SNOLAB Linear Accelerator, Yay! (SLAY!)

TRISEP 2024

R. Singh, S. Harms, S. Rathod, & L. Hariasz

Motivation

- Light dark matter
	- New massive mediator
	- sub-GeV dark matter
- Accelerator based fixed-target experiment Nccelerator based

Some ixed-target experiment

⊙ BDX, Darklight, LDMX
- Direct detection based experiment
	- DAMIC-M, SENSEI

arXiv:2203.08084

Accelerator

+

Direct Detection

Light Dark Matter production in beam dump experiment

Riya, Simon, Lili, Shivansh

Phys. Rev. Lett. 111, 221803 (2013)

111

Phys. Rev. Lett.

221803 (2013)

- Energy 90 MeV
- High Luminosity 10 mA
- Pulsed e beam

- o Tungsten metal at 1000°C
- 10 mA
- o Solenoid magnets focus e⁻ beam
- σ definition for monitor beam ○ Scintillator foil monitor beam

characteristics

●

- 1 cm tantalum foil
	- High melting point
	- Thick enough to block most electrons (maximize bremsstrahlung)
- Stopping photons:

$$
l_{\gamma} \approx \frac{1}{\mu \rho} = \frac{1}{0.02248 \text{ cm}^2/\text{g} \cdot 3 \text{ g/cm}^3} \approx 15 \text{ cm}
$$

• Stopping electrons:

$$
l_e \approx \frac{E}{dE/dx} = \frac{90 \text{ MeV}}{5.212 \text{ MeV cm}^2/\text{g} \cdot 3 \text{ g/cm}^3} \approx 6 \text{ cm}
$$

- 20cm of rock should be sufficient to block background products
	- Still expect neutrinos to get through

Detector - DAMIC

- Dark Matter in CCDs
- Sensitive to nuclear and electron recoils
- Best sensitivity for low mass DM among SNOLAB detectors
- Assuming DAMIC-M improvements

 $10⁰$

 $m_{A'}$ [GeV]

Expected DM production rate

Riya, Simon, Lili, Shivansh

DarkLight luminosity \sim 5 nb⁻¹ s⁻¹, for 150uA current on 1um Ta. Cross-section from EEDL evaluated electron data (1991).

Infrequent *v* **production from:**

- 1. Induced electron capture
- 2. Bremsstrahlung producing virtual Z, W[±]
- 3. Photo-production of isotopes
- 4. Induced beta decays (1, 3)

 $\boldsymbol{\mu}$

 π

 $-$ 0 μ^+

 π

0

 $\boldsymbol{\pi}$

+

Equity, Diversity, and Inclusion: Collaboration meetings

- Have DEI team in collaboration with 80 members
	- Talk to collaboration members who have dependents to understand their **individual needs** & priorities
- Group similar topics on the same day
- 1 meeting at experiment site, 2 other meetings at accessible location:
	- Rotate location according to proportion of people
	- \circ Close to airports & with daycare facilities
- Decide location & dates in advance
- Hybrid meeting with zoom
- To accommodate different time-zones
	- Record Talks
	- Have a system for discussion

Summary

- Beam dump experiment for sub-GeV dark matter detection
- Compact e-linac at TRIUMF
	- Like ARIEL, but 90 MeV
- Tantalum target with rock shielding
- DAMIC-M as detector
- Expecting LDM flux to increase by orders of magnitude for some DM scenarios
- No significant increase in background

"I think you should be more explicit here in step two."

Extra slides

- Consider rate an upper limit for MeV-scale dark photon production with a <100 MeV
- Luminosity: 5.2 nb^{\land}-1 s^{\land}-1, e- beam incident on 1 micron Ta target. Luminosity proportional to target thickness so our luminosity = 5.2 nb^{\land}-1 s^{\land}-1 $*$ 1 cm / 1 um = 5.2 $*$ 10^4 nb^-2 $*$ s^-1 = 5.2e4 (1e-9 barn)^-1 s^-1 = 5.2e13 barn^-1 s^-1
- \circ Cross-sec for Brem = 1.2e3 barn, so dR/dt = 5.2e13 (barn)^{\wedge}-1 s \wedge -1 \ast 1.2e3 barn = 6.2e16 s^-1
- Ratio probabilities producing DP vs SM photon via Brem is order epsilon^{^2}
- \circ BR of DP into DM is maximally one (low mixing with SM + large coupling to DM)

 \bullet

Expected neutrino production - extra

- Beam O(10 MeV) can't produce muons or hadrons
- Electron capture on target produces neutrinos near the beam energy
	- Neutrino rate = (electron rate) $*$ (probability EC on target)
	- Assuming energy transfer to nucleus is O(MeV), neutrino momentum = beam energy
	- Sufficiently high beam energy (50 MeV or so): most of these neutrinos should be distinguishable from solar ones for SNO (and very far above 130Te 0vbb signal)

- Higher-order (in coupling) processes producing additional neutrinos (continuous energy spectra) following e- Bremsstrahlung:

- $-e-$ -> v $e v$ (via W)
- $-e \ge e e \vee$ (via Z)

- these processes are suppressed by (beam energy/mass W or mass Z)^4 so roughly O(1e-13) for 50 MeV beam

- Lowering rate of incident e- can mitigate produced neutrino background from point above, while sufficiently high beam energy

- DAMIC Largest backgrounds H3 CCD contamination (~2.5 dru) and CCD Pb210 surface contamination (~4 dru)
- Total background rate ~12 dru
- Neutrinos created by SLAY could contribute to this background
- \Box
- Consider rate an upper limit for MeV-scale dark photon production with a <100 MeV
- Luminosity: 5.2 nb^-1 s^-1, e- beam has FWHM of 1mm. FWHM contains 76% of Gauss distribution so in 2D 0.76*(erate) = luminosity $*$ mm 2 = 7e31 Hz total e- rate
- Number density Ta= N_Avogadro / (molecular mass) * (mass density) = 6e23/181 *16.65 cm^-3 = 5.5e22 cm^(-3)
- Cross-section Brem. 90 MeV approx 1.2e3 barn, Macroscopic cross-sec = cross-sec * number density of Target = 1.2e3 $(1e-24 \text{ cm}^2)^*$ 5.5e22 cm²-3 = 66 cm²-1
- \circ Probability of first interaction over distance $x = 1 \exp(-\pi)$ macro cross sec * x) = approx 1 for cm-long detector. Unsurprising. Could also calculate total prob of any interaction over x with 4e6 barn microscopic cross-section, yielding macro cross-sec 4e6 (1e-24 cm^2) * $5.5e22cm^2$ -3 = 2.2e5 cm^-1, and for 1cm tot probability =
- Ratio probabilities producing DP vs SM photon via Brem is approximately epsilon^2
- BR of DP into DM is maximally one (low mixing with SM + large coupling to DM)

$$
\mathcal{R}_{\chi\chi} \approx \mathcal{R}_{e^-} \underbrace{\left(1-e^{-\sigma_{\text{Brem}} n_{\text{Ta}} \ell_{\text{Ta}}}\right)}_{\approx 1} \underbrace{P(m_{A'} \leq (\delta E)_{e^-})}_{\leq 1} \underbrace{\frac{\sigma_{e^- Z \to e^- Z A'_\mu}}{\sigma_{e^- Z \to e^- Z A_\mu}}}_{\sim \varepsilon^2} \underbrace{\frac{\Gamma_{A'_\mu \to \chi\chi}}{\Gamma_{A'_\mu \to \text{tot}}}}_{\leq 1}
$$