Neutrinos Lecture 2

A Miller

TRISEP 2024 Summer School

Thomas Brunner **McGill University** July 8, 2024

Outline

Lecture 1: Historical overview -What we know

- Birth and discovery of neutrinos
- Neutrino sources
- Wu and Goldhaber experiment
- Solar neutrino problem
- Neutrino oscillations

Lecture 2:

What we would like to know

- Neutrino mass measurements
	- KATRIN
	- PROJECT 8
- Sterile neutrinos

Lecture 3 Neutrinos as messengers – What we can learn from studying neutrinos

• Neutrinos as messenger particles in astrophysics

Nuclear Stability

- For many nuclei, it is energetically favorable to decay to a lower energetic state with spontaneous emission of one or more particles.
- The nucleus is generally most stable for $Z \approx N$. For larger nuclei, more neutrons are required to compensate the Coulomb force between protons.
- For an excess of n or p , β decay occurs:
	- β^- decay: ${}^AZ \rightarrow {}^A(Z+1)+\beta^-+\overline{v_e}$
	- β^+ decay: ${}^AZ \rightarrow {}^A(Z-1)+\beta^+ + \nu_e$
	- EC: ${}^AZ + e^- \rightarrow {}^A(Z-1) + \nu_e$
- In heavy nuclei: α decay where ⁴He is emitted from the nucleus
- Fission \rightarrow break up of nucleus in two lighter nuclei
- Decay daughter not required to be stable!

Table of Isotopes

- Isotopes: same Z
- Isotones: same N
- Isobars: same $A = N + Z$
- 284 stable nuclei of 83 stable elements
- Common features:
	- Light nuclei: $Z \approx N$
	- Heavier nuclei: $Z < N$
	- Stable even Z and even N nuclei are more common than odd Z or odd N nuclei
	- Even-A nuclei are more common than odd-A nuclei
	- Only stable odd-odd nuclei are ${}^{2}H, {}^{6}Li, {}^{10}B, {}^{14}N$
	- Of the 20 elements that only have one stable isotope, only 9Be has even-Z
	- Isotope with the most stable isotopes is $_{50}$ Sn (10 stable isotopes)

Magic nuclear numbers: 2, 8, 20, 28, 50, 82, and 126 $_{\text{Sipole}}^{\text{SF}}$

From: <https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html> Also great:<https://www.nndc.bnl.gov/>

Main Decay Mode

EC+ beta+

Table of Isotopes

From: <https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html> Also great:<https://www.nndc.bnl.gov/>

Mass and Binding Energy

The mass of an atomic nucleus reflects its binding energy and hence its stability and structure

Z Protons (Proton number) N Neutrons (Neutron number) $A = N + Z$ (Mass number) B: Binding energy Q: Charge state

Nuclear mass $M(N, Z)$ c² = $Z \cdot m_p$ c² + $N \cdot m_n$ c² - $B_{nucl}(N, Z)$ Atomic mass $M_{at}(N, Z)$ $c^2 = Z \cdot m_b c^2 + N \cdot m_b c^2 + Z \cdot m_{el} c^2 - B_{nucl}(N, Z) - B_{el}(Z)$ Ionic mass $M_{ion}(N, Z) c^2 = Z \cdot m_b c^2 + N \cdot m_b c^2 + (Z-Q) \cdot m_{el} c^2 - B_{nucl}(N, Z)^2 - B_{el}(Q)/c^2$

Slide courtesy of A. Kwiatkowski

Typically the mass excess (or defect) is used instead of the mass.

Mass excess $\Delta(N, Z) \equiv M(N, Z) - uA$

Figures taken from B.A. Brown

Indirect

• Decay measurements & kinematics

Direct

- Conventional mass spectrometry
- Time of flight
- Frequency based

• Frequency based

Slide courtesy of A. Kwiatkowski

• Frequency based

TRISEP 2024 - Neutrinos

TOF: Z. Meisel & S. George, IJMS 349 (2013) 145;

ESR: F. Bosch, LNP 651 (2004) 137; MR-TOF: W. Plass, T. Dickel, C. Scheidenberger, IJMS IJMS 349 (2013), 134

The MRTOF

Operating Principle

- lons accelerated by potential *U* gain kinetic energy $E_{kin} = z_i eU = m_i \nu i^2/2$
- lons with different mass-to-charge separate in time, and can be resolved if $\Delta t_{ij} > \Delta t_i$, Δt_j
- Calculated with mass-resolving power (MRP), $R = m/\Delta m = t/(2 \Delta t)$
- Current devices achieve $R > 100,000$
- For mass 64, R=100,000 results in Δm = 640 keV

Isochronous mass spectrometry is a time-of-flight measurement.

Schottky mass spectrometry is a frequency-based measurement.

hundreds of ions simultaneously

 $T_{1/2} \geq 1$ s due to cooling

Figures: F. Bosch, LNP 651 (2004) 137; K. Blaum, Phys. Rep. 425 (2006) 1 TRISEP 2024 - Neutrinos and the set of the set

Mass measurement – Time of Flight method

$$
\begin{array}{|c|c|}\n \hline\n \multicolumn{3}{c|}{\hspace{1em}} \\
 \hline\n \multicolumn{3}{c|}{\hspace{1em}} \\
$$

 -4444

$$
\vec{F} = -\frac{E_r(\omega_{rf})}{B} \frac{\partial B(z)}{\partial z} \hat{z}
$$

Determine atom mass from frequency ratio with a well known reference

Time-of-flight cyclotron resonance detection \rightarrow suited for radioactive isotopes TRISEP 2024 - Neutrinos **Experiment is carried out with one ion in the trap!** 17

Mass measurement – Time of Flight method

Ions in the trap are

- exposed to an rf-excitation ω_{rf} of duration T_{rf}
- accelerated by the magnetic field gradient:
- stopped by an MCP detector, TOF is recorded
- Comparison to well known isotope

The mass is found by a scan of ω_{rf} around the resonance:

$$
\begin{array}{rcl} \text{\tiny{TRISEP 2024 - Neutrinos}} & \omega_{rf} = \ \omega_c = \frac{qB}{m} \end{array} \tag{18}
$$

$$
\vec{F} = -\frac{E_r(\omega_{rf})}{B} \frac{\partial B(z)}{\partial z} \hat{z}
$$

Resolution:

$$
\frac{\delta m}{m} \propto \frac{m}{q} \frac{1}{B T N^{1/2}}
$$

- \Rightarrow longer excitation time
- ⇒ larger B
- \Rightarrow more ions
- \Rightarrow highly charged ions
- Penning trap TOF method achieves δ m/m~10⁻⁽⁸⁻⁹⁾
- Specialized Penning traps achieve better resolution

Precision required determines on the application

You can submit proposals for nuclear physics measurements, too!

TRISEP 2024 - Neutrinos 20

Neutrino mass

- Oscillation experiments prove neutrinos have mass
- However, they do not provide any explanation for the origin of this mass
	- In particular, why the masses are so much smaller than the charged leptons
- There are basically 3 possibilities:
	- Neutrinos get their masses through the Higgs mechanism, but their couplings are very weak (*Dirac neutrinos*)
	- There is another mass scale, which suppresses the masses of the light neutrinos (*Majorana neutrinos* with "see-saw")
	- Neutrinos couple to a different Higgs boson than the charged fermions (typically also *Majorana neutrinos*)
- Further discussion of these possibilities is at: *<https://arxiv.org/pdf/hep-ph/0211134.pdf>*

Neutrino mass

• How would you devise an experiment to measure the neutrino mass?

Measuring Neutrino Masses

Neutrino mass

• What are the challenges in measuring the neutrino mass directly?

Time of flight from SN1987A

Time of flight from SN1987A

TRISEP 2024 - Neutrinos 26

Source: arXiv 0909.2104

Time of flight from SN1987A

Neutrino events (~20 events globally) from supernova 1987A (Large Magellanic Cloud) were detected in KamiokaNDE, IMB, and Baksan observatories.

With a model for neutrino production and detector response model, it is possible to look for smearing due to neutrino mass. Early analyses gave limits ~20 eV.

Improved supernova modeling and Bayesian statistical approaches do better:

> < 5.7 eV @ 95% C.L. Loredo and Lamb, *PRD* 65 (2002)

Pion decay

Current best limit from studies of the kinematics of $\pi \rightarrow \mu v_\mu$ decay.

$$
p_{\mu}^{2} + m_{\mu}^{2} = (m_{\pi}^{2} + m_{\mu}^{2} - m_{\nu}^{2})^{2} / 4m_{\pi}^{2}
$$

$$
m_{\nu_\mu}^2 = m_{\pi^+}^2 + m_{\mu^+}^2 - 2m_{\pi^+}\sqrt{p_{\mu^+}^2 + m_{\mu^+}^2}
$$

- Pion decay in flight is limited in practice by momentum resolution.
- Pion decay at rest is limited by pion mass uncertainty. This currently gives the best limits from PSI

Pion decay

Current best limit from studies of the kinematics of $\pi \rightarrow \mu v_\mu$ decay.

$$
m_{\nu_{\mu}}^2 = m_{\pi^+}^2 + m_{\mu^+}^2 - 2m_{\pi^+}\sqrt{p_{\mu^+}^2 + m_{\mu^+}^2}
$$

• Pion mass from X-ray measurements on pionic atoms:

 $m_{\pi} = 139.56782 \pm 0.00037 \text{ MeV}$

 $m_{\pi} = 139.56995 \pm 0.00035 \text{ MeV}$

• Muon mass from ratio of magnetic moments from muon and proton:

 $m_{\mu} = (105.6583668 \pm 0.0000038)$ MeV

• Muon momentum:

 $p_{\mu} = (29.79200 \pm 0.00011)$ MeV

$$
m_\nu^2 = (-0.016 \pm 0.023) \text{ MeV}^2 \rightarrow \begin{array}{|l|} m_\nu^< -170 \text{ keV @ 90\% C.L.}\\ \text{Assamagan et al., PRD (1996)}\\ \text{Assamagan et al., PRD (1996)}\\ \end{array} \hspace{1cm} \text{and} \hspace{1cm} \text{as a constant}
$$

 m_{v} <170 keV @ 90% C.L.

 τ decay

Tau produced at accelerators:

$$
e^+e^- \rightarrow \tau^+\tau^- \qquad E_\tau = \sqrt{s}/2
$$

 $m_{\text{had}} = m_{\tau} - m_{\nu}$

Best limit from studies of the kinematics of τ decays.

 $\tau^- \rightarrow 2\pi^- \pi^+ \nu_{\tau}$ $\tau^- \rightarrow 3\pi^- 2\pi^+ (\pi^0) \nu_{\tau}$

Fit to scaled visible (hadronic) energy $E_{\text{had}} = \frac{(m_{\tau}^2 + m_{\text{had}}^2 - m_{\nu}^2)}{2m_{\tau}}$ vs. scaled invariant mass.

Best limit <18.2 MeV @ 95% C.L. Aleph, EPJ C2 395 1998

TRISEP 2024 - Neutrinos 30

Decay kinematics measurements

Look at the impact of non-zero ν mass on the following decays.

 v_{e} : beta decay

 v_{μ} : pion decay

 v_r tau decay

$$
m^{2}(v_{e}) = \sum_{i=1}^{3} |U_{ei}^{2}|^{2} m_{i}^{2} \qquad m^{2}(v_{\mu}) = \sum_{i=1}^{3} |U_{\mu i}^{2}|^{2} m_{i}^{2} \qquad m^{2}(v_{\tau}) = \sum_{i=1}^{3} |U_{\tau i}^{2}|^{2} m_{i}^{2}
$$

Isotopes

- Basically only two isotopes are of interest for endpoint measurements
- Want as low an end-point as possible, and short enough half-life to get required statistics

Required precision for neutrino mass measurements

- We want to determine the Q value of ³H decay. What do we need to measure?
- \rightarrow We need to measure the masses of decay mother and daughter, i.e., 3 H and 3 He
- To what precision do we need to measure the Q-value so that its uncertainty does not dominantly contribute to KATRIN's measurement? Say 30 meV?

 \rightarrow A relative uncertainty of 10 parts per trillion in the mass ratio would allow determining the *Q* value with a precision of 30 meV.

$$
Measured Q(T) = 18\,592.071(22) eV
$$

Phys. Rev. Lett. 131, 243002 (2023)

Precision Tritium Endpoint Measurement with KATRIN

- strong tritium source: 10^{11} decays/s \checkmark
- < 0.1 cps background level \checkmark
- \sim 1 eV energy resolution \checkmark
- 0.1% level understanding \checkmark of the spectrum shape
- 0.1% level hardware stability \checkmark controlled over the years

KATRIN

- Extremely large electrostatic filter only transmits electrons within \sim 30 eV of the endpoint
- Magnetic adiabatic collimation (MAC-E filter) allows high acceptance of β s for 10¹¹ Bq source
- Overall length: 70 m, spectrometer: 23 m long, 10 m diameter
- UHV below 10⁻¹¹ mbar Windowless gaseous tritium source Cryogenic pumping Differential pumping section section \rightarrow Commissioning at KIT → Commissioning at KIT

 $\Delta \Omega = 2\pi$ T₂ source electrodes detector p_e (without E field) $\frac{1}{2}$

<https://www.katrin.kit.edu/79.php> TRISEP 2024 - Neutrinos 35*principle possible*

High acceptance and sub-eV resolution in

MAC-E filter

Magnetic Adiabatic Collimation and Electrostatic filter

The MAC-E filter allows measurement of integral spectrum with an adjustable threshold. Only see the endpoint of the decay!

Transverse kinetic energy is converted to longitudinal kinetic energy by magnetic adiabatic collimation.

KATRIN

The main spectrometer traveled a near-9000-kilometer route to cover a distance of only 400 km.

[https://www.symmetrymagazine.org/article/march-](https://www.symmetrymagazine.org/article/march-2007/deconstruction-katrin?language_content_entity=und)[2007/deconstruction-katrin?language_content_entity=und](https://www.symmetrymagazine.org/article/march-2007/deconstruction-katrin?language_content_entity=und)

KATRIN

- First results reported in 2019, gave m_{ν_e} $<$ 1.1 eV (limited by statistics, now 0.8 eV limit from 2022)
- Expect to reach sensitivity ~0.2 eV (3 σ discovery potential ~ 0.28 eV) after 3 years of running

Observed spectrum near endpoint:

<https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.123.221802>

Slide from Alexey Lokhov, NEUTRINO 2024

Conclusion and Outlook

Preprint \rightarrow https://www.katrin.kit.edu/130.php#Anker0

New KATRIN release improves direct neutrino-mass bound by a factor of 2:

$$
m_{\nu} < 0.45 \,\mathrm{eV} \, \left(90 \,\%\ \mathrm{CL}\right)
$$

Ongoing analysis:

- 70 % of total anticipated data recorded, improvements in systematics
- Several BSM physics searches: eV-sterile, exotic $\frac{5}{2}$ interactions, light bosons, relic $v... \Rightarrow$ stay tuned!

Ongoing data taking through 2025 $\rightarrow \Sigma$ 1000 days

target sensitivity below 0.3 eV

Project 8

- New ideas are needed beyond KATRIN, which is probably the largest such spectrometer feasible
- Project 8 aims to perform non-destructive measurement of electron energy from cyclotron radiation:

$$
\omega(\gamma)=\frac{\omega_0}{\gamma}=\frac{eB}{K+m_e}
$$

This technique may in principle be scaled to a large, atomic ³H source capable of covering the IH

Project 8

- First demonstration of measuring cyclotron radiation from single electron in 2015
- Working on scaling up to larger demonstrators:
	- Phase II: first 3H test (not yet competitive mass constraints)
	- Phase III: large volume system with competitive (~eV mass) sensitivity
	- Phase IV: large experiment with atomic $3H$ at IH sensitivity

Observed single e- vs time:

Measured electron energy spectrum (83mKr):

<https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.114.162501>

Tritium gas sources

Gas sources give the best results, but we're limited to using molecular tritium.

- Electronic excitations in T atoms
- Excitations in $T₂$ gas
	- Electronic: 20 eV
	- Vibrational: ~0.1 eV
	- Rotational: ~0.01 eV
- Beta spectrum depends on excitation energies V_k and probabilities P_k
- KATRIN needs 1% uncertainties on final state distribution.

$$
\frac{dN}{dE_e} = \frac{G_F^2 m_e^5 \cos^2 \theta_C}{2\pi^3 \hbar^7} |M_{\text{nuc}}|^2 F(Z, E_e) p_e E_e \times \sum_{i,k} |U_{ei}|^2 P_k (E_{\text{max}} - E_e - V_k)
$$

TRISEP 2024 - Neutrinos $\quad \times \sqrt{(E_{\rm max}-E_e-V_k)^2-m_{\nu i}^2 \times \Theta(E_{\rm max}-E_e-V_k-m_{\nu i})}$ 45

Project 8

Major systematic for any sufficiently sensitive ³H experiment is the need for atomic tritium (to avoid smearing from rotational/vibrational states in molecular tritium)

Final state energy distribution relative to tritium endpoint

1: Molecular 2: Atomic sprayed into tritium tritium cooled thermally velocity and in cracked accommodato state selector selected

5: Atoms cooled to field seeking millikelvin temperatures by magnetic step, linger in decay volume

spin tritium

Project 8

Major systematic for any sufficiently sensitive ³H experiment is the need for atomic tritium (to avoid smearing from rotational/vibrational states in the state of the st

10

PRELIMINARY

and optimistic

 $T₂$, 3x10¹¹ molecules/cm³

 -10

Degeneracy

scale

Inverted

9606

S

mass limit.

ę

 -0.1

TRISEP 2024 - Neutrinos 47

tritium endpoint

Tremendous progress in T-decay

0

Best-fit m_c^2 (eV²)

 -200

Where do we stand on Neutrino Masses from Tritium Decay?

Direct neutrino-mass measurement with subnature physics electronvolt sensitivity

The KATRIN Collaboration

mν**e< 0.8 eV (90% C.L.)**

Nature Physics 18, 160-166 (2022) | Cite this article

Goals:

- Sensitivity to 40 meV/ c^2 neutrino mass
- Measure neutrino mass or exclude inverted hierarchy
- Simultaneous sensitivity to active and sterile neutrinos

Slide Courtesy Elise Novitzki

Precision Holmium EC Decay: ECHo and HOLMES

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

Calorimetric measurement Source = Detector A. De Rujula and M. Lusignoli, *Phys. Lett.* **118B** (1982)

• $\tau_{1/2} \cong 4570$ years $(2*10^{11}$ atoms for 1 Bq)

- $Q_{\text{FC}} = (2.833 \pm 0.030^{\text{stat}} \pm 0.015^{\text{syst}}) \text{ keV}$
	- S. Eliseev et al., *Phys. Rev. Lett.* **115** (2015) 062501

Ab-initio calculations foresee a smooth shape at the endpoint region

Slide Courtesy: Loredana Gastaldo

M. Braß and M. W. Haverkort, *New J. Phys.* **22** (2020) 093018

 v_e

 v_e

Precision Holmium EC Decay - m_{v_R}

- ► 6.5×10¹³ atom/det \rightarrow A_{FC}=300 Bq/det
- \triangleright $\Delta E \approx 1$ eV and $\tau_{\rm p} \approx 1$ µs

1000 channel array

- ► 6.5×10^{16 163}Ho nuclei $\rightarrow \approx 18$ µg
- ▶ 3×10¹³ events in 3 years

60 MMC pixels with about 1 Bq 163Ho: Achievable sensitivity

$m(v_e)$ < 20 eV (95% C.L.)

ECHO-1K

ECHo

4-day measurement with 4 pixels loaded with \sim 0.2 Bq 163 Ho

Energy resolution ΔE_{FWHM} = 9.2 eV

Background level *b* < 1.6 × 10-4 events/eV/pixel/day

- Q_{EC} = (2838 ± 14) eV
- $m(v_e)$ < 150 eV (95% C.L.)

Slide Courtesy Loredana Gastaldo and Angelo Nucciott

The Future of Neutrino Masses from Ho Decay?

Snowmass LOI: Measuring the electron neutrino mass using the electron capture decay of 163Ho

Single Courtesy Thierry Lasser

HEMT

tivity 90%

Cosmology

• In parallel to the direct measurements, next-generation CMB experiments aim to measure the sum of the neutrino masses:

 $m_{\nu} = \sum m_i$

Projected sensitivity for CMB S4:

<https://pdg.lbl.gov/2019/reviews/rpp2019-rev-neutrinos-in-cosmology.pdf>

What we know about neutrinos

Search for Heavy (Mostly Sterile) Neutrino Mass States

Mostly Sterile keV Neutrino Mass States

- Beta decay is particularly sensitive to keV-MeV mass states
- Mass states in this region have $\tau \approx \tau_{\text{universe}}$ and could thus serve as some fraction of the observed DM in our universe
	- Excellent candidates for warm dark matter _{Dodelson and Widrow, PRL 72, 17 (1994)}

Image Courtesy: Symmetry Magazine

Heavy Neutrino Mass Studies via Coupling to $v_{\rm e}$

- In EC/ β^* and β^- decay, we study the relative coupling of the mass states to \bar{v}_e (v_e)
- Momentum is conserved with the mass states, not flavor states

Recoil Kinetic Energy

Sterile νs

- Potential explanation for the short baseline data is a small mixing with a light (~eV scale) sterile ν
	- Or maybe 2 more sterile vs are needed to fit the data? (or *n* more?)

Tritium Endpoint Measurements – KATRIN/TRISTAN

Idea:

- Make use of the strong KATRIN tritium source and beamline
- Perform a differential measurement of the full tritium spectrum
- Requires new detector system \rightarrow TRISTAN detector

S. Mertens et al. JCAP 1502 (2015) S. Mertens et al, PRD 91 (2015)

SETTIT SKIT @

Tritium Endpoint Measurements – KATRIN/TRISTAN

Multi-pixel (>1000) silicon drift detector focal plane array (TRISTAN)

- \checkmark Capability of handling high rates (> 10⁵ cps/pixel)
- \checkmark Good energy resolution (300 eV @ 20 keV)
- \checkmark Large focal plane area coverage

First keV-Mass Neutrino Search with KATRIN Data 2207.06337

Search for keV-scale Sterile Neutrinos with first KATRIN Data

M. Aker, ¹ D. Batzler, ¹ A. Beglarian, ² J. Behrens, ¹ A. Berlev, ³ U. Besserer, ¹ B. Bieringer, ⁴ F. Block, ⁵ S. Bobien, ⁶ B. Bornschein, ¹ L. Bornschein, ¹ M. Böttcher, ⁴ T. Brunst, ^{7, 8} T. S. Caldwell, ^{9, 10} R. M. D. Carney, ¹¹
S. Chilingaryan, ² W. Choi, ⁵ K. Debowski, ¹² M. Descher, ⁵ D. Díaz Barrero, ¹³ P. J. Doe, D. Hinz,¹ T. Höhn,¹ T. Houdy,^{7,8} A. Huber,¹ A. Jansen,¹ C. Karl,^{7,8} J. Kellerer,⁵ M. Kleifges,² M. Klein,¹ C. Köhler,^{7,8} L. Köllenberger,¹ A. Kopmann,² M. Korzeczek,⁵ A. Kovalík,¹⁵ B. Krasch,¹ H. Krause,¹ L. La Cascio,⁵ T. Lasserre,¹⁸ T. L. Le,¹ O. Lebeda,¹⁵ B. Lehnert,¹¹ A. Lokhov,⁴ M. Machatschek,¹ E. Malcherek,¹ M. Mark,¹ A. Marsteller, ¹ E. L. Martin, ^{9, 10} C. Melzer, ¹ S. Mertens, ^{7, 8,} * J. Mostafa, ² K. Müller, ¹ H. Neumann, ⁶ S. Niemes, ¹ P. Oelpmann, ⁴ D. S. Parno, ¹⁷ A. W. P. Poon, ¹¹ J. M. L. Poyato, ¹³ F. Pr R. G. H. Robertson,¹⁴ W. Rodejohann,¹⁹ C. Rodenbeck,⁴ M. Röllig,¹ C. Röttele,¹ M. Ryšavý,¹⁵ R. Sack,^{1,4} A. Saenz,²⁰ R. Salomon,⁴ P. Schäfer,¹ L. Schimpf,^{4,5} M. Schlösser,¹ K. Schlösser,¹ L. Schlüter,^{7,8} S. Schneidewind,⁴ M. Schrank,¹ A. Schwemmer,^{7,8} M. Sefčík,¹⁵ V. Sibille,¹⁶ D. Siegmann,^{7,8} M. Sl M. Schlain, A. Schweimer, W. Seck, V. Spine, D. Segmann, M. Sezak, F. Spaner,
M. Steidl, M. Sturm, H. H. Telle, ¹³ L. A. Thorne, ²² T. Thümmler, ¹ N. Titov, ³ I. Tkachev, ³ K. Urban, ^{7, 8}
K. Valerius, ¹ D. V (KATRIN Collaboration)

Rare Isotopes in Superconducting Sensors for keV Searches

R TRIUMF⁷Be EC Decay - The BeEST Experiment

Rare-isotope implantation at TRIUMF-ISAC

A. Samanta *et al*., Phys. Rev. Mat. (*in press*) (2022) S. Friedrich *et al.,* J. Low Temp. Phys. (*in press*) (2022) C. Bray *et al*., J. Low Temp. Phys. (*in press*) (2022) K.G. Leach and S. Friedrich, J. Low Temp. Phys. (*in press*) (2022) S. Friedrich *et al*., Phys. Rev. Lett. **126**, 021803 (2021) S. Fretwell *et al*., Phys. Rev. Lett. **125**, 032701 (2020) S. Friedrich *et al*., J. Low Temp. Phys. **200**, 200 (2020)

ν_e $7₁$ $7Li$

Ta, Al, and Nb-based STJ Sensors

 10^5

 $(0.2 eV]$

Be [Cou

Residuals/VN

 $L-GS$

i Inuwerhamaanimarinana Muhr

 $K-ES$

First Limits from "Low-Rate" Phase-II Data

PHYSICAL REVIEW LETTERS 126, 021803 (2021)

Limits on the Existence of sub-MeV Sterile Neutrinos from the Decay of ⁷Be in **Superconducting Quantum Sensors**

S. Friedrich^{(1,*} G. B. Kim,¹ C. Bray⁽²⁾, R. Cantor,³ J. Dilling,⁴ S. Fretwell⁽²⁾, J. A. Hall,³
A. Lennarz^{(1,4,5} V. Lordi⁰⁾, P. Machule,⁴ D. McKeen⁽¹⁾, A. Mougeot⁽¹⁾, ⁶ F. Ponce⁰,^{7,1} C. Ruiz⁽

Phase-II data from a single $138x138 \mu m^2 STJ$ counting at low rate (~10 Bq) for 28 days

> Recoil spectrum generated by pseudodegenerate mass states from ~28 days of counting

Example of signal that would be generated by 300 keV neutrino with 1% mixing

Energy [eV]

 $K-GS$

Future Projections for keV-MeV Mass Searches

- Nuclear decay provides a powerful, model-independent probe in the keV – MeV mass range
- Significant progress in measurements over the past 3 years – enabled by quantum sensing
- Experiments poised to increase sensitivity by 5+ orders of magnitude in the next decade TRISEP 2024 - Neutrinos

