Introduction to Machine Learning:

Lecture 2 — Intro to Neural Networks

Michael Kagan

TRISEP Summer School
July 8-12, 2024

The Plan

* Lecture 1 — Machine Learning Fundamentals
* Lecture 2 — Intro to Neural Networks

* Lecture 3 — Intro to Deep Learning

* Lecture 4 — Intro to Unsupervised Learning

* Lecture 5 — Intro to Deep Generative Models

Reminder: Logistic Regression

Logistic Regression

Linear decision boundary:

T

h(x;w) =w'x

Class probability:
1

1+e=%W

p(y =1|x) =

25

20

151

101

eci
* e —) :
% (F)mt g de 1 poundary = Fitted decision boundary
ome : -r-
° @@ Outcome 0 o 00@ Predicted probability

-1 0 1 2 3 4 5 6 -1 0 1 2 3 4 5

Adding non-linearity: Basis Functions

N =100 1

0 1

* What if non-linear relationship between y and x?

Adding non-linearity: Basis Functions

N =100 1

> 154
0 e — e
X — __—%% 08
A 4 9] A 0 1 0§ s ~—5 02 04 » 8 L
0 | — %9 X =zx%

* What if non-linear relationship between y and x?
* Choose basis functions ¢ (x) to form new features
— Example: Polynomial basis d(x) ~{1,x,x?% x3 ..}

— Logistic regression on new features: h(x;w) = o(wl¢(x))

1
1+ e_WTCb(X)

ply = 1]x) =

Adding non-linearity: Basis Functions :

N =100 1

0 1

* What if non-linear relationship between y and x¢

* Choose basis functions ¢ (x) to form new features
— Example: Polynomial basis d(x) ~{1,x,x?% x3 ..}
— Logistic regression on new features: h(x;w) = o(wl¢(x))

* What basis functions to choose? Overfit with too much flexibility?

What is Overfitting ,

Degree 1 Degree 4 Degree 15

— Model — Model — Model

. True function : True function True function

> e*e Samples *e Samples *e Samples
o

Underfitting Overfitting

http://scikit-learn.org/

* Models allow us to generalize from data

» Different models generalize in different ways

http://scikit-learn.org/

Bias Variance Tradeoff 9

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)

Bias Variance Tradeoff .

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)

Degree 1

— Model

 Simple models under-fit: B Yue function
will deviate from data (high bias) Tn =
but will not be influenced by
peculiarities of data (low variance).

Bias Variance Tradeoff .

* generalization error = systematic error + sensitivity of prediction

(bias) (variance)
« Simple models under-fit: | = e functon
will deviate from data (high bias) T =

but will not be influenced by
peculiarities of data (low variance).

Degree 15

» Complex models over-fit: e functio
will not deviate systematically from Al
data (low bias) but will be very -
sensitive to data (high variance).

Bias Variance Tradeoff

12

* generalization error = systematic error + sensitivity of prediction

(bias)

 Simple models under-fit:
will deviate from data (high bias)
but will not be influenced by
peculiarities of data (low variance).

« Complex models over-fit:
will not deviate systematically from
data (low bias) but will be very
sensitive to data (high variance).

— As dataset size grows, can reduce
variance! Use more complex model

(variance)

Degree 1

— Model
. True function
’\‘ ee e Samples

o

Degree 15

— Model
True function
*e Samples

Bias Variance Tradeoff

Total Error

Variance

Optimum Model Complexity

Error

- -
Model Complexity

14

Regularization — Control Complexity

L(w) = 3y — Xw)’ + af(w)

L2: Q(w)=|lwl]| L1: Q(w)=||w||
Ridge coefficients as a function of the regularization Lasso and Elastic-Net Paths
25}
200 1 20 |
15+
100 + /
8 10f
£ / 5
2 s &
[—
S . g 5
—— oL
-5
-100 |+
—10H — Les -~
Elas
1072 1073 10+ 10° 106 107 108 107 1010 -1.5 -1.0 -0.5 0.0 0.5
o alpha o -Log(alpha)
Less regularization > Less regularization >

» L2 keeps weights small, L1 keeps weights sparse!

* But how to choose hyperparameter o.?

http://scikit-learn.org/

http://scikit-learn.org/

How to Measure Generalization Error? .

Training set Validation set Test set

 Split dataset into multiple parts

* Training set
— Used to fit model parameters

y, output

 Validation set

— Used to check performance on .
independent data and tune hyper X, input
parameters

10 I I

—e— validation
—— {rain

e Test set

— final evaluation of performance
after all hyper-parameters fixed

— Needed since we tune, or “peek”,
performance with validation set

Mean square error

O N
0 5 10 15
p, polynomial order

How to Measure Generalization Error?

16

Prediction Error

High Bias Low Bias
Low Variance High Variance
- ——————— e e e —— .

Validation Sample

/

/

Training Sample

Low High
Model Complexity

From Logistic Regression to Neural Networks

17

Adding non-linearity

18

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1

py = 1|x) =

1+ e~ Wl o(x)

Adding non-linearity

19

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1
1+ e_WT¢(X)

py = 1|x) =

« What if we don’t know what basis functions we want?

Adding non-linearity

20

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1
1+ e_WT¢(X)

py = 1|x) =

* What if we don’t know what basis functions we want?
* Learn the basis functions directly from data

d(x; u) Rm™ — R

— Where u is a set of parameters for the transformation

Adding non-linearity 1

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1
1+ e_WT¢(X)

p(y = 1x) =

« What if we don’t know what basis functions we want?

* Learn the basis functions directly from data

d(x; u) Rm™ — R

— Where u is a set of parameters for the transformation

— Combines basis selection & learning—Representation Learning
— Several different approaches, focus here on neural networks
— Learning / optimization becomes more difficult

Neural Networks

22

* Define the basis functions j = {1...d}

¢;(x; u) =o(u;x)

Neural Networks

* Define the basis functions j = {1...d}
¢;(x; u) =o(u;x)
» Putall u; e R™™ vectors into matrix U

o(ul x)
o(ulx)

o (ul).

— o is a point-wise non-linearity acting on each vector element

d(x; U) = a(Ux) = cR?

Neural Networks

24

* Define the basis functions j = {1...d}
¢;(x; u) =o(u;x)
» Putall u; e R™™ vectors into matrix U

o(ul x)
d(x; U) = a(Ux) = a(uzgx) cR?
o(uhx).

— o is a point-wise non-linearity acting on each vector element

* Full model becomes
h(x; w,U) =wlop(x; U)

Feed Forward Neural Network

— Hidden layer

Composed of neurons

¢(...) often called the
activation function

Multi-layer Neural Network

» Multilayer NN

— Each layer adapts basis functions based on previous layer

Neural Network Optimization Problem

27

* Neural Network Model: h(x) = w!o(Ux)

» Classification: Cross-entropy loss function

pi = p(yi = 1x;) = o(h(x;))

L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

Neural Network Optimization Problem

28

* Neural Network Model: h(x) = w!o(Ux)

» Classification: Cross-entropy loss function
pi = p(yi = 1|x) = o(h(x;))

L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

* Regression: Square error loss function

L(w,U) = 5 3 (i — h(x,))?

1

Neural Network Optimization Problem

29

* Neural Network Model: h(x) = w!o(Ux)

» Classification: Cross-entropy loss function

pi = p(y; = 1|x;) = o(h(x;))
L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

* Regression: Square error loss function

1

L(w,U) = > 3" (5 — h(x))’

1

* Minimize loss with respect to weights w, U

Minimizing loss with gradient descent:

30

 Parameter update:

dL(w,U)
AL D)
e —
T3u

* How to compute gradients?

Chain Rule — Symbolic Differentiation

31

— Zyi In(o(h(x;))) + (1 —y;) In(1 — o(h(x;)))

* Derivative of sigmoid: 6((;5:) = o(z)(1 - o(x))

* Chain rule to compute gradient w.r.t. w

ngv - gi gv}:r Zy@ (1 =0 (h(x4)))o(Ux) + (1 = y;)o (h(x))o(Ux;)

* Chain rule to compute gradient w.r.t. u,
oL OLOh do
811]' N Oh Oo (911j N

= w1 — o (hx))wjo(myae) (1 — o (wja))x;

T (1 = oo (hix) wjo(wyx) (1 - o(wyx:))x

Chain Rule — Symbolic Differentiation

32

— Zyi In(o(h(x;))) + (1 —y;) In(1 — o(h(x;)))

* Derivative of sigmoid: 6((;5:) — o(2)(1 — o(z))

* Chain rule to compute gradient w.r.t. w

e = o = Sl = b)) a(Ux) + 1= o)V

* Chain rule to compute gradient w.r.t. u
OL OLOh 0o
(9113' N Oh Oo (911j N

= Zyz(l —o(h(x;)))w;jo(u;x;)(1 — o(u;x;))x;

+ (1 = yi)o(h(x))wjo (uxi) (1 — o(u;x;))x;

Differentiation in Code

33

Baydin, Pearlmutter, Radul, Siskind.

2018. “Automatic Differentiation in
Machine Learning: a Survey.”
Journal of Machine Learning
Research (JMLR)

11 =T
1n+1 = 411:(1 = lu)

f(z) = Iy = 64z2(1 —z)(1 —2z)%(1 — 8z + 822)

Coding

Manual
Differentiation

f(x):
v=x
fori=1to3
v =4*xvx(1 - v)
return v

or, in closed-form,
£(x)

return 64*x* (1-x)* ((1-2%x)~2)
*(1-8*x+8*x*x) "2

Symbolic
Differentiation
of the Closed-form

Automatic
Differentiation

Numerical
Differentiation

£2(x):
(v,dv) = (x,1)
fori=1to3
(v,dv) = (d*v*(1-v), 4*dv-8*v*dv)
return (v,dv)

(Xo) — .["l:.l'l.:l
Exact

f(z) = 128z(1 — z)(—8 + 16z)(1 — 2z)*(1 —

8z +822)+64(1 —z)(1 —2x)*(1 — 8z +82%)% —
64z(1 — 22)%(1 — 8z + 822)% — 256z(1 — z)(1 —

2z)(1 — 8z + 82?%)2

£2(x):

return 128*x* (1 - x)*(-8 + 16*x)
((1 - 2%x) "2)(1 - 8*x + 8*x*x)
+64*(1 - x)*((1 - 2%x)"2)*((1
- 8%x + 8%x#*x)"2) - (64*x*(1 -
2%x) "2)*(1 - 8*x + 8*x*x) "2 -
256%x* (1 — x)*(1 - 2*x)*(1 - 8*x
+ 8*x#*x) "2

£2 (x9) = f'(z0)
Exact

£2(x):
h=0.000001
return (f(x+h) -£f(x)) /h

s iy (X.}) ~ f"l:.l'.._:l
Approximate

Automatic Differentiation .

Exact derivatives for gradient-based optimization come from
running differentiable code via automatic differentiation

Backward propagation
_of derivative values

1F TensorFlow

O PyTorch ﬂ

Backpropagation — Reverse Mode AD

35

Loss function composed of layers of nonlinearity

L(p"V(..9p* (%)))
Forward step (f-prop)

— Compute and save intermediate computations

¢N(---¢1(x))

Backward step (b-prop) 8 ¢a

Compute parameter gradients

-2

a¢§a+1)

oL

095

OL
wo :zj:

a¢§a—|—1)

¢4 L

oW 09

Training .

* Repeat gradient update of weights to reduce loss
— Each iteration through dataset is called an epoch

 Use validation set to examine for overtraining, and
determine when to stop training

O Training O Validation
0.5
04 underfitting overfitting
0.3
0.2

0.1

: O

number of epochs

[graphic from H. Larochelle]

Vanishing Gradients

37

* Major challenge in DL: Vanishing Gradients

» Small gradients slow down / block, stochastic
gradient descent = Limits ability to learn!

100 | | I | |
Sigmoid Gradient — Layer 1
Layer 2
— Layer 3
50 —Layer 4|
o S i _ Layer 5
0 | . » —d‘m‘\ . i
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Backpropagated gradients

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Slide credit: G. Louppe Gradients for layers far from the output vanish to zero.

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

Activation Functions

38

1.0

ReLU(z)
1/(1+e")
tanh(z) |[]

* Vanishing gradient problem

— Derivative of sigmoid
Nearly O when x is far from 0!

— Can make gradient descent hard!

5] ; }
* Rectified Linear Unit (ReLU)
— ReLU(x) = max{o, x}
— Derivative 1s constant!

9Re LU(x) _{ | when x>0

0x 0 otherwise

— ReLU gradient doesn’t vanish

Neural Network Decision Boundaries .

One neuron

20

20

Two neuron

15

10

05

00

-05

15

10

05

00

-05

-2 -1 2

Three neurons

-1 [1 2

Four neurons

-2 1 0 1 2

Five neurons

1 0 1 2

Twenty neurons

15

10

05

00

-05

-2 0 1 2

Fifty neurons

0 1 2

-2 -1
Image source

sy
. .
B
w, oo
AR a2
. o% .
oo do02 e
. A
LaE 3 oo
e
e 1
o, 00
B LA
o .'{"‘-‘. oof
* o
o L 4
=5

"

4-class classification
2-hidden layer NN
RelLU activations

L2 norm regularization

° ."...) < °
e :“ ® o 0g0® 00
o'.. L)
AT LI
O ® o® o ° ®
R S 3% R@"{’O. Soq b
) G, ® ” t§ ...“0 P
A o .:.’ : .0..0 o ° ‘.o.
o0 °? *% - .1W‘= ..‘0 o
o o%% ®.2 S ol o @ s
PE e T
° % ® e ® o °
oo't’t‘ oo 'w"* 252
oo by ¥ ° “{ﬁ‘ ° o.to:
o3 D e 0.‘{: ¥® "..0' se " ®
* A :'.‘...0:.0£.. 3‘0.:.
®e8 o, 8 o o000 ©
w8 o,
[4 (7Y L
° oY o

2-class classification
1-hidden layer NN

L2 norm regularization

Image source

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

Universal approximation theorem ;

~eed-forward neural network with a single
nidden layer containing a finite number of non-

inear neurons (ReLU, Sigmoid, and others) can

approximate continuous functions arbitrarily
well on a compact space of R"

f(x) = o(wix + b1) + o(wox + b)) + o(wsx + b3) + ...

/\/

AV N

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Universal approximation theorem ,

* Feed-forward neural network with a single
nidden layer containing a finite number of non-
inear neurons (ReLU, Sigmoid, and others) can
approximate continuous functions arbitrarily
well on a compact space of R"

* Better approximation requires larger hidden layer,
this theorem says nothing about relation between the two.

« (Can make training error as low as we want by using a
larger hidden layer. Result states nothing about test error

* Doesn’t say how to find parameters for this approximation

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Deep Neural Networks

42

) hidden layer 1 hidden layer 2 hidden layer 3
input layver

)
— n p
— = J—F g
N— "\'<(f/7; —
N P 7 o< 7 output layer
— ‘\
s
)V
—________ ~ =] __-—-:-:‘—-__ _— / '_,_-—""_‘“—\ "
‘ —

* As data complexity grows, need exponentially large number of
neurons in a single-layer network to capture all structure in data

* Deep networks factorize the learning of structure across layers

« Difficult to train, recently possible with large datasets, fast
computing (GPU/TPU) & new training algs. / network structures

More Complex Models — Bigger Search Space
‘More Data — Find Better Solutions s

Model Complexity

>
*
i Target solution é Target solution
* *
Target solution Target solution
Dataset f
Size

Hierarchical Learning of Features

44

Objects

s

2212.06727

https://arxiv.org/abs/2212.06727

45

Benefits of Depth

:) 2001.08361
@ Amazon-owned @ Chinese Google @ Meta /Facebook @ Microsoft @ OpenAl @ Other -
7
o o ® .) e o e
BOTS — BlenderBot1 PLATO-XL ChathBard* BlngChat . 6
A Blendersots Emie Bot 3.5
billion parameters Py 5
\ n
() GPT-4* 2
Wu Dao 2.0 |)/ -4
N = —— 1 Layer
GLaM 3 2L
& —— ayers
PanGu- Sigma 3] —— 3 Layers \
PN / P Y Y
00— & Bl i .
—_—
Pa . ' PaLMZ > 6 Layers
Gopher 2 T T T T T T T
@ Exaone .SgnseChat 103 104 10° 106 107 108 10°
I . Emie 30 Titan Parameters (non-embedding)
175 Billion e . e i .
' PanGu-Alpha BLOOM Ernie Bot
o ® moo @B
GPT-3)) WebGPT EfficientNet-B7
@) @) 6Lm-1308 () 84
et . ———
LaMDA FLAN ATII'OEQENBLA' (i AmoebaNet-C
o @ YalM1008 LLaMa2 " ~7 NASNetA .- ‘SENet
o b4 o
@ chinchila @ ﬁgxg.b?ew A & (i
xlarge Crauuc @ Py N
Falcon LLM © *" ResNeXt-101
GPT-NeoX AlexaTM 280 et
. ° ° o 7 ..»"" Inception-ResNet-v2
®emGPT °o o e +Doly20 5 Zieer
7 GPT-2 . Codex 0 ® e MT5 o ° = 97 Xception
A ° GPT-J °5 ° Alpaca Sail-78 & HE
BERT T5 Megatron-11B WelM GPTNeo Atlas E 8] .' eResNet-152 Topl Acc. #Params
s ResNet-152 (He etal,, 2016) | 77.8% 60M
é} |' ;DenseNet-201 EfficientNet-B1 788% 71.8M
S : ResNeXt-101 (Xic et al., 2017)| 80.9% SaM
pre-2020 2020 21 22 2023 £ 76 E:O S e EfficientNet-B3 811% 12M
= i ResNet-50 SENet (Hu et al., 2018) 82.7% T46M
David McCandless, Tom Evans, Paul Barton source: news reports, LifeArchitect.ai (18 g‘j’&iﬂ‘;“‘t‘ﬁeﬁzgsh etal., 2018) g;»gzﬂ ;3;’1\1‘:
Information is Beautiful // UPDATED 27th Jul 23 * = parameters undisclosed // see the data i 1 nception-v2 GPipe (Huang ctal., 2018) T 84'_307: 556M
wae wirn VIZsweet ™1 Nasneta EfficientNet-B7 844% 66M
° Not plotted
_ResNet-34 y ,
0 20 40 60 80 100 120 140 160 180

Image credit: D. McCandless, T. Evans, P. Barton

Number of Parameters (Millions)

1905.11946

https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1905.11946

Neural Network Zoo

A mostly complete chart of

° Stru Ctu re Of the networks, and © Backfed Input Cell Neural NEtWOI‘kS Deep Feed Forward (FF)

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

th e n O d e C O n n eCt i V i ty C a. n b e 4 Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
@ Hidden Cell
adapted for problem at hand I e

e Spiking Hidden Cell

' Output Cell
. Match Input Output Cell #h}"ﬁh"j #“}"ﬁh}" #&#h}':

* Moving inductive bias from o PR i G
featu re e n g i n ee r i n g tO m Od e | . Memory Cell Auto Encoder (AE) \/ariatloal(\/AE) Denm’singADAE) Sparse AE (SAE)
<

. Different Memory Cell

design

QO Convolution or Pool

YA

e
X7 X/ X/
WAV

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
o o A=) A

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM)

— Inductive bias:

(@]
Knowledge about the problem :
. . Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
— Feature engineering: 3 o o S
Hand crafted variables 5 oS 3 E%@o}"i
X el X ol pog
X S X o0 el

.
— MO del des Ign ® Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
L]

The data representation and the 382855
structure of the machine SN

.
l ea r n l n 8 I I l O d e I / n etWO r k Deep Residual Network (DRN) Kohonen Network (KN) Support Vector Machine (SVM) Neural Turing Machine (NTM)

s A e e

Image credit: neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo/

Neural Network Zoo — “Optimization” Perspective

47

* Asingle layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo — “Optimization” Perspective ,

* Asingle layer network may need a width exponential in D
to approximate a depth-D network’s output
— Simplified version of Telgarsky (2015, 2016)

» Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

under-fitting . over-fitting under-parameterized /\ over-parameterized

. Test risk Test risk
i ﬁ ":fj “classical” “modern”
Belkin et. al. 2018 & D",_a: regime interpolating regime

N Z .

> o Training risk ~ Training risk:

sweet spot\: - _ S~ . _interpolation threshold
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical U-shaped risk curve
arising from the bias-variance trade-off. (b) The double descent risk curve, which incorporates the U-shaped
risk curve (i.e., the “classical” regime) together with the observed behavior from using high complexity
function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The
predictors to the right of the interpolation threshold have zero training risk.

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf

49

Neural Network Zoo — “Optimization” Perspective

* Asingle layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

» Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

— But we must control that:
 Gradients don’t vanish
 Gradient amplitude is homogeneous across network
 Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo — “Optimization” Perspective

50

* Asingle layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

» Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

* Major part of deep learning is choosing the right function
— Need to make gradient descent work, even if substantial

engineering required

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Deep Neural Networks Loss Landscape

MA

MODE CONNECTIVITY

OPTIMA OF COMPLEX LOSS FUNCTIONS CONNECTED BY SIMPLE CURVES OVER
WHICH TRAINING AND TEST ACCURACY ARE NEARLY CONSTANT

https://arxiv.org/abs/1802.10026

https://arxiv.org/abs/1802.10026

Choosing the right function...

52

* We know a lot about our data
— What transformations shouldn’t affect predictions
— Symmetries, structures, geometry, ...

* Inductive Bias: we can match models to this knowledge

— Throw out irrelevant functions we know aren’t the solution
— Bias the learning process towards good solutions

Unstructured Models

A/.\ Models with

Inductive Bias

Choosing the right function...

53

Summary

54

 Neural Networks allow us to combine non-
linear basis selection with feature learning

* But must keep in mind the bias-variance
tradeoff and how models will generalize

* Deep neural networks allow learning complex
function by hierarchically structuring the
feature learning, and we can use inductive bias
(knowledge) to define models that are well
adapted to our problem

55

Backup

56

Bias Variance Tradeoff

Bias Variance Tradeoff -

* Model h(x), defined over dataset, modeling random variable
outputy Elyl =19
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

(5= h(x)* + El(h(z) - h(z))’]

(bias)® + wvariance

El(y — h(=))"] = E[(y —)]

= noise

Bias Variance Tradeoff 3

* Model h(x), defined over dataset, modeling random variable
outputy Elyl =19
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Nagl

~h(z))? + E[(h(z)— h(z))?]

Elly = h())*] = Elly -9+ (
+ (bias) + wvariance

= noise

|

Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise

/N

Bias Variance Tradeoff .

* Model h(x), defined over dataset, modeling random variable
outputy Ely] = ¢
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@)*] =Elly—9)°| + |@—h@)*| + E[(h(z)-h(=))"]
)2

-+ variance

= noise + | (bias

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.

Bias Variance Tradeoff .

* Model h(x), defined over dataset, modeling random variable
outputy Elyl =19
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@)*] =Elly—9)°| + |@—h@)*| + El(h(z) - h(=))"]
)2

-+ |variance

= noise + | (bias

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.

* More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.

Bias Variance Tradeoff B

* Model h(x), defined over dataset, modeling random variable
outputy Elyl =19
E[h(x)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@)*] =Elly—9)°| + |@—h@)*| + El(h(z) - h(=))"]
)2

-+ |variance

= noise + | (bias

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.

* More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.

— As dataset size grows, can reduce variance! Can use more complex model

62

Automatic Differentiation

Automatic Differentiation .

Exact derivatives for gradient-based optimization come from
running differentiable code via automatic differentiation

f(x):R" =R f(x) {.};
automatic
differentiation

Vf(x) = (ﬁ ﬁ) df(x) {.};

dr1’ Oxp

Automatic Differentiation Example

64

* All numerical algorithms, when executed, evaluate to
compositions of a finite set of elementary operations
with known derivatives

— Represent as a computational graph showing dependencies

f(a,b) = log(ab)

wran = (33

Automatic Differentiation Example

65

* All numerical algorithms, w

nen executed, evaluate to

compositions of a finite set of elementary operations

with known derivatives

— Represent as a computational graph showing dependencies

f(a, b):
c=a*hb
d = log(c)
return d

£(2, 3) = 1.791

1.791
- d

2
2 6
C
*
b
3
™

Primals

Automatic Differentiation Example y

* All numerical algorithms, when executed, evaluate to
compositions of a finite set of elementary operations
with known derivatives

— Represent as a computational graph showing dependencies

2 % o3
da
f(a, b): 5
c=a*hb c 1.791
d = log(c) * =@ - d
return d
b od 1
dc — =2 =0.166
%:azz dc ¢
3
f(2, 3) = 1.791
. od dd oc
df(2,3) = [0.5, ©.333] Chain Rule: —~ = —=—= = 0.166 + 3 = 0.5

Forward and Reverse Mode .

* Derivatives can be computed in Forward Mode and

Reverse Mode

Forward Mode Single Evaluation: f(x): RN - R

/dfy dfary
are _ [T
dx df; dfu
de o de

Reverse Mode Single Evaluation: f(x): R¥Y - RM

/dfi dfm
af _ [
dx df; dfu

\dxy dxyn

Reverse Mode

Primals >

I
d < Derivatives |
- (N
b
Forward Mode
Primals
Derivatives
. ad dd o0
Chain Rule: -©- = 22°%¢

da Oc da

