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The Plan

• Lecture 1 – Machine Learning Fundamentals

• Lecture 2 – Intro to Neural Networks

• Lecture 3 – Intro to Deep Learning

• Lecture 4 – Intro to Unsupervised Learning

• Lecture 5 – Intro to Deep Generative Models
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Long History of Machine Learning 3

Vinyals et. al. 2019 Rosenblatt 1958, 1960

𝑓 𝑥 = $
1	 𝑖𝑓	(

!

𝑤!𝑥! + 𝑏	 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Perceptron AlphaStar

https://www.nature.com/articles/s41586-019-1724-z
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf


The Power of ML 4

Slide credit: L. Heinrich

Low-Level 
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Particle Physics Has Similar Goals! 5

Slide credit: L. Heinrich
Simulation

Data Analysis

Low-Level 
Data



Machine Learning in HEP 6

Pattern 
Recognition

Simulation Based Inference

Uncertainty Mitigation

Signal Classification

Fast S
imulation

Design Optimization

+ More!

Unfolding

Anomaly Detection



What is Machine Learning?

• Giving computers the ability to learn without 
explicitly programming them (Arthur Samuel, 1959)

• Statistics + Algorithms

• Computer Science + Probability + Optimization 
Techniques

• Fitting data with complex functions

• Mathematical models learnt from data that 
characterize the patterns, regularities, and 
relationships amongst variables in the system 
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Artificial Intelligence, Machine Learning, Deep Learning

• AI: make computers act in 
an intelligent way
– Rules, reasoning, symbol 

manipulation

• ML: Uses data to learn 
“intelligent” algorithms

• Deep Learning: Approach to 
ML that (often) uses complex 
pipelines to process low 
level data (e.g. pixels)

8

Deep Learning

Machine Learning

Artificial Intelligence

Slide credit: L. Heinrich



Machine Learning: Models

• Key element is a mathematical model

– A mathematical characterization of system(s) of interest, 
typically via random variables

– Chosen model depends on the task / available data

• Learning: estimate statistical model from data
– Supervised learning
– Unsupervised Learning
– Reinforcement Learning
– …

• Prediction and Inference: using statistical model to 
make predictions on new data points and infer 
properties of system(s) 
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Supervised Learning
• Given:

  {𝑥!} – N examples of observed features
  {𝑦𝑖} – N prediction targets or labels

• Learn function mapping 𝒉(𝒙) = 𝒚

10

Classification: 
𝑌 is a finite set of labels (i.e. classes) 
denoted with integers

x

y

Regression: 
𝑌 is a real number



Unsupervised Learning

Given data 𝐷 = {𝑥!}, but no labels, find structure in data

Clustering: partition the data into 
groups 𝐷 = {𝐷1 ∪ 𝐷2 ∪ 𝐷3	 …	∪ 	𝐷"}
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[Bishop] 

Dimensionality reduction: find a low 
dimensional (less complex) representation 
of  the data with a mapping 𝑍 = ℎ(𝑋)

Image Credit - Link

Density estimation and sampling: 
estimate density 𝑝(𝑥), and/or 
learn to draw new samples of  𝑥

https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/


Reinforcement Learning

• Learn to make the best sequence of decisions to achieve 
a given goal when feedback is often delayed until you 
reach the goal

12

Nature 529, 484–489 (28 January 2016)

Image credit: Ravikumar 

http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf


Brief Review of Probability and Statistics 13



Probability Mass Function

Probability Mass Function of Discrete random variables (r.v.)      

                          𝑃 𝑥$ = 𝑝$

– Prob. of ith outcome: limit of long term frequency lim
"→$	

#	'!
"	()*+,-

– Normalized: ∑* 𝑃 𝑥* = 1

Bernoulli Distribution:   P 𝑥 = 𝑝% 1 − 𝑝 &'%

– 𝑥 ∈ {0,1}   1≡HEADS, 0≡ TAILS

– Biased coin with heads prob. 𝑝 ∈ [0,1]
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Slide Credit: K. Cranmer, Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/


Probability Mass and Density Functions

Probability Density Function (PDF) for Continuous r.v.

         𝑃 𝑥 ∈ 𝑥, 𝑥 + 𝑑𝑥 = 𝑓 𝑥 𝑑𝑥

– Normalized: ∫"#
# 𝑓 𝑥 𝑑𝑥 = 1

Cumulative Distribution Function

         F# x = 𝑃 𝑋 < 𝑥 = ∫$%
& 𝑓 𝑡 𝑑𝑡

– Density defined as: 𝑓 𝑥 = $%!(')
$'

15

Slide Credit: K. Cranmer, Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/


Expected Values

• Expected value of a function of random variables

Ε 𝑔 𝑥 = %
$%

%
𝑔 𝑥 𝑝 𝑥 𝑑𝑥

• Mean of a r.v. :  Ε 𝑥 = 𝑥̅ = ∫$%
% 𝑥	𝑝 𝑥 𝑑𝑥

• Variance:    𝑉𝑎𝑟 𝑋 = Ε 𝑥 − Ε 𝑥 ' = Ε 𝑥' − Ε 𝑥 ' 

• Covariance:  𝐶𝑜𝑣 𝑥, 𝑦 = Ε 𝑥 − Ε 𝑥 𝑦 − Ε 𝑦
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Expected Values

• Expected value of a function of random variables

Ε 𝑔 𝑥 = %
$%

%
𝑔 𝑥 𝑝 𝑥 𝑑𝑥

• Often we can’t compute this integral
• Or often in Machine Learning we don’t know 𝑝(𝑥)
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Expected Values

• Expected value of a function of random variables

Ε 𝑔 𝑥 = %
$%

%
𝑔 𝑥 𝑝 𝑥 𝑑𝑥

• Often we can’t compute this integral
• Or often in Machine Learning we don’t know 𝑝(𝑥)

• With set of N repeated observations {𝑥!} that are 
independent and identically distributed, can approximate 
with Empirical Estimator… i.e. Monte Carlo estimate

Ε 𝑔 𝑥 ≈
1
𝑁7
!()

*

𝑔(𝑥!)
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Parametric Models

• PDF often depends on parameters 𝜃 we are interested in
– Write the density as 𝑓(𝑥|𝜃) or 𝑓(𝑥; 𝜃)

Discrete: Poisson Distribution:   

                     𝑃𝑜𝑖𝑠𝑠 𝑘|𝜆 = +!,"#

"!
– Prob. of 𝑘 events in fixed interval of time
– 𝜆 = average number of events

Continuous: Gaussian Distribution: 

                   G 𝑥|𝜇, 𝜎 = )
'./

𝑒$
$"% &

&'&

– 𝜇	 is	the	average	value
– 𝜎! is the variance

19

Image source: Wikipedia



Likelihood Function

• Given value 𝑥 = 𝑥′ to evaluate PDF, 
can consider it as a continuous function of the 
parameters 𝜃

Poisson Example:  Likelihood of 𝜇 for a given 𝑛

       𝐿 𝜇 = 𝑃𝑜𝑖𝑠𝑠(𝑛|𝜇)

– Continuous function of 𝜇
– NOTE: not a PDF

– Common to examine:  − ln 𝐿

20

Slide Credit: K. Cranmer: Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/


Likelihood with Repeated Observations

• Given a set of repeated observations of 𝑥 that 
are independent and identically distributed
– Repeated observations written {𝑥!}
– 𝑥~𝑓(𝑥|𝜃) means the 𝑥 follows distribution 𝑓(𝑥|𝜃)

• Likelihood

𝐿 𝜃 =/
!

𝑓(𝑥!|𝜃)

• Log-likelihood

ln 𝐿 𝜃 =3
!

ln 𝑓(𝑥!|𝜃)

21

Slide Credit: K. Cranmer: Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/


Maximum Likelihood

• Given observations {𝑥!} and model PDF 𝑓(𝑥|𝜃) 
the maximum likelihood estimator for 𝜃 is:

𝜃∗ 𝑥 = argmax
?
𝐿 𝜃 = argmin

?
− ln 𝐿(𝜃)

22



Maximum Likelihood 23

𝜆

−
ln
𝐿(
𝜆)

Example: Exponential 𝑝 𝑥; 𝜆 = 𝜆𝑒$+&

 − ln 𝐿 𝜆 = ∑!()@ 𝜆𝑥! − ln 𝜆
																				= −𝑛 ln 𝜆 + 𝜆∑! 𝑥! 	

Finding Minimum:

 0 = $(" ./ 0(1))
$1 = "2

1 + ∑! 𝑥!
 → 𝜆∗ 𝑥! = 2

∑# '_!

• Given observations {𝑥!} and model PDF 𝑓(𝑥|𝜃) 
the maximum likelihood estimator for 𝜃 is:

𝜃∗ 𝑥 = argmax
?
𝐿 𝜃 = argmin

?
− ln 𝐿(𝜃)



Bayes Rule

• Given two r.v. with join density 𝑝(𝑥, 𝑦)

• Marginal distribution: 𝑝 𝑥 = ∫"#
# 𝑝 𝑥, 𝑦 𝑑𝑦

• Conditional distribution: 𝑝 𝑥 𝑦 = 6(',8)
6(8)

• Bayes Rule: 𝑝 𝑦 𝑥 = 6('|8)6(8)
6(')

– 𝑝(𝑦) is the “prior” in that is doesn’t account for 𝑥

– 𝑝(𝑥|𝑦) is the “likelihood” of observing 𝑥 given 𝑦

– 𝑝(𝑥) is the “evidence”, acts as normalizing constant

– 𝑝 𝑦 𝑥  is often denoted the “posterior” because it is derived from 
knowledge of 𝑥

24

Slide Credit: K. Cranmer, Intro to Stats.

https://indico.fnal.gov/event/43762/timetable/


Supervised Learning: How does it work? 25



Supervised Learning: How does it work?

• Design function with adjustable parameters

• Design a Loss function

• Find best parameters which minimize loss

26

ℎ(𝒙; 	𝒘)
Function with 

adjustable 
parameters

Loss 
Function

Compare 
prediction 
with true 

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

𝐿(𝑾,𝑿)



Supervised Learning: How does it work?

• Design function with adjustable parameters

• Design a Loss function

• Find best parameters which minimize loss
– Use a labeled training-set to compute loss

– Adjust parameters to reduce loss function

– Repeat until parameters stabilize

27

ℎ(𝒙; 	𝒘)
Function with 

adjustable 
parameters

Loss 
Function

Compare 
prediction 
with true 

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

𝐿(𝑾,𝑿)



Empirical Risk Minimization

• Framework to design learning algorithms

• 𝑳 is loss function: compare prediction ℎ(⋅) to label 𝑦

• Ω(𝒘) is a regularizer, penalizing certain values of 𝒘
– 𝜆 controls how much penalty. Hyperparameter we tune

• Learning is cast as an optimization problem

28

Average expected loss Model regularization

argmin
w

1

N

NX

i=1

L(h(xi;w), yi) + �⌦(w)



Example Loss Functions

• Square Error Loss: 
– Often used in regression

• Cross entropy:
– With y Î {0,1}
– Often used in classification

• Hinge Loss: 
– With y Î {-1,1}

• Zero-One loss 
– h(x; w) predicting label

29

L(h(x;w), y) =
�
h(x;w)� y

�2

L(h(x;w), y) =� y log h(x;w)

� (1� y) log(1� h(x;w))

L(h(x;w), y) = max(0, 1� yh(x;w))

L(h(x;w), y) = 1y 6=h(x;w)

- Square Error
- Cross Entropy
- Hinge
- Zero-one

[Bishop] 



Model Space and Learning Algorithms

• Choose type of model
– Each set of parameters is a 

point in space of models

• Need to find the best 
model parameters for loss

• Learning is like a search 
through space of models, 
guided by the data

• Various possibilities
– Exhaustive search
– Closed form solutions (rare)
– Iterative optimization 

30

Target solution

Start

End

Space of Possible Models



Putting It All Together

• Gather data to be used

• Propose a space of 
possible models

• Define what “good” 
means with loss function 
/ learning objective

• Use learning algorithm to 
find best model 

31

Data

Model 
space

Learning 
objective

Learning 
algorithm

Final 
Model



Least Squares Linear Regression 32



Least Squares Linear Regression

• Set of input / output pairs D = {xi , yi}i=1…n 
– xi  Î Rm   
– yi  Î R

• Assume a linear model      
   h(x; w) = wTx 

• Squared Loss function:

• Find w* = arg minw L(w)  

33

L(w) =
1

2

X

i

�
yi � h(xi;w)

�2



Least Squares Linear Regression

• Set of input / output pairs D = {xi , yi}i=1…n 
– xi  Î Rm   
– yi  Î R

• Assume a linear model      
   h(x; w) = wTx 

• Squared Loss function:

• Find w* = arg minw L(w)  

34

L(w) =
1

2

X

i

�
yi � h(xi;w)

�2 NOTE: Often use affine coordinates: 
 𝑦	 = 	𝒘𝑇𝒙	 + 	𝑤0	 → 𝒘𝑇𝒙

where
𝒘	 = {𝑤0, 𝑤1, … , 𝑤𝑛}
𝒙 = {1, 𝑥1, … , 𝑥𝑛}



Least Squares Linear Regression: Matrix Form

• Set of input / output pairs D = {xi , yi}i=1…n 
– Design matrix X Î Rnxm   
– Target vector y Î Rn

35



• Rewrite loss:

• Minimize w.r.t. w:

Least Squares Linear Regression: Matrix Form

• Set of input / output pairs D = {xi , yi}i=1…n 
– Design matrix X Î Rnxm   
– Target vector y Î Rn

36

L(w) =
1

2
(y�Xw)T (y�Xw)

w⇤ = (XTX)�1XTy = argmin
w

L(w)



Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error: 
– Noisy measurements, unmeasured variables, …

37

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆



Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error: 
– Noisy measurements, unmeasured variables, …

• Then 

38

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)2

�2

◆



Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error: 
– Noisy measurements, unmeasured variables, …

• Then 

• Likelihood function:

39

L(m) = p(y|X;m) =
Y

i

p(yi|xi;m)

! � logL(m) ⇠
X

i

(yi �mxi)
2

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)2

�2

◆



Linear Regression – Probabilistic Interpretation

• Assume yi = mxi + ei

• Random error: 
– Noisy measurements, unmeasured variables, …

• Then 

• Likelihood function:

40

Squared
loss function!

L(m) = p(y|X;m) =
Y

i

p(yi|xi;m)

! � logL(m) ⇠
X

i

(yi �mxi)
2

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)2

�2

◆



Linear Regression Example

• Reconstructed Jet energy vs. Number of primary vertices

41

Eur. Phys. J. C (2015) 75:17



Linear Classification 42



Classification

• Learn a function to separate 
different classes of data

• Avoid over-fitting:
– Learning too fine details about 

training sample that will not 
generalize to unseen data

43

Linear discriminant Nonlinear discriminantRectangular cuts

y=0

y=1

x1

x2

x1

x2 y=0

y=1

x1

x2

y=0

y=1

x1

x2

y=0

y=1



Linear Decision Boundaries
• Separate two classes:
– 𝒙𝑖	 Î	ℝ𝑚	   
– 𝑦𝑖	 Î	{−1,1}

• Linear discriminant model
  ℎ(𝒙; 	𝒘) = 𝒘𝑇𝒙 + 𝑏

44

h(x)

• Decision boundary defined by hyperplane

  ℎ(𝒙; 	𝒘) = 𝒘𝑇𝒙 + 𝑏 = 0

• Class predictions: Predict class 0 if  ℎ(𝒙𝑖	; 	𝒘) < 0, else class 1

[Bishop]

h(x) < 0

h(x) = 0

h(x) > 0
Image credit: Bishop

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/


Linear Classifier with Least Squares? 45

L(w) =
1

2

X

i

(yi �wTxi)
2

• Why not use least squares loss with binary targets?

– Penalized even when predict class correctly

– Least squares is very sensitive to outliers

Image credit: Bishop

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/


Linear Classifier with Least Squares? 46

L(w) =
1

2

X

i

(yi �wTxi)
2

What you want

What you get

• Why not use least squares loss with binary targets?

– Penalized even when predict class correctly

– Least squares is very sensitive to outliers

Image credit: Bishop

https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/


Linear Discriminant Analysis 47

x2

x1

Red: Y=0 Blue: Y=1

• Goal: Separate data from two classes / populations

• Data from joint distribution (𝒙, 𝑦)	~	𝑝(𝑿, 𝑌)
– Features:    𝒙	 Î	ℝ𝑚	   
– Labels:       𝑦	 Î	{0,1}



Linear Discriminant Analysis 48

• Goal: Separate data from two classes / populations

• Data from joint distribution (𝒙, 𝑦)	~	𝑝(𝑿, 𝑌)
– Features:    𝒙	 Î	ℝ𝑚	   
– Labels:       𝑦	 Î	{0,1}

• Breakdown the joint distribution:
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

Likelihood:
Distribution of features
for a given class

Prior:
Probability of each class



Linear Discriminant Analysis 49

• Goal: Separate data from two classes / populations

• Data from joint distribution (𝒙, 𝑦)	~	𝑝(𝑿, 𝑌)
– Features:    𝒙	 Î	ℝ𝑚	   
– Labels:       𝑦	 Î	{0,1}

• Breakdown the joint distribution:
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

• Assume likelihoods are Gaussian

𝑝 𝑥 𝑦 =
1

2𝜋 L|Σ|
	exp −

1
2
𝒙 − 𝝁8

MΣ"N(𝒙 − 𝝁8)



Predicting the Class

• Separating classes à Predict the class of a point x

50

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘
Want to build classifier to predict label y given input x



Predicting the Class

• Separating classes à Predict the class of a point x

51

Bayes Rulep(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘



Predicting the Class

• Separating classes à Predict the class of a point x

52

Bayes Rule

Marginal
definition

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘



p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣
log p(x|y=0)p(y=0)

p(x|y=1)p(y=1)

⌘

Predicting the Class

• Separating classes à Predict the class of a point x

53

Bayes Rule

Why?

Marginal
definition



Logistic Sigmoid Function 54

Logistic Sigmoid

�(z) =
1

1 + e�z



Predicting Classes with Gaussian Likelihoods 55

p(y = 1|x) = �
⇣
log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)

⌘

Constant w.r.t. xLog-likelihood ratio



Predicting Classes with Gaussian Likelihoods

• For our Gaussian data:

56

p(y = 1|x) = �
⇣
log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)

⌘

= �
⇣
log p(x|y = 1)� log p(x|y = 0) + const.

⌘

= �
⇣
� 1

2
(x� µ1)

T⌃�1(x� µ1) +
1

2
(x� µ0)

T⌃�1(x� µ0)

+ const.
⌘

= �
⇣
wTx+ b

⌘
Collect terms



What did we learn?

• For this data, the log-likelihood ratio is linear!
– Line defines boundary to separate the classes
– Sigmoid turns distance from boundary to probability

57

Red: Y=0 Blue: Y=1

x2

x1



Logistic Regression

• What if we ignore Gaussian assumption on data?

  Model:

• Farther from boundary 𝒘𝑇𝒙 + 𝑏 = 0, 
more certain about class

• Sigmoid converts distance to class probability

58

p(y = 1|x) = �
⇣
wTx+ b

⌘
⌘ h(x;w)



Logistic Regression 59

p(y = 1|x) = �
⇣
wTx+ b

⌘
p(y = 1|x) = �(h(x,w))

=
1

1 + e�wTx -b

This unit is the main building block of  Neural Networks!



Logistic Regression

• What if we ignore Gaussian assumption on data?

  Model:

60

• With 𝑝! ≡ 𝑝(𝑦! = 𝑦|𝒙!)

P (yi = y|xi) = Bernoulli(pi) = (pi)
yi(1� pi)

1�yi = 𝑝𝑖         if  𝑦𝑖 = 1
1 − 𝑝𝑖  if  𝑦𝑖 = 0

• Goal:
– Given i.i.d. dataset of pairs (𝒙𝑖, 𝑦𝑖)

find w and b that maximize likelihood of data

p(y = 1|x) = �
⇣
wTx+ b

⌘
⌘ h(x;w)



Logistic Regression

• Negative log-likelihood
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� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)



Logistic Regression

• Negative log-likelihood
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binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)

Lo
ss

-log(pi)
-log(1-pi)

pi



Logistic Regression

• Negative log-likelihood
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• No closed form solution to 𝑤∗ = argmin
B
− lnℒ(𝑤)

• How to solve for w?

� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)

binary cross entropy loss function! 



Gradient Descent

• Minimize loss by repeated gradient steps

– Compute gradient w.r.t. current parameters:    ∇*5ℒ 𝜃$

– Update parameters:      𝜃$+& ← 𝜃$ − 𝜂∇*5ℒ 𝜃$

– h is the learning rate, controls how big of a step to take
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𝜃!

𝜃"



Stochastic Gradient Descent
• Loss is composed of a sum over samples: 

∇Oℒ 𝜃 =
1
𝑁
/
!PN

Q

∇Oℒ 𝑦! , ℎ 𝑥!; 𝜃

– Computing gradient grows linearly with N!

• (Mini-Batch) Stochastic Gradient Descent
– Compute gradient update using 1 random sample (small size batch) 
– Gradient is unbiased à on average it moves in correct direction
– Tends to be much faster the full gradient descent
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Stochastic Gradient Descent
• Loss is composed of a sum over samples: 

∇Oℒ 𝜃 =
1
𝑁
/
!PN

Q

∇Oℒ 𝑦! , ℎ 𝑥!; 𝜃

– Computing gradient grows linearly with N!

• (Mini-Batch) Stochastic Gradient Descent
– Compute gradient update using 1 random sample (small size batch) 
– Gradient is unbiased à on average it moves in correct direction
– Tends to be much faster the full gradient descent

• Several updates to SGD, like momentum, ADAM, RMSprop to
– Help to speed up optimization in flat regions of loss
– Have adaptive learning rate
– Learning rate adapted for each parameter
– …
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Step Sizes

• Too small a learning rate, convergence very slow

• Too large a learning rate, algorithm diverges
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𝜃

ℒ(𝜃)

Small Learning rate

𝜃

ℒ(𝜃)

Large Learning rate



Gradient Descent

• Logistic Regression Loss is convex
– Single global minimum

• Iterations lower loss and move toward minimum
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Lo
ss

L(w)

Lmin(w)

Iterationsw



Logistic Regression Example 69

p(y=1 | x)
0 1

Image source

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/


Multiclass Classification?
• What if there is more than two classes?

• Softmax → multi-class generalization of logistic loss
– Have N classes {c1, …, cN}
– Model target with “one-hot” vector yk = (0, …, 1, …0)

– Gradient descent for each of the weights wk
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kth element in vector
p(ck|x) =

exp(wkx)P
j exp(wjx)



Summary

• Machine learning uses mathematical & statistical 
models learned from data to characterize patterns and 
relations between inputs, and use this for inference / 
prediction

• Machine learning comes in many forms, much of which 
has probabilistic and statistical foundations and 
interpretations (i.e. Statistical Machine Learning)

• Machine learning is a powerful toolkit to analyze data

– Linear methods can help greatly in understanding data

– What about bias and variance of models? 
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Backup
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Notation

• X Î Rmxn

• x Î Rn(x1)

• x Î R
• X
• {xi}1m

• y Î I(k) / R(k)
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Matrices in bold upper case:
Vectors in bold lower case
Scalars in lower case, non-bold
Sets are script
Sequence of  vectors x1, …, xm
Labels represented as
 - Integer for classes, often {0,1}.  E.g. {Higgs, Z}
 - Real number. E.g electron energy

• Variables = features = inputs
• Data point x = {x1, …, xn} has n-features

• Typically use affine coordinates: 
    y = wTx + w0 → wTx
           → w ={w0, w1, ... , wn}

→ x  ={1,   x1, ... ,  xn}
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How to Minimize Loss ℒ 𝜃 ? Gradient Descent

• Gradient Descent: 

Make a step 𝜃 ← 𝜃 − 𝜂𝑣 in direction 𝑣 with step 
size 𝜂 to reduce loss

• How does loss change in different directions?

Let 𝜆 be a perturbation along direction 𝑣

4
𝑑
𝑑𝜆
ℒ 𝜃 + 𝜆𝑣

;<=
= 𝑣 ⋅ ∇>ℒ 𝜃

• Then Steepest Descent direction is: 𝑣 = −∇>ℒ 𝜃
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