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The Plan

* Lecture T — Machine Learning Fundamentals
* Lecture 2 — Intro to Neural Networks

* Lecture 3 — Intro to Deep Learning

* Lecture 4 — Intro to Unsupervised Learning

* Lecture 5 — Intro to Deep Generative Models



Long History of Machine Learning 3
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https://www.nature.com/articles/s41586-019-1724-z
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf

The Power of ML

street style photo of a woman selling pho This is a picture of Barack Obama.
at a Vietnamese street market, His foot is positioned on the right side of the scale.
sunset, shot on fujifilm High-Level The scale will show a higher weight.
Concept ?
4 reconstruct high level concepts
: from low-level, high-dim data
0
i
i
i
i
i
i
I
\ 4
Low-Level

Data




Particle Physics Has Similar Goals!
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Machine Learning in HE
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What is Machine Learning?

Giving computers the ability to learn without
explicitly programming them (arthur samuel, 1959

Statistics + Algorithms

Computer Science + Probability + Optimization
Techniques

Fitting data with complex functions
Mathematical models learnt from data that

characterize the patterns, regularities, and
relationships amongst variables in the system




Artificial Intelligence, Machine Learning, Deep Learning

* Al: make computers act in
an intelligent way

Artificial Intelligence — Rules, reasoning, symbol
manipulation

« ML: Uses data to learn
“intelligent” algorithms

* Deep Learning: Approach to

ML that (often) uses complex
Machine Learning pipelines to process low
level data (e.g. pixels)




Machine Learning: Models

» Key element is a mathematical model

— A mathematical characterization of system(s) of interest,
typically via random variables

— Chosen model depends on the task / available data

» Learning: estimate statistical model from data
— Supervised learning
— Unsupervised Learning
— Reinforcement Learning

» Prediction and Inference: using statistical model to
make predictions on new data points and infer
properties of system(s)



Supervised Learning

10

e (iven:

{x;} — N examples of observed features

{y;} — N prediction targets or labels

* Learn function mapping h(x) =y

Classification:
Y is a finite set of labels (i.e. classes)
denoted with integers

Regression:
Y is a real number




Unsupervised Learning
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Given data D = {x;}, but no labels, find structure in data

[Bishop]

Clustering: partition the data into  « 3§ .
sge ¥, :{é‘ .
groups D ={D;UD,UD; ..U D} ¥ - |%

Dimensionality reduction: find a low
dimensional (less complex) representation

of the data with a mapping Z = h(X)

Density estimation and sampling:
estimate density p(x), and/or
learn to draw new samples of x

Image Credit - Link



https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/

Reinforcement Learning ?

Ravikumar |
Agent
state (s[t]) Policy m: S—A

reward (r[t+1])
—[EnvironmentJ%

action (a[t])

* Learn to make the best sequence of decisions to achieve
a given goal when feedback is often delayed until you
reach the goal

Rollout policy SL policy network RL policy network Value network Policy network Value network
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Self-play positio

Nature 529, 484—-489 (28 January 2016)


http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf

Brief Review of Probability and Statistics

13




Probability Mass Function
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Probability Mass Function of Discrete random variables (r.v.)

P(x;) = p;

# X

— Prob. of it" outcome: limit of long term frequency lim

N—-oo N trials
— Normalized: };; P(x;) = 1
Bernoulli Distribution:  P(x) = p*(1 — p)1™>
_ x €{0,1} 1=HEADS, 0= TAILS

— Biased coin with heads prob. p € [0,1]

Intro to Stats.


https://indico.fnal.gov/event/43762/timetable/

Probability Mass and Density Functions ,

Probability Density Function (PDF) for Continuous r.v.

P(x € [x,x +dx]) = f(x)dx

flx)A

— Normalized: ffooof(x)dx =1 /\
Plas X <h)

] & b

Cumulative Distribution Function

Fx(x) =P(X <x) = ["_ f(O)dt -

: : OF x (x . ,
— Density defined as: f(x) = gx( ) CDF”\

Intro to Stats.



https://indico.fnal.gov/event/43762/timetable/

Expected Values y

» Expected value of a function of random variables

00)

E[g(x)] = j g(Op()dx

(0.0)

* Meanofarv.: E[x] =% = | _xp(x)dx

 Variance: Var(X) = E[(x — E[x])?] = E[x?] — E[x]?

 Covariance: Cov(x,y) = E[(x — E[x])(y — E[y]]

Positive covariance Negative covariance Weak covariance




Expected Values
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 Expected value of a function of random variables

0.0)

E[g(x)] = f g(Op(R)dx

 Often we can’t compute this integral
 Or often in Machine Learning we don’t know p(x)



Expected Values
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 Expected value of a function of random variables

E[g(x)] = [ g(Op(R)dx

 Often we can’t compute this integral
 Or often in Machine Learning we don’t know p(x)

» With set of N repeated observations {x;} that are
independent and identically distributed, can approximate
with Empirical Estimator... i.e. Monte Carlo estimate

Elg(x)] ~ Zg(xo



Parametric Models B

» PDF often depends on parameters 8 we are interested in
— Write the density as f(x|0) or f(x; 0)

®\=1 |

Discrete: Poisson Distribution: T ;:““:
. /lke —A 7 Um '
Poiss(k|A) = . |

0.10 F

— Prob. of k events in fixed interval of time o}
— A = average number of events M0

Continuous: Gaussian Distribution: |

. _e=wE T

G(x|u, o) = e 20% 2%

( |,Ll, ) V2o i

— u is the average value '
— 0% is the variance

02

0.0

Image source: Wikipedia



Likelihood Function .

« Given value x = x’ to evaluate PDF,
can consider it as a continuous function of the
parameters 0

Poisson Example: Likelihood of u for a given n

L(n) = Poiss(n|u) o
j; _____________________ =2 1In L(ne=3 1 14,) :

— Continuous function of u LA _:
— NOTE: not a PDF f _
— Common to examine: —InL %5 s , 9 1z 15

Figure from R. Cousins,

_ _ Am. J. Phys. 63 398 (1995)
Slide Credit: K. Cranmer: Intro to Stats.


https://indico.fnal.gov/event/43762/timetable/

Likelihood with Repeated Observations
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» Given a set of repeated observations of x that
are independent and identically distributed

— Repeated observations written {x;}
— x~f(x]0) means the x follows distribution f(x|6)

* Likelihood
L©) = | [ralo)

* Log-likelihood
InL(6) = Z In £ (x;]6)

Slide Credit: K. Cranmer: Intro to Stats.


https://indico.fnal.gov/event/43762/timetable/

Maximum Likelihood

22

* Given observations {x;} and model PDF f(x|6)
the maximum likelihood estimator for 6 is:

0*(x) = arg max L(B) = arg m@in —In L(6)



Maximum Likelihood N

* Given observations {x;} and model PDF f(x|6)
the maximum likelihood estimator for 6 is:

0*(x) = arg max L(B) = arg m@in —In L(6)

J—PEh =i
Example: Exponential p(x; 1) = le™** %x) d
—InL(A) =Y, Ax; —InA RANE «
=-nlnA+1);x; ::f.'..]J &

Finding Minimum:

~ &

d(-=InL(A) -n <
0= EY) = 7 ~+ Zixi E ;
% _n .

— A ({xl}) - Zi x_i -

1.0 1.5 20 2.5 3.0



Bayes Rule

24

 Given two r.v. with join density p(x,y)

 Marginal distribution: p(x) = ffooop(x, y)dy

+ Conditional distribution: p(x|y) = p(x.y)
p(¥)
e B Rule: _ p&xIy)p(y)
ayes Rule: p(y|x) o

— p(y) is the “prior” in that is doesn’t account for x
— p(x|y) is the “likelihood” of observing x given y
— p(x) is the “evidence”, acts as normalizing constant

— E(ylx) is often denoted the “posterior” because it is derived from
nowledge of x

Intro to Stats.


https://indico.fnal.gov/event/43762/timetable/

Supervised Learning: How does it work?

25




Supervised Learning: How does it work? .

> h(x; w) > Loss
Function with Function
adjustable
parameters Compare
prediction L
with true 055
True labels: label
Higgs =1 >
Bkg =0
 Design function with adjustable parameters
Y. Le Cun
 Design a Loss function
* Find best parameters which minimize loss t LW, X)

Ny




Supervised Learning: How does it work? ~

> h(x; w) > Loss
Function with Function
adjustable
parameters Compare
prediction L
with true 055
True labels: label
Higgs =1 >
Bkg =0
 Design function with adjustable parameters
Y. Le Cun
 Design a Loss function
* Find best parameters which minimize loss t LW, X)

— Use a labeled training-set to compute loss k

— Adjust parameters to reduce loss function w
— Repeat until parameters stabilize




Empirical Risk Minimization N

argmm—ZL (X33 W),4;) + AQ(W)

J] | l
| |

Average expected loss Model regularization

* Framework to design learning algorithms
* L is loss function: compare prediction h(-) to label y

» (w) is a regularizer, penalizing certain values of w
— A controls how much penalty. Hyperparameter we tune

* Learning is cast as an optimization problem



Example Loss Functions .

* Square Error Loss: L(h(x;w),y) = (h(x;w) — )’
— Often used in regression
* Cross entropy: L(h(x;w),y) = — ylog h(x; w)
— Withy € {0,1} — (1 —y)log(l — h(x;w))

— Often used in classification

* Hinge Loss: o
. - Square Error
— With y € -1,1} - Cross Entropy
L(h(x;w),y) = max(0, 1 — yh(x; w)) Zeraone

e Zero-One loss |
— h(x; w) predicting label \\

—2 —1 0 1 2
L(h(X7 W)7 y) — 1y;éh(x;w)

[Bishop]




Model Space and Learning Algorithms

30

* Choose type of model

— Each set of parameters is a
point in space of models Target solution

*
End

* Need to find the best
model parameters for loss

* Learning is like a search
through space of models,
guided by the data

Start
* Various possibilities
— Exhaustive search Space of Possible Models

— Closed form solutions (rare)
— Iterative optimization



Putting It All Together

31

Gather data to be used

Propose a space of
possible models

Define what “good”
means with loss function
/ learning objective

Use learning algorithm to
find best model

Learning
objective

\

Data

Learning
algorithm

!

Final
Model

Model
space

/



Least Squares Linear Regression

32




Least Squares Linear Regression

» Set of input / output pairs D = {x;, Yi}i=1_»

—Xi ERm

housing prices

-y €R

e Assume a linear model
h(x; w) = wlx

price (in $1000)

 Squared Loss function:

Liw) = 3 3" (s — hxisw))’

1

* Find w" = arg min,, L(w)



Least Squares Linear Regression

» Set of input / output pairs D = {x;, Yi}i=1_»

—Xi ERm

-y €R

e Assume a linear model
h(x; w) = wlx

 Squared Loss function:

Z (Z/z — h(x; W))2

1

1

L(w) =

* Find w" = arg min,, L(w)

price (in $1000)

1000

800

500

400

200

100

1 1 1 1 1 1
1000 1500 2000 2500 3000 3500 4000 4500 5000
square feet

500

NOTE: Often use affine coordinates:
y = wlx + wg » wix

where
w = {wy, Wy, ... ,wn}
x ={1, X1y er xn}



Least Squares Linear Regression: Matrix Form

» Set of input / output pairs D = {x;, Yi}i=1_»
— Design matrix X e Rm™m
— Target vectory e R

11 Ti12 ' Tim U1

T21 T22 ' IT2m Y2




Least Squares Linear Regression: Matrix Form

36

» Set of input / output pairs D = {x;, Yi}i=1_»
— Design matrix X e Rm™m
— Target vectory e R

° 1 . 1
Rewrite loss: L(w) = 5(}, —Xw)T(y — Xw)
* Minimize w.r.t. w: w* = (XTX) X'y = arg min L(w)

wW



Linear Regression — Probabilistic Interpretation

37

* Assume y; = mx; + e

1 e?
* Random error: e; ~ N (0,0) — ple;) x exp | z—5
— Noisy measurements, unmeasured variables, ...



Linear Regression — Probabilistic Interpretation

* Assume y; = mx; + e

1 e?
* Random error: e; ~N(0,0) — p(e;) o< exp 5—7“2)
o)
— Noisy measurements, unmeasured variables, ...
1 (ys — mwz‘)z)

e Then yi ~ N(mzi,0) — p(yi|zi;m) o< exp (5 52




Linear Regression — Probabilistic Interpretation

* Assume y; = mx; + e

1 e?
* Random error: e; ~N(0,0) — p(e;) o< exp 5—2)
o)
— Noisy measurements, unmeasured variables, ...

. )2
e Then y; ~ N(mxz;,0) — p(y;|zi;m) o< exp (l(yZ mi) )

2 o2

e Likelihood function:

L(m) = p(y|X;m) = Hp(yz-\ﬂfz-; m)

— —log L(m) ~ Z(yz — ma;)’

1



Linear Regression — Probabilistic Interpretation

* Assume y; = mx; + e

1 e?
* Random error: e; ~N(0,0) — p(e;) o< exp 5—2)
o)
— Noisy measurements, unmeasured variables, ...
1 (ys — mwz‘)z)

e Then yi ~ N(mzi,0) — p(yi|zi;m) o< exp (5 52

e Likelihood function:

L(m) = p(y|X;m) = Hp(yz-\ﬂfz-; m)

Squared

sy logL(m) N Z(yl B ma:i)Q .~ |loss function!

1




Linear Regression Example

41

50

[GeV]

45

T.EM

jet

40

P

35
30
25
20
15
10

- ATLAS Simulation

[ —e— 20< ptTrlJth <25 GeV
- —a— 25< ptTrUth < 30 GeV
— —a— 30<p"" < 35 GeV
—v— 35< ptTruth < 40 GeV

o 40< ptTruth < 45 GeV

\s=7TeV
Pythia Dijet, an’[i-kt R=0.
ml<21,75<u<8.5

Average Slope = 0.288%0.003 GeV/N,,

4

Eur. Phys. J. C (2015) 75:17

Number of primary vertices (N

| I
10

PV)

 Reconstructed Jet energy vs. Number of primary vertices



Linear Classification

42




Classification .

Rectangular cuts Linear discriminant Nonlinear discriminant

* Learn a function to separate x|
different classes of data

» Avoid over-fitting: _—

— Learning too fine details about
trainingig sample that will not
generalize to unseen data X,




Linear Decision Boundaries
* Separate two classes: Moo @
h(x) =0

- xi = Rm h(x) <0 n Ri1
-y €{—-11}

e Linear discriminant model
h(x; w) =wlx+b

* Decision boundary defined by hyperplane

hix; w)=wix+b=0

A

X1

[Bishop]

* Class predictions: Predict class 0 if h(x;; w) < 0, else class 1


https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Linear Classifier with Least Squares?

* Why not use least squares loss with binary targets?


https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Linear Classifier with Least Squares? y

4 : — . . . 4 : — . . . Bishop
N ¥
X
27 X :2"5(& 1
EES /O
ol xx}”;xx" x>0 What you get|
o
e 1 T2
-2 1 -
& L(w) = 2 E (yi — W' xy)
o )
-4¥ What you want T 2
o
-6 -6 i
LA
-8 -8} _
-4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8

* Why not use least squares loss with binary targets?
— Penalized even when predict class correctly

— Least squares is very sensitive to outliers


https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

Linear Discriminant Analysis

47

* Goal: Separate data from two classes / populations

 Data from joint distribution (x,y) ~p(X,Y)
— Features: x € R™
— Labels: y € {0,1}




Linear Discriminant Analysis 48

* Goal: Separate data from two classes / populations

 Data from joint distribution (x,y) ~p(X,Y)
— Features: x € R™
— Labels: y € {0,1}

* Breakdown the joint distribution:
p(x y) =pxly)p(y)

N\

Likelihood: Prior:
Distribution of features Probability of each class
for a given class



Linear Discriminant Analysis

* Goal: Separate data from two classes / populations

 Data from joint distribution (x,y) ~p(X,Y)
— Features: x € R™
— Labels: y € {0,1}

* Breakdown the joint distribution:
p(x,y) = plx|y)p(y)

 Assume likelihoods are Gaussian

1 1 N\Teo1
e ol Hew )

p(xly) =




Predicting the Class

50

* Separating classes = Predict the class of a point x

p(y = 1]x)

Want to build classifier to predict label y given input x



Predicting the Class

51

* Separating classes = Predict the class of a point x

p(X|y — 1)p(y — 1) Bayes Rule
p(x)

ply = 1]x) =



Predicting the Class .

* Separating classes = Predict the class of a point x

p(y = HX) = p(x|y :pi})(];(y — 1) Bayes Rule
— p(X’y — 1)p(y — 1) Marginal

p(x|y =0)p(y =0) +p(x|ly = 1)p(y = 1) definition



Predicting the Class

* Separating classes = Predict the class of a point x

p(y = HX) = p(x|y :pi})(];(y — 1) Bayes Rule
— p(X’y — 1)p(y — 1) Marginal

p(x|ly =0)p(y =0) + p(x|ly = 1)p(y = 1) definition

1

P (<ly=0)p(5=0)
T pxly=Dp(y=1)

1

(x|y=0)p(y=0 Why?
L exp (bg 5(x|§=1§§8=1§)




Logistic Sigmoid Function

09

Logistic Sigmoid

08 1
7(2) = 14+e %

0.7

06

g(2)

05

041

03

02

01




Predicting Classes with Gaussian Likelihoods

55

p(xly =1) ply =1)
p(x|y = 0) +log p(y = 0)>

/ \

Log-likelihood ratio Constant w.r.t. x

Pl = 1) = o 1o



Predicting Classes with Gaussian Likelihoods .

+ log

p(y = 1))
p(y = 0)

— 1|X) =0 OpX :1)
ply =100 =108 1, =

e For our Gaussian data:

= a(logp(x\y =1) —logp(x|ly =0) + const.)

= o~ e )" S o ) + 3 (x — o) S (x — o)

+ const.)

T
= O(W X + b) Collect terms



What did we learn? -

» For this data, the log-likelihood ratio is linear!
— Line defines boundary to separate the classes
— Sigmoid turns distance from boundary to probability




Logistic Regression y

* What if we ignore Gaussian assumption on data?

Model:  p(y =1|x) = O'(WTX + b) = h(x; w)

* Farther from boundary wx + b = 0,
more certain about class

» Sigmoid converts distance to class probability



Logistic Regression .

= 1|x) = O'(WTX—l— b)

1 +e-wixb

This unit 1s the main building block of Neural Networks!




Logistic Regression 0

* What if we ignore Gaussian assumption on data?

Model: p(y =1|x) = O'(WTX + b) = h(x; w)

* With p; = p(y; = y|x))

P(y; = y|x;) = Bernoulli(p;) = (p;)¥ (1 _pi)l—yi _ zii_pi 11%:)

* Goal:

— Given i.i.d. dataset of pairs (x;, y;)
find w and b that maximize likelihood of data



Logistic Regression

61

* Negative log-likelihood

—InL=—In][@) 1 -p)¥

7



Logistic Regression ,

* Negative log-likelihood

. _ i (1 — .\ ¥
Inl = In H (p z) (1 p Z) binary cross entropy loss function!

— _ Zyz In(p;) + (1 —y;) In(1 — pz)/

-log(pi)
-log(1-p;) |




Logistic Regression ;

* Negative log-likelihood

. _ i (1 — . \1—¥i
Inl = In H (p z) <1 p ’&) binary cross entropy loss function!

— _ Zyz In(p;) + (1 —y;) In(1 — pz)/

=Y Tyl +e™ X) + (1 —y,)In(1 + eV ¥)

* No closed form solution to w* = arg min — In L(w)
w

e How to solve for w?



Gradient Descent

64

* Minimize loss by repeated gradient steps
— Compute gradient w.r.t. current parameters: Vg L(6;)
— Update parameters:  6;;4 « 6; —nVg L(6;)

— 1 is the learning rate, controls how big of a step to take

0,




Stochastic Gradient Descent .

» Loss is composed of a sum over samples:
N
1
VoL(0) = Nz Vo L(vi, h(x;80))
i=1

— Computing gradient grows linearly with N!

* (Mini-Batch) Stochastic Gradient Descent
— Compute gradient update using 1 random sample (small size batch)
— Gradient is unbiased = on average it moves in correct direction
— Tends to be much faster the full gradient descent

= E=

Batch gradient descent Stochastic gradient descent



Stochastic Gradient Descent .

» Loss is composed of a sum over samples:
N
1
VgL(0) = Nz Vo L(vi, h(x;0))
i=1

— Computing gradient grows linearly with N!

* (Mini-Batch) Stochastic Gradient Descent
— Compute gradient update using 1 random sample (small size batch)
— Gradient is unbiased = on average it moves in correct direction
— Tends to be much faster the full gradient descent

» Several updates to SGD, like momentum, ADAM, RMSprop to
— Help to speed up optimization in flat regions of loss
— Have adaptive learning rate
— Learning rate adapted for each parameter



Step Sizes

* Too small a learning rate, convergence very slow

* Too large a learning rate, algorithm diverges

Small Learning rate Large Learning rate
-/—V




Gradient Descent N

Starting

L(W)A / Point

>\ lteration 3

Loss

Iteration 4

Convergence

L n(w)
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w lterations

* Logistic Regression Loss Is convex
— Single global minimum

e lterations lower loss and move toward minimum



Logistic Regression Example o
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Image source


https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/

Multiclass Classification? .

o What if there is more than two classes?

2
000000

2000
0

Tim service (in days)

 Softmax — multi-class generalization of logistic loss
— Have N classes {c, ..., c\}

— Model target with “one-hot” vectory, = (0, ..., 1, ...0)
i\

exp(wkgj) kth element in vector

p(Ck‘ﬂj) — Zj exp(wj:c)

— Gradient descent for each of the weights w



Summary

* Machine learning uses mathematical & statistical
models learned from data to characterize patterns and
relations between inputs, and use this for inference /
prediction

* Machine learning comes in many forms, much of which
has probabilistic and statistical foundations and
interpretations (i.e. Statistical Machine Learning)

» Machine learning is a powerful toolkit to analyze data

— Linear methods can help greatly in understanding data

— What about bias and variance of models?
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Backup



Notation
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X c Rmxn
X = Rn(x”
X € R

Matrices in bold upper case:
Vectors in bold lower case
Scalars in lower case, non-bold
Sets are script

Sequence of vectors x,, ..., X,

Labels represented as

- Integer for classes, often {0,1}. E.g. {Higgs, Z}
- Real number. E.g electron energy

Variables = teatures = inputs

Data point x = {x,, ..

., X,} has n-features

Typically use affine coordinates:

y—W

T

X+ w,— Wwix

— W ={Wy, Wy, ..., W}
— X ={1, Xy, .., X,}



Gradient Descent
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How to Minimize Loss £L(8)? Gradient Descent

* Gradient Descent:

Make a step 8 « 8 — nv in direction v with step
size 1 to reduce loss

* How does loss change in different directions?

Let A be a perturbation along direction v

d
= L(6 + v) = Vo L(6)

» Then Steepest Descent direction is: v = =V L(0)



