DRUM*Xe*

 $\nu_e = \overline{\nu}_e$

Double beta decay Rate Underground Measurement using Xenon

David, Raghda, Ulysse, Mahnoor, Xiang: 0 experimentalists

Outline

- (Neutrinoless) Double Beta Decay
- Mass Hierarchy
- **Experimental Conditions & Setup**
- Sensitivity
- EDI Scenario

Double Beta $\beta\beta$ **Decay**

- This process occurs for isotopes with even-even nuclei.
- $Q = M(A,Z) M(A, Z+2)$
- Conditions:
	- a. Positive Q value :

 $m(Z, A)$ > $m(Z - 1, A)$ + 2me

b. Forbidden Single beta decay :

 $m(Z, A) < m(Z \pm 1, A)$

Neutrinoless Double Beta Decay 0

Theoretical motivation:

- Confirm if neutrino is a Majorana fermion
	- If so, we should see neutrino annihilation in double beta decay.
- Experimentally observe Lepton number violation.
- Provide insights into the seesaw* mechanism giving some constraints on the heavier (Right Handed) mass.

Mass Hierarchy

- Neutrino flavors are linear combination of mass eigenstates time the transformation matrix
- Oscillation experiments have measured 2 mass squared differences (solar and atmospheric)
- At least two mass states have to be non zero.
- \bullet MSW effect occurring in the Sun showed m₂ > $m_{_1}$ but the $m_{_3}$ mass eigenstate is not yet determined to be the lightest (IO) or the heaviest (NO)

Experimental Conditions

- Improve exposure (Enrichment vs more target) mass)
	- \circ Use ¹³⁶Xe. Wait longer.
	- \circ Relatively large Q value Q_{ββ} = 2458.10 keV.
	- LXe means we can pack more mass in smaller volume, LXe has density of 2.9 g/cm³
- Understand background.
	- Solar neutrino background identification (Collaborate with XENONnT to exclude solar neutrino)
	- \circ $2\nu\beta\beta$ continuum. Better energy resolution

$$
T_{1/2} \propto \frac{M \cdot \epsilon \cdot \sqrt{t}}{\sqrt{(b \cdot M + c)\Delta E}}
$$

Xenon enrichment

- Sensitivity as a function of detector mass, for natural Gaseous Xe, natural Liquid Xe and 90% enriched Liquid Xe
- \bullet 90% enrichment. 134 Xe is not a source of background in our search

DRUMX Experimental Setup for $\beta\beta$ **Decay**

- Exposure: Hundred-ton scale LXe.
- Solar neutrino background
	- Directionality channel using Cherencov
		- Fast timing.
		- Dual SiPMs readout.

Energy resolution

- High energy resolution is require to discriminate $0\nu\beta\beta$ event from $2\nu\beta\beta$ events and other background.
- To obtain neutrino mass, detector required to have the resolution in the order of neutrino

G Adhikari *et al* 2022 *J. Phys. G: Nucl. Part. Phys.* **49** 015104

nEXO collaboration

Adapted from arxiv:2304.03451 (Whitepaper for the 2023 NSAC Long Range Plan)

$$
T_{1/2}^{0\nu} = \left(G\left|\mathcal{M}\right|^2 \langle m_{\beta\beta}\rangle^2\right)^{-1} \simeq 10^{27-28} \left(\frac{0.01 \text{ eV}}{\langle m_{\beta\beta}\rangle}\right)^2 \text{ years}.
$$

- Let's look at the plot together with the half life of our detector material.
- To reach the normal ordering regime requires lower <m_{$\beta\beta$}> value (Plot)
- This requires a longer half-life and time for detector to run (half life equation)

- For given m1 (lightest mass state in the case of NO), colors represent the probability that mßß (half-life) would fall below (above) a given sensitivity
- IO parameter space not represented cause assumed to be ruled out by other experiments such as nEXO (5t of 90% enriched Xe)

Bonus: lightest neutrino mass determination

- Hypothetical, but let's say $0\nu\beta\beta$ is observed at $\langle m_{\beta\beta} \rangle$ lower that 1 meV, we would start to reach lobster plot "vertical" branch, and constrain m1
- m and m3 could then be directly determined using Δm^2_{21} and Δm^2_{32}

EDI Scenario

You are in a collaboration with about 100 people from 6 different counties and 16 different institutions. Your collaboration has been together for 10 years already and recently performed a survey that showed a lack of gender diversity.

● You are part of the task force that was formed to come up with 2 or 3 initiatives to improve the situation over the next 5 years.

Countries/institutions involved

ARC Centre of Excellence for Dark Matter Particle Physics, School of Physics, The University of Melbourne, VIC 3010, Australia School of Physics, The University of Sydney, NSW 2006 Camperdown, Sydney, Australia Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada Department of Physics and Astronomy, Simon Fraser University, Burnaby, BC V5A 1S6, Canada TRIUMF, Vancouver, BC V6T 2A3, Canada Department of Physics, Carleton University, Ottawa, Ontario, K1S 5B6, Canada Department of Physics and Astronomy, Laurentian University, Sudbury ON, P3E 2C6 Canada Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China SUBATECH, IMT Atlantique, CNRS/IN2P3, Nantes Université, Nantes, France LPNHE, Sorbonne Université, CNRS/IN2P3, Paris, France IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France Physics Department, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan Quaid-e-Azam University, Islamabad Capital Territory 15320, Pakistan Cairo University, Oula, Al Giza, Giza Governorate 12613, Egypt Center for Fundamental Physics, Zewail City of Science and Technology, 6th of October City, Giza 12578, Egypt Department of Physics, University of Florida, FL 32611, United States

EDI Initiative #1

Gender equity on hiring committees \rightarrow certain percentage of hiring committees are female or gender-diverse, e.g. 30%.

- Unconscious bias training learn about EDI, gender bias/discrimination, making workplaces safe, etc.
- Implement hiring quotas i.e. will hire a certain number of women/gender-diverse people in the next hiring round, e.g. $30\% \rightarrow$ can also have female-only positions.

EDI Initiative #2

Detailed & clear grievance/complaint procedure - includes multiple pathways to raise an issue

- As part of the grievance procedure documentation, include clear information about confidentiality, pathways to resolving grievances, about possible accountability actions, etc.
- Can potentially have an anonymous grievance pathway, in case members are worries about being identified.

EDI Initiatives - Data Keeping

Keeping data on gender equity and member experiences over the five years, making annual reports. Use

- Anonymous surveys on gender experiences and their effect on mental health, productivity, career development, etc.
- Collection of data on changes in annual gender representation + distribution over different academic levels

Case Study: ASTRO 3D (Australia)

Achieved 50/50 gender representation in 2022 <https://astro3d.org.au/diversity/>

Backup Slides

Back up - Semi-empirical Formula

• Semi-empirical mass formula

$$
B(N \cdot Z) = aA - bA^{\frac{2}{3}} - s\frac{(N-Z)^2}{A} - \frac{dZ^2}{A^{\frac{1}{3}}} - \frac{\delta}{A^{\frac{1}{2}}}
$$

 $a = 15.835MeV$ $b = 18.33$ MeV $s = 23.20MeV$ $d = 0.714MeV$

$$
\bullet \quad \delta = \left\{ \begin{aligned} &\text{.2MeV for odd } - \text{odd nuclei (i.e., odd N, odd Z)} \\ + &\text{ 110 for even } - \text{odd nuclei (even N odd Z, or even Z, odd N)} \\ &\text{ --11.2MeV for even } - \text{even nuclei (even N, even Z)} \end{aligned} \right.
$$

W. N. Cottingham and D. A. Greenwood, *An introduction to nuclear physics*. Cambridge University Press, 2004. ²⁰

Back up - Majorana mass

Begin with Lagrangian: \bullet

$$
\mathcal{L}_M = i v_L^{\dagger} \sigma_\mu \partial_\mu v_L + i \frac{m}{2} \left(v_L^{\dagger} \sigma_2 \psi_L^{\star} - v_L^T \sigma_2 v_L \right)
$$

$$
\mathcal{L}_{\mathbf{M},\mathbf{m}} = i \frac{m}{2} \left(\nu_L^{\dagger} \sigma_2 \nu_L^{\star} - \nu_L^T \nu_2 \psi_L \right) = \frac{m}{2} \bar{v} v
$$

$$
\mathcal{L}_{\mathbf{M},\mathbf{m}} = \frac{m}{2} \bar{v} v
$$

- Where $v = \begin{pmatrix} v_L \\ i \sigma_2 v_L^* \end{pmatrix}$.
- The spinor have the property that

$$
\mathcal{L}: \nu \to -i\gamma_2 \nu^* \equiv \nu_c -i\gamma_2 \nu^* = \nu
$$

The antiparticle of Majorana fermion is itself. \bullet

Back up - Seesaw mechanism

$$
\mathcal{L}_{\text{mass}} = \mathcal{L}_{\text{D,m}} + \mathcal{L}_{\text{M,m}} = m(v_L^{\dagger} v_R + v_R^{\dagger} v_L) + i \frac{M}{2} (v_L^{\dagger} \sigma_2 v_L^{\star} - v_L^T \sigma_2 v_L)
$$

• Where ϕ_L and ϕ_R is the same spinor defined in last page

$$
\psi_L = \begin{pmatrix} \nu_L \\ i \sigma_2 \nu_L^{\star} \end{pmatrix}, \quad \psi_R = \begin{pmatrix} -i \sigma_2 \nu_R^{\star} \\ \nu_R \end{pmatrix}
$$

• The mass term becomes

$$
\mathcal{L}_{\text{mass}} = -m\bar{\psi}_L\psi_R - \frac{M}{2}\bar{\psi}_R\phi_R = (\bar{\psi}_R \quad \bar{\psi}_L)\begin{pmatrix} 0 & m \\ m & M \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}
$$

Eigenvalue: \bullet

$$
M_{+} = \sqrt{m^2 + \frac{1}{4}M^2 + \frac{1}{2}M} \approx M, \qquad M_{-} = \sqrt{m^2 + \frac{1}{4}M^2 - \frac{1}{2}M} \approx m^2/M
$$

Back up - NME

$$
\left(T^{0\nu}_{1/2}\right)^{-1}=G^{0\nu}g_A^4|M^{0\nu}|^2\frac{\langle m_{\beta\beta}\rangle^2}{m_e^2}
$$

Nuclear matrix element (NME) - range of values. arXiv:2106.16243 cites a range of nuclear approaches: Interacting Shell Model (ISM), QRPA, EDF, Interacting Boson Model (IBM-2),...

²³ Compilation of nuclear matrix element calculations (arXiv:1902.04097)

Summary

- DRUMXe $0\nu\beta\beta$ experiment underground, using ton-scale liquid 136Xe as target
	- \circ Xe target material is enriched, such that 136 Xe makes up a large %
- Aiming to probe normal ordering regime for neutrino mass

SiPM vs PMT

- Enrichment vs increasing target mass given that you chose a good target already
- Reach lower energy threshold

$$
T_{1/2}^{0\nu} = \left(G\left|\mathcal{M}\right|^2 \langle m_{\beta\beta}\rangle^2\right)^{-1} \simeq 10^{27-28} \left(\frac{0.01 \text{ eV}}{\langle m_{\beta\beta}\rangle}\right)^2 \text{ years.}
$$

- Eliminate/understand your background
- Think of the physics processes involved. What about using heavy neutrino

EDI Initiative #3

Set up an EDI committee for the collaboration

- Ensure member diversity
- Set up "representative" roles that target different academic levels, i.e. one that deals with undergraduate researchers, graduate researches, postdocs, academics, etc.

Beta Decay

 β decay involves the conversion of a proton to a neutron (or vice versa), and can go through either:

[NNDC](https://www.nndc.bnl.gov/nudat3/)

Double Beta $\beta\beta$ **Decay**

This process occurs for even-even nuclei, for which the ground state wave function has 0⁺. Typically decay process is of $0^+ \rightarrow 0^+$.

●

Double Beta $\beta\beta$ **Decay**

- This process occurs for even-even nuclei, for which the ground state wave function has 0⁺. Typically decay process is of $0^+ \rightarrow 0^+$.
- Need m(Z, A) > m(Z + 2, A) & m(Z, $A)$ < m(Z + 1, A)

30

Sources of background

● Plot produced by nEXO collaboration, showing the main sources of background for $0\nu\beta\beta$ search using Xe

G Adhikari *et al* 2022 *J. Phys. G: Nucl. Part. Phys.* **49** 015104 31

0 $\nu\beta\beta$ Experimental Requirements

Theoretical motivation:

Double Beta $\beta\beta$ **Decay**

- Isotope decays from higher to lower excess mass.
- Need m(Z, A) > m(Z \pm 2, A) & m(Z, A) < $m(Z \pm 1, A)$
- This process occurs for even-even nuclei, for which the ground state wave function has 0⁺. Typically decay process is of $0^+ \rightarrow 0^+$.

Neutrinoless Double Beta Decay 0

Theoretical motivation:

- Neutrino might be Majorana fermion
	- \circ It's is its own antiparticle
- If so, we should see neutrino annihilation in double beta decay.
- Lead to the explanation of low neutrino mass and introduce right-handed neutrinos (Sterile neutrino).

