# Neutrinos Lecture 2

Malan

**TRISEP 2024 Summer School** 

Thomas Brunner McGill University July 8, 2024

# Outline

#### Lecture 1: <u>Historical overview –</u> <u>What we know</u>

- Birth and discovery of neutrinos
- Neutrino sources
- Wu and Goldhaber experiment
- Solar neutrino problem
- Neutrino oscillations

#### Lecture 2:

#### What we would like to know

- Neutrino mass measurements
  - KATRIN
  - PROJECT 8
- Sterile neutrinos



#### Lecture 3 Neutrinos as messengers – What we can learn from

- studying neutrinos
- Neutrinos as messenger particles in astrophysics

# **Nuclear Stability**

- For many nuclei, it is energetically favorable to decay to a lower energetic state with spontaneous emission of one or more particles.
- The nucleus is generally most stable for  $Z \approx N$ . For larger nuclei, more neutrons are required to compensate the Coulomb force between protons.
- For an excess of n or p,  $\beta$  decay occurs:
  - $\beta^-$  decay:  ${}^{A}Z \rightarrow {}^{A}(Z+1) + \beta^- + \overline{\nu_e}$
  - $\beta^+$  decay:  ${}^{A}Z \rightarrow {}^{A}(Z-1) + \beta^+ + \nu_e$
  - EC:  ${}^{A}Z + e^{-} \rightarrow {}^{A}(Z-1) + v_{e}$
- In heavy nuclei:  $\alpha$  decay where <sup>4</sup>He is emitted from the nucleus
- Fission  $\rightarrow$  break up of nucleus in two lighter nuclei
- Decay daughter not required to be stable!

# Table of Isotopes

- Isotopes: same Z
- Isotones: same N
- Isobars: same A = N + Z
- 284 stable nuclei of 83 stable elements
- Common features:
  - Light nuclei:  $Z \approx N$
  - Heavier nuclei: Z < N
  - Stable even Z and even N nuclei are more common than odd Z or odd N nuclei
  - Even-A nuclei are more common than odd-A nuclei
  - Only stable odd-odd nuclei are <sup>2</sup>H, <sup>6</sup>Li, <sup>10</sup>B, <sup>14</sup>N
  - Of the 20 elements that only have one stable isotope, only <sup>9</sup>Be has even-Z
  - Isotope with the most stable isotopes is <sub>50</sub>Sn (10 stable isotopes)

Magic nuclear numbers: 2, 8, 20, 28, 50, 82, and 126



From: <u>https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html</u> Also great: <u>https://www.nndc.bnl.gov/</u>

Main Decay Mode

EC+ beta+

## Table of Isotopes







From: https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html Also great: https://www.nndc.bnl.gov/

# Mass and Binding Energy

The mass of an atomic nucleus reflects its binding energy and hence its stability and structure



Nuclear mass Atomic mass Ionic mass 
$$\begin{split} \mathsf{M}(\mathsf{N}, Z) \ c^2 &= \mathsf{Z} \cdot \mathsf{m}_{\mathsf{p}} \ c^2 + \mathsf{N} \cdot \mathsf{m}_{\mathsf{n}} \ c^2 - \mathsf{B}_{\mathsf{nucl}}(\mathsf{N}, Z) \\ \mathsf{M}_{\mathsf{at}}(\mathsf{N}, Z) \ c^2 &= \mathsf{Z} \cdot \mathsf{m}_{\mathsf{p}} \ c^2 + \mathsf{N} \cdot \mathsf{m}_{\mathsf{p}} \ c^2 + \mathsf{Z} \cdot \mathsf{m}_{\mathsf{el}} \ c^2 - \mathsf{B}_{\mathsf{nucl}}(\mathsf{N}, Z) - \mathsf{B}_{\mathsf{el}}(\mathsf{Z}) \\ \mathsf{M}_{\mathsf{ion}}(\mathsf{N}, Z) \ c^2 &= \mathsf{Z} \cdot \mathsf{m}_{\mathsf{p}} \ c^2 + \mathsf{N} \cdot \mathsf{m}_{\mathsf{p}} \ c^2 + (\mathsf{Z} - \mathsf{Q}) \cdot \mathsf{m}_{\mathsf{el}} \ c^2 - \mathsf{B}_{\mathsf{nucl}}(\mathsf{N}, \mathsf{Z})^2 - \mathsf{B}_{\mathsf{el}}(\mathsf{Q})/c^2 \end{split}$$

Slide courtesy of A. Kwiatkowski

# Typically the mass excess (or defect) is used instead of the mass.

Mass excess  $\Delta(N, Z) \equiv M(N, Z) - uA$ 

where the atomic mass unit u is  $1 u = \frac{M({}^{12}C)}{12} = 931494.0954 \text{ keV}/c^2$ Mass Excess [MeV] -1e2 - 25 - 50 - 1.3e2 -1e2 - 25 - 50 - 1.3e2-1e2 - 25 - 50 - 1.3e2

AME 2020, Chin. Phys. C 45 (2020) 030002, (https://www-nds.iaea.org/amdc/)



Figures taken from B.A. Brown

Indirect

• Decay measurements & kinematics

Direct

- Conventional mass spectrometry
- Time of flight
- Frequency based



Frequency based



Slide courtesy of A. Kwiatkowski

# The achievable precision and accuracy depends on the measurement techniqu

Indirect

• Decay measurements & kinematics

Direct

- Conventional mass spectrometry
- Time of flight
- Frequency based



storage rings

TRISEP 2024 - Neutrinos

TOF: Z. Meisel & S. George, IJMS 349 (2013) 145;

ESR: F. Bosch, LNP 651 (2004) 137; MR-TOF: W. Plass, T. Dickel, C. Scheidenberger, IJMS IJMS 349 (2013), 134

# The MRTOF

#### **Operating Principle**

- Ions accelerated by potential U gain kinetic energy  $E_{kin} = z_i eU = mivi^2/2$
- lons with different mass-to-charge separate in time, and can be resolved if  $\Delta t_{ij} > \Delta t_i$ ,  $\Delta t_j$
- Calculated with mass-resolving power (MRP),  $R = m/\Delta m = t/(2 \Delta t)$
- Current devices achieve *R* > 100,000
- For mass 64, R=100,000 results in  $\Delta m = 640 \text{ keV}$



# Isochronous mass spectrometry is a time-of-flight measurement.





# Schottky mass spectrometry is a frequency-based measurement.



hundreds of ions simultaneously

 $T_{1/2} \ge 1$  s due to cooling

Figures: F. Bosch, LNP 651 (2004) 137; K. Blaum, Phys. Rep. 425 (2006) 1

### Mass measurement – Time of Flight method





$$\vec{F} = - \frac{E_r(\omega_{rf})}{B} \frac{\partial B(z)}{\partial z} \hat{z}$$

#### Determine atom mass from frequency ratio with a well known reference

Time-of-flight cyclotron resonance detection  $\rightarrow$  suited for radioactive isotopesTRISEP 2024 - NeutrinosExperiment is carried out with one ion in the trap!

### Mass measurement – Time of Flight method

#### lons in the trap are

- exposed to an rf-excitation  $\omega_{rf}$  of duration  $T_{rf}$
- accelerated by the magnetic field gradient:
- stopped by an MCP detector, TOF is recorded
- Comparison to well known isotope





The mass is found by a scan of  $\omega_{rf}$  around the resonance:

TRISEP 2024 - Neutrinos 
$$\omega_{rf} = \omega_c = rac{qB}{m}$$

$$\vec{F} = - \frac{E_r(\omega_{rf})}{B} \frac{\partial B(z)}{\partial z} \hat{z}$$

**Resolution:** 

$$\frac{\delta m}{m} \propto \frac{m}{q} \frac{1}{BTN^{1/2}}$$

- $\Rightarrow$  longer excitation time
- $\Rightarrow$  larger B
- $\Rightarrow$  more ions
- $\Rightarrow$  highly charged ions
- Penning trap TOF method achieves δm/m~10<sup>-(8-9)</sup>
- Specialized Penning traps achieve better resolution

# Precision required determines on the application



| Field                                | δm/m                                |
|--------------------------------------|-------------------------------------|
| Chemistry: ID molecules              | 10 <sup>-5</sup> -10 <sup>-6</sup>  |
| Nuclear structure: shells            | 10 <sup>-6</sup>                    |
| Nuclear fine structure: halos        | 10 <sup>-7</sup> -10 <sup>-8</sup>  |
| Astrophysics: r-process              | 10 <sup>-7</sup>                    |
| Nuclear predictions: IMME            | 10 <sup>-7</sup> -10 <sup>-8</sup>  |
| Weak interaction: CVC, CKM           | 10 <sup>-8</sup>                    |
| Atomic physics: B <sub>e</sub> , QED | 10 <sup>-9</sup> -10 <sup>-11</sup> |
| Metrology: CPT                       | ≤ <b>10</b> <sup>-11</sup>          |

# You can submit proposals for nuclear physics measurements, too!



TRISEP 2024 - Neutrinos

## Neutrino mass

- Oscillation experiments prove neutrinos have mass
- However, they do not provide any explanation for the origin of this mass
  - In particular, why the masses are so much smaller than the charged leptons
- There are basically 3 possibilities:
  - Neutrinos get their masses through the Higgs mechanism, but their couplings are very weak (*Dirac neutrinos*)
  - There is another mass scale, which suppresses the masses of the light neutrinos (*Majorana neutrinos* with "see-saw")
  - Neutrinos couple to a different Higgs boson than the charged fermions (typically also *Majorana neutrinos*)
- Further discussion of these possibilities is at:
   <u>https://arxiv.org/pdf/hep-ph/0211134.pdf</u>



21

## Neutrino mass

• How would you devise an experiment to measure the neutrino mass?

# **Measuring Neutrino Masses**



٠

٠

•

٠

## Neutrino mass

• What are the challenges in measuring the neutrino mass directly?

# Time of flight from SN1987A



# Time of flight from SN1987A



**TRISEP 2024 - Neutrinos** 

Source: arXiv 0909.2104

# Time of flight from SN1987A



Neutrino events (~20 events <u>globally</u>) from supernova 1987A (Large Magellanic Cloud) were detected in KamiokaNDE, IMB, and Baksan observatories.

With a model for neutrino production and detector response model, it is possible to look for smearing due to neutrino mass. Early analyses gave limits ~20 eV.

Improved supernova modeling and Bayesian statistical approaches do better:

< 5.7 eV @ 95% C.L. Loredo and Lamb, *PRD* 65 (2002)

# Pion decay

Current best limit from studies of the kinematics of  $\pi \rightarrow \mu v_{\mu}$  decay.

$$p_{\mu}^{2} + m_{\mu}^{2} = (m_{\pi}^{2} + m_{\mu}^{2} - m_{\nu}^{2})^{2} / 4m_{\pi}^{2}$$

$$m_{\nu_{\mu}}^{2} = m_{\pi^{+}}^{2} + m_{\mu^{+}}^{2} - 2m_{\pi^{+}}\sqrt{p_{\mu^{+}}^{2} + m_{\mu^{+}}^{2}}$$

- Pion decay in flight is limited in practice by momentum resolution.
- Pion decay at rest is limited by pion mass uncertainty. This currently gives the best limits from PSI



# Pion decay

Current best limit from studies of the kinematics of  $\pi \rightarrow \mu v_{\mu}$  decay.

$$m_{\nu_{\mu}}^{2} = m_{\pi^{+}}^{2} + m_{\mu^{+}}^{2} - 2m_{\pi^{+}}\sqrt{p_{\mu^{+}}^{2} + m_{\mu^{+}}^{2}}$$

• Pion mass from X-ray measurements on pionic atoms:

 $m_{\pi} = 139.567\,82 \pm 0.000\,37 \,\mathrm{MeV}$ 

 $m_{\pi} = 139.569\,95 \pm 0.000\,35 \,\mathrm{MeV}$ 

• Muon mass from ratio of magnetic moments from muon and proton:

 $m_{\mu} = (105.658\,3668 \pm 0.000\,0038)\,\mathrm{MeV}$ 

• Muon momentum:

 $p_{\mu} = (29.792\,00 \pm 0.000\,11) \text{ MeV}$ 

$$m_{\nu_{\mu}}^2 = (-0.016 \pm 0.023) \text{ MeV}^2 \rightarrow$$

m<sub>v</sub><170 keV @ 90% C.L. Assamagan et al., *PRD* (1996)

 $\tau$  decay



Tau produced at accelerators:

$$e^+e^- \rightarrow \tau^+\tau^- \quad E_\tau = \sqrt{s/2}$$

 $m_{\rm had} = m_{\tau} - m_{\nu}$ 

Best limit from studies of the kinematics of  $\tau$  decays.

 $\tau^- \rightarrow 2\pi^- \pi^+ \nu_{\tau}$  $\tau^- \rightarrow 3\pi^- 2\pi^+ (\pi^0) \nu_\tau$ 

Fit to scaled visible (hadronic) energy  $E_{\rm had} = \frac{(m_{\tau}^2 + m_{\rm had}^2 - m_{\nu}^2)}{2m_{\tau}}$ vs. scaled invariant mass.

Best limit <18.2 MeV @ 95% C.L. Aleph, EPJ C2 395 1998

**TRISEP 2024 - Neutrinos** 

# Decay kinematics measurements

Look at the impact of non-zero vmass on the following decays. Mass Limit (eV, keV, or MeV) 10  $v_{\rm e}$ : beta decay  $v_{\mu}$ : pion decay  $V_{e}$  (eV) 10  $v_{\tau}$ : tau decay VII (keV  $V_{\tau}$  (MeV 10 1970 1950 1960 1980 1990 2000 Year  $m^{2}(v_{e}) = \sum_{i=1}^{3} |U_{ei}^{2}|^{2} m_{i}^{2} \qquad m^{2}(v_{\mu}) = \sum_{i=1}^{3} |U_{\mu i}^{2}|^{2} m_{i}^{2} \qquad m^{2}(v_{\tau}) = \sum_{i=1}^{3} |U_{\tau i}^{2}|^{2} m_{i}^{2}$ 

10

TRISEP 2024 - Neutrinos

## Isotopes

- Basically only two isotopes are of interest for endpoint measurements
- Want as low an end-point as possible, and short enough half-life to get required statistics

|                  | <sup>3</sup> Н           | <sup>163</sup> Ho         |
|------------------|--------------------------|---------------------------|
| Туре             | superallowed β-<br>decay | electron-capture<br>decay |
| T <sub>1/2</sub> | 12.3 years               | 4500 years                |
| E <sub>0</sub>   | 18.6 keV                 | 2.5 keV                   |





## Required precision for neutrino mass measurements

- We want to determine the Q value of <sup>3</sup>H decay. What do we need to measure?
- $\rightarrow$  We need to measure the masses of decay mother and daughter, i.e., <sup>3</sup>H and <sup>3</sup>He
- To what precision do we need to measure the Q-value so that its uncertainty does not dominantly contribute to KATRIN's measurement? Say 30 meV?

 $\rightarrow$  A relative uncertainty of 10 parts per trillion in the mass ratio would allow determining the Q value with a precision of 30 meV.

Measured Q(T) = 18592.071(22) eV

Phys. Rev. Lett. 131, 243002 (2023)

## Precision Tritium Endpoint Measurement with KATRIN

- strong tritium source: 10<sup>11</sup> decays/s  $\checkmark$
- < 0.1 cps background level  $\checkmark$
- $\sim$ 1 eV energy resolution  $\checkmark$
- 0.1% level understanding  $\checkmark$ of the spectrum shape
- 0.1% level hardware stability  $\checkmark$ controlled over the years



Slide Courtesy Thierry Lasserre

## KATRIN

- Extremely large electrostatic filter only transmits electrons within ~30 eV of the endpoint
- Magnetic adiabatic collimation (MAC-E filter) allows high acceptance of  $\beta$ s for 10<sup>11</sup> Bq source
- Overall length: 70 m, spectrometer: 23 m long, 10 m diameter
- UHV below 10<sup>-11</sup> mbar





High acceptance and sub-eV resolution inTRISEP 2024 - Neutrinosprinciple possible

## MAC-E filter

Magnetic Adiabatic Collimation and Electrostatic filter

The MAC-E filter allows measurement of integral spectrum with an adjustable threshold. Only see the endpoint of the decay!

Transverse kinetic energy is converted to longitudinal kinetic energy by magnetic adiabatic collimation.



# KATRIN



The main spectrometer traveled a near-9000-kilometer route to cover a distance of only 400 km.

https://www.symmetrymagazine.org/article/march-2007/deconstruction-katrin?language\_content\_entity=und





## KATRIN

- First results reported in 2019, gave  $m_{\nu_e} < 1.1 \text{ eV}$  (limited by statistics, now 0.8 eV limit from 2022)
- Expect to reach sensitivity ~0.2 eV ( $3\sigma$  discovery potential ~ 0.28 eV) after 3 years of running

#### **Observed spectrum near endpoint:** Joint posterior PDF for *m*, *E*<sub>0</sub>: KATRIN data with 1 $\sigma$ errorbars $\times$ 50 Count rate (cps) — Fit result 18 573.9 18 535 18 575 18 595 18 615 18 555 18 573.8 Residuals ( $\sigma$ ) Stat. Stat. and syst (b) (a) 18 573.7 -2 18 535 18 555 18 575 18 595 18 615 18 573.6 40Time (h) (c) 20 18 573.5 18 595 18 535 18 555 18 575 18615 -4 -2 0 Retarding energy (eV) $m_{\nu}^{2}$ (eV<sup>2</sup>)

### Error budget and projected discovery potential:



https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.123.221802

Slide from Alexey Lokhov, NEUTRINO 2024

## Conclusion and Outlook





**New KATRIN release** improves direct neutrino-mass bound by a factor of 2:

$$m_{\nu} < 0.45 \,\mathrm{eV} \ (90 \,\% \,\mathrm{CL})$$

Ongoing analysis:

- 70 % of total anticipated data recorded, improvements in systematics
- Several BSM physics searches: eV-sterile, exotic interactions, light bosons, relic v... ⇒ stay tuned!

#### Ongoing data taking through $2025 \rightarrow \Sigma$ 1000 days

target sensitivity below 0.3 eV







# Project 8

- New ideas are needed beyond KATRIN, which is probably the largest such spectrometer feasible
- Project 8 aims to perform non-destructive measurement of electron energy from cyclotron radiation:



$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{K + m_e}$$



 This technique may in principle be scaled to a large, atomic <sup>3</sup>H source capable of covering the IH

# Project 8

- First demonstration of measuring cyclotron radiation from single electron in 2015
- Working on scaling up to larger demonstrators:
  - Phase II: first <sup>3</sup>H test (not yet competitive mass constraints)
  - Phase III: large volume system with competitive (~eV mass) sensitivity
  - Phase IV: large experiment with atomic <sup>3</sup>H at IH sensitivity





#### Measured electron energy spectrum (<sup>83m</sup>Kr):



https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.114.162501

#### **Observed single e<sup>-</sup> vs time:**





# Tritium gas sources

Gas sources give the best results, but we're limited to using molecular tritium.

- Electronic excitations in T atoms
- Excitations in T<sub>2</sub> gas
  - Electronic: 20 eV
  - Vibrational: ~0.1 eV
  - Rotational: ~0.01 eV
- Beta spectrum depends on excitation energies  $V_k$  and probabilities  $P_k$
- KATRIN needs 1% uncertainties on final state distribution.

$$\frac{dN}{dE_e} = \frac{G_F^2 m_e^5 \cos^2 \theta_C}{2\pi^3 \hbar^7} |M_{\rm nuc}|^2 F(Z, E_e) p_e E_e \times \sum_{i,k} |U_{ei}|^2 P_k (E_{\rm max} - E_e - V_k)$$

TRISEP 2024 - Neutrinos  $imes \sqrt{(E_{
m max}-E_e-V_k)^2-m_{
u i}^2} imes \Theta(E_{
m max}-E_e-V_k-m_{
u i})$ 



45

# **Project 8**

Major systematic for any sufficiently sensitive <sup>3</sup>H experiment is the need for atomic tritium (to avoid smearing from rotational/vibrational states in molecular tritium)



Final state energy distribution relative to tritium endpoint

sprayed into tritium tritium cooled thermally velocity and in cracked accommodato state selector selected

5: Atoms cooled to millikelvin temperatures by magnetic step, linger in decay volume

field seeking

spin tritium

# Project 8

 Major systematic for any sufficiently sensitive <sup>3</sup>H experiment is the need for atomic tritium (to avoid smearing from rotational/vibratio



Final state energy distribution relative to tritium endpoint



# Tremendous progress in T-decay





Best-fit m<sup>2</sup> (eV<sup>2</sup>)

-200

0

### Where do we stand on Neutrino Masses from Tritium Decay?

#### nature physics Direct neutrino-mass measurement with subelectronvolt sensitivity

The KATRIN Collaboration

m<sub>ve</sub>< 0.8 eV (90% C.L.)

Nature Physics 18, 160-166 (2022) Cite this article



Goals:

- Sensitivity to 40 meV/c<sup>2</sup> neutrino mass
- Measure neutrino mass or exclude inverted hierarchy
- Simultaneous sensitivity to active and sterile neutrinos

Slide Courtesy Elise Novitzki

## Precision Holmium EC Decay: ECHo and HOLMES



#### Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

## Calorimetric measurementSource = DetectorA. De Rujula and M. Lusignoli, Phys. Lett. **118B** (1982)



- $Q_{\rm EC}$  = (2.833 ± 0.030<sup>stat</sup> ± 0.015<sup>syst</sup>) keV
  - S. Eliseev et al., Phys. Rev. Lett. **115** (2015) 062501

Ab-initio calculations foresee a smooth shape at the endpoint region

Slide Courtesy: Loredana Gastaldo

M. Braß and M. W. Haverkort, New J. Phys. 22 (2020) 093018



## Precision Holmium EC Decay - $m_{ve}$



60 MMC pixels with about 1 Bq <sup>163</sup>Ho: Achievable sensitivity  $m(v_e) < 20 \text{ eV} (95\% \text{ C.L.})$ 

4-day measurement with 4 pixels loaded with  $\sim$ 0.2 Bq <sup>163</sup>Ho

Energy resolution Background level  $\Delta E_{\text{FWHM}} = 9.2 \text{ eV}$ b < 1.6 × 10<sup>-4</sup> events/eV/pixel/day

•  $Q_{\rm EC} = (2838 \pm 14) \, {\rm eV}$ 

ECHO-1K

•  $m(v_{\rm e}) < 150 \text{ eV} (95\% \text{ C.L.})$ 



Slide Courtesy Loredana Gastaldo and Angelo Nucciott

### The Future of Neutrino Masses from Ho Decay?



Snowmass LOI: Measuring the electron neutrino mass using the electron capture decay of <sup>163</sup>Ho

HEMT

# Cosmology

• In parallel to the direct measurements, next-generation CMB experiments aim to measure the sum of the neutrino masses:

 $m_{\nu} = \sum m_i$ 

#### **Projected sensitivity for CMB S4:**



https://pdg.lbl.gov/2019/reviews/rpp2019-rev-neutrinos-in-cosmology.pdf

# What we know about neutrinos



## Search for Heavy (Mostly Sterile) Neutrino Mass States

### Mostly Sterile keV Neutrino Mass States

- Beta decay is particularly sensitive to keV-MeV mass states
- Mass states in this region have τ≈τ<sub>universe</sub> and could thus serve as some fraction of the observed DM in our universe
  - Excellent candidates for warm dark matter Dodelson and Widrow, PRL 72, 17 (1994)



Image Courtesy: Symmetry Magazine



## Heavy Neutrino Mass Studies via Coupling to $\nu_e$

- In EC/ $\beta^+$  and  $\beta^-$  decay, we study the relative coupling of the mass states to  $\overline{v}_e(v_e)$
- Momentum is conserved with the mass states, not flavor states



**Recoil Kinetic Energy** 

## Sterile vs

- Potential explanation for the short baseline data is a small mixing with a light (~eV scale) sterile  $\nu$ ٠
  - Or maybe 2 more sterile  $\nu$ s are needed to fit the data? (or *n* more?) •





## Tritium Endpoint Measurements – KATRIN/TRISTAN

#### Idea:

- Make use of the strong KATRIN tritium source and beamline
- Perform a differential measurement of the full tritium spectrum
- Requires new detector system  $\rightarrow$  TRISTAN detector



POLITECNICO

10000

erc

## Tritium Endpoint Measurements – KATRIN/TRISTAN

#### Multi-pixel (>1000) silicon drift detector focal plane array (TRISTAN)

- ✓ Capability of handling high rates (>  $10^5$  cps/pixel)
- ✓ Good energy resolution (300 eV @ 20 keV)
- ✓ Large focal plane area coverage





# First keV-Mass Neutrino Search with KATRIN Data

#### Search for keV-scale Sterile Neutrinos with first KATRIN Data

M. Aker,<sup>1</sup> D. Batzler,<sup>1</sup> A. Beglarian,<sup>2</sup> J. Behrens,<sup>1</sup> A. Berlev,<sup>3</sup> U. Besserer,<sup>1</sup> B. Bieringer,<sup>4</sup> F. Block,<sup>5</sup> S. Bobien,<sup>6</sup> B. Bornschein,<sup>1</sup> L. Bornschein,<sup>1</sup> M. Böttcher,<sup>4</sup> T. Brunst,<sup>7,8</sup> T. S. Caldwell,<sup>9,10</sup> R. M. D. Carney,<sup>11</sup> S. Chilingaryan,<sup>2</sup> W. Choi,<sup>5</sup> K. Debowski,<sup>12</sup> M. Descher,<sup>5</sup> D. Díaz Barrero,<sup>13</sup> P. J. Doe,<sup>14</sup> O. Dragoun,<sup>15</sup> G. Drexlin,<sup>5</sup> F. Edzards,<sup>7,8</sup> K. Eitel,<sup>1</sup> E. Ellinger,<sup>12</sup> R. Engel,<sup>1</sup> S. Enomoto,<sup>14</sup> A. Felden,<sup>1</sup> J. A. Formaggio,<sup>16</sup>
F. M. Fränkle,<sup>1</sup> G. B. Franklin,<sup>17</sup> F. Friedel,<sup>1</sup> A. Fulst,<sup>4</sup> K. Gauda,<sup>4</sup> A. S. Gavin,<sup>9,10</sup> W. Gil,<sup>1</sup> F. Glück,<sup>1</sup> R. Grössle,<sup>1</sup> R. Gumbsheimer,<sup>1</sup> V. Hannen,<sup>4</sup> N. Haußmann,<sup>12</sup> K. Helbing,<sup>12</sup> S. Hickford,<sup>1</sup> R. Hiller,<sup>1</sup> D. Hillesheimer,<sup>1</sup> D. Hinz,<sup>1</sup> T. Höhn,<sup>1</sup> T. Houdy,<sup>7,8</sup> A. Huber,<sup>1</sup> A. Jansen,<sup>1</sup> C. Karl,<sup>7,8</sup> J. Kellerer,<sup>5</sup> M. Kleifges,<sup>2</sup> M. Klein,<sup>1</sup>
C. Köhler,<sup>7,8</sup> L. Köllenberger,<sup>1</sup> A. Kopmann,<sup>2</sup> M. Korzeczek,<sup>5</sup> A. Kovalík,<sup>15</sup> B. Krasch,<sup>1</sup> H. Krause,<sup>1</sup> L. La Cascio,<sup>5</sup> T. Lasserre,<sup>18</sup> T. L. Le,<sup>1</sup> O. Lebeda,<sup>15</sup> B. Lehnert,<sup>11</sup> A. Lokhov,<sup>4</sup> M. Machatschek,<sup>1</sup> E. Malcherek,<sup>1</sup> M. Mark,<sup>1</sup> A. Marsteller,<sup>1</sup> E. L. Martin,<sup>9,10</sup> C. Melzer,<sup>1</sup> S. Mertens,<sup>7,8,\*</sup> J. Mostafa,<sup>2</sup> K. Müller,<sup>1</sup> H. Neumann,<sup>6</sup> S. Niemes,<sup>1</sup> P. Oelpmann,<sup>4</sup> D. S. Parno,<sup>17</sup> A. W. P. Poon,<sup>11</sup> J. M. L. Poyato,<sup>13</sup> F. Priester,<sup>1</sup> J. Ráliš,<sup>15</sup> S. Ramachandran,<sup>12</sup> R. G. H. Robertson,<sup>14</sup> W. Rodejohann,<sup>19</sup> C. Rodenbeck,<sup>4</sup> M. Röllig,<sup>1</sup> C. Röttele,<sup>1</sup> M. Ryšavý,<sup>15</sup> R. Sack,<sup>1,4</sup>
A. Saenz,<sup>20</sup> R. Salomon,<sup>4</sup> P. Schäfer,<sup>1</sup> L. Schimpf,<sup>4,5</sup> M. Schlösser,<sup>1</sup> K. Schlösser,<sup>1</sup> L. Schlüter,<sup>7,8</sup> S. Schneidewind,<sup>4</sup> M. Steidl,<sup>1</sup> M. Sturm,<sup>1</sup> H. H. Telle,<sup>13</sup> L. A. Thorne,<sup>22</sup> T. Thümmler,<sup>1</sup> N. Titov,<sup>3</sup> I. Tkachev,<sup>3</sup> K. Urban,<sup>7,8</sup> K. Valerius,<sup>1</sup> D. Vénos,<sup>15</sup> A. P. Vizcaya Hernández,<sup>17</sup> C. Weinheimer,<sup>4</sup> S. Welte,<sup>1</sup> J. Wendel,<sup>1</sup> M. Wetter,<sup>5</sup>
C. Wiesinger,<sup>7,8</sup> J. F. Wilkerson,<sup>9,10</sup> J. Wolf,<sup>5</sup> S. Wüstling,<sup>2</sup> J. Wydra,<sup>1</sup> W. Xu,<sup>16</sup> S. Zadoroghny,<sup>3</sup> and G. Zeller<sup>1</sup> (KATRIN Colla





## Rare Isotopes in Superconducting Sensors for keV Searches



# <sup>7</sup>Be EC Decay - The BeEST Experiment

Rare-isotope implantation at TRIUMF-ISAC





A. Samanta *et al.*, Phys. Rev. Mat. (*in press*) (2022)
S. Friedrich *et al.*, J. Low Temp. Phys. (*in press*) (2022)
C. Bray *et al.*, J. Low Temp. Phys. (*in press*) (2022)
K.G. Leach and S. Friedrich, J. Low Temp. Phys. (*in press*) (2022)
S. Friedrich *et al.*, Phys. Rev. Lett. **126**, 021803 (2021)
S. Friedrich *et al.*, Phys. Rev. Lett. **125**, 032701 (2020)
S. Friedrich *et al.*, J. Low Temp. Phys. **200**, 200 (2020)

# 



#### Ta, Al, and Nb-based STJ Sensors







### First Limits from "Low-Rate" Phase-II Data

PHYSICAL REVIEW LETTERS 126, 021803 (2021)

Limits on the Existence of sub-MeV Sterile Neutrinos from the Decay of <sup>7</sup>Be in Superconducting Quantum Sensors

S. Friedrich,<sup>1,\*</sup> G. B. Kim,<sup>1</sup> C. Bray,<sup>2</sup> R. Cantor,<sup>3</sup> J. Dilling,<sup>4</sup> S. Fretwell,<sup>9</sup><sup>2</sup> J. A. Hall,<sup>3</sup> A. Lennarz,<sup>4,5</sup> V. Lordi,<sup>1</sup> P. Machule,<sup>4</sup> D. McKeen,<sup>4</sup> X. Mougeot,<sup>6</sup> F. Ponce,<sup>7,1</sup> C. Ruiz,<sup>4</sup> A. Samanta,<sup>1</sup> W. K. Warburton,<sup>8</sup> and K. G. Leach,<sup>2,†</sup>

Phase-II data from a single 138x138  $\mu m^2$  STJ counting at low rate (~10 Bq) for 28 days



Recoil spectrum generated by pseudodegenerate mass states from ~28 days of counting

Example of signal that would be generated by 300 keV neutrino with 1% mixing



### Future Projections for keV-MeV Mass Searches

- Nuclear decay provides a powerful, model-independent probe in the keV – MeV mass range
- Significant progress in measurements over the past 3 years – enabled by quantum sensing
- Experiments poised to increase sensitivity by 5+ orders of magnitude in the next decade

