready to start construction.
 - Need to finish Project documentation/planning.

Fy25!

- <u>Right now we do not have a clear path towards funding the construction.</u>
- Las 6 months waiting from some guidance from DOE. It is not going to be in

Next

- Is it clear that the \$12M for the low background 10kg version of the experiment will not come for a while.
- Thinking about smaller versions of the experiment taking advange of all the technical developments. Many options... (300g, 1kg, etc)
- Considering new partners to help fund the smaller versions. Careful discussion with FNAL and DOE in this direction.

