
Introduction to Machine Learning:

Lecture 2 – Intro to Neural Networks

Michael Kagan

TRISEP Summer School
July 8-12, 2024



The Plan

• Lecture 1 – Machine Learning Fundamentals

• Lecture 2 – Intro to Neural Networks

• Lecture 3 – Intro to Deep Learning

• Lecture 4 – Intro to Unsupervised Learning

• Lecture 5 – Intro to Deep Generative Models

2



Reminder: Logistic Regression 3



Logistic Regression 4

p(y=1 | x)
0 1

Class	probability:
      𝑝 𝑦 = 1 𝒙 = !

!"#!𝒘#𝒙

Linear decision boundary:

           ℎ 𝑥;𝑤 = 𝒘$𝒙



Adding non-linearity: Basis Functions

• What if non-linear relationship between y and x?

5



Adding non-linearity: Basis Functions

• What if non-linear relationship between y and x?

• Choose basis functions 𝝓(𝒙) to form new features

– Example: Polynomial basis    𝜙(𝑥)	~	{1, 𝑥, 𝑥2, 𝑥3, … }

– Logistic regression on new features:  ℎ(𝑥;𝑤) = 𝜎 𝑤$𝜙 𝑥

6

p(y = 1|x) = 1

1 + e�wT�(x)



Adding non-linearity: Basis Functions

• What if non-linear relationship between y and x?

• Choose basis functions 𝝓(𝒙) to form new features

– Example: Polynomial basis    𝜙(𝑥)	~	{1, 𝑥, 𝑥2, 𝑥3, … }

– Logistic regression on new features:  ℎ(𝑥;𝑤) = 𝜎 𝑤$𝜙 𝑥

• What basis functions to choose? Overfit with too much flexibility?

7



What is Overfitting

• Models allow us to generalize from data

• Different models generalize in different ways

8

http://scikit-learn.org/ 

http://scikit-learn.org/


Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
        (bias)     (variance)

9



Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
        (bias)     (variance)

10

• Simple models under-fit: 
will deviate from data (high bias) 
but will not be influenced by 
peculiarities of data (low variance). 

• Complex models over-fit: 
will not deviate systematically from 
data (low bias) but will be very 
sensitive to data (high variance). 
– As dataset size grows, can reduce 

variance! Use more complex model



Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
        (bias)     (variance)

11

• Simple models under-fit: 
will deviate from data (high bias) 
but will not be influenced by 
peculiarities of data (low variance). 

• Complex models over-fit: 
will not deviate systematically from 
data (low bias) but will be very 
sensitive to data (high variance). 
– As dataset size grows, can reduce 

variance! Use more complex model



Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
        (bias)     (variance)

12

• Simple models under-fit: 
will deviate from data (high bias) 
but will not be influenced by 
peculiarities of data (low variance). 

• Complex models over-fit: 
will not deviate systematically from 
data (low bias) but will be very 
sensitive to data (high variance). 
– As dataset size grows, can reduce 

variance! Use more complex model



Bias Variance Tradeoff 13



Regularization – Control Complexity

• L2 keeps weights small,  L1 keeps weights sparse!

• But how to choose hyperparameter a? 

14

L(w) =
1

2
(y�Xw)2 + ↵⌦(w)

L2 : ⌦(w) = ||w||2 L1 : ⌦(w) = ||w||

http://scikit-learn.org/ 

Less regularization Less regularization

http://scikit-learn.org/


How to Measure Generalization Error?

• Split dataset into multiple parts

• Training set 
– Used to fit model parameters

• Validation set 
– Used to check performance on 

independent data and tune hyper 
parameters

• Test set 
– final evaluation of performance 

after all hyper-parameters fixed
– Needed since we tune, or “peek”, 

performance with validation set

15

Training set Validation set Test set



How to Measure Generalization Error? 16

Validation Sample



From Logistic Regression to Neural Networks 17



Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g:     𝜙(𝑥)	~	{𝑥2, sin(𝑥), log(𝑥), … }

18

p(y = 1|x) = 1

1 + e�wT�(x)



Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g:     𝜙(𝑥)	~	{𝑥2, sin(𝑥), log(𝑥), … }

    

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

      𝜙(𝒙; 	𝒖)	 ℝ𝑚	 → ℝ𝑑	

– Where u is a set of parameters for the transformation

– Combines basis selection & learning→Representation Learning
– Several different approaches, focus here on neural networks
– Complicates the optimization

19

p(y = 1|x) = 1

1 + e�wT�(x)



Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g:     𝜙(𝑥)	~	{𝑥2, sin(𝑥), log(𝑥), … }

    

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

      𝜙(𝒙; 	𝒖)	 ℝ𝑚	 → ℝ𝑑	

– Where u is a set of parameters for the transformation

– Combines basis selection & learning→Representation Learning
– Several different approaches, focus here on neural networks
– Complicates the optimization

20

p(y = 1|x) = 1

1 + e�wT�(x)



Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g:     𝜙(𝑥)	~	{𝑥2, sin(𝑥), log(𝑥), … }

    

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

      𝜙(𝒙; 	𝒖)	 ℝ𝑚	 → ℝ𝑑	

– Where u is a set of parameters for the transformation

– Combines basis selection & learning→Representation Learning
– Several different approaches, focus here on neural networks
– Learning / optimization becomes more difficult

21

p(y = 1|x) = 1

1 + e�wT�(x)



Neural Networks

• Define the basis functions 𝑗	 = 	 {1…𝑑}

      𝜙𝑗(𝒙; 	𝒖) 	= 𝜎(𝒖!"𝒙)

• Put all 𝒖𝑗	Î	ℝ#×%	vectors into matrix 𝑼 

    𝜙 𝒙; 	𝑼 = 𝜎(𝑼𝒙) 	=

𝜎 𝑢#"𝑥
𝜎 𝑢&"𝑥

⋮
𝜎 𝑢'"𝑥

	 Îℝ'

– s is a point-wise non-linearity acting on each vector element 

• Full model becomes
   ℎ(𝒙; 	𝒘,𝑼) 	= 	𝒘𝑇𝜙(𝒙; 	𝑼)

22



Neural Networks

• Define the basis functions 𝑗	 = 	 {1…𝑑}

      𝜙𝑗(𝒙; 	𝒖) 	= 𝜎(𝒖!"𝒙)

• Put all 𝒖𝑗	Î	ℝ#×%	vectors into matrix 𝑼 

    𝜙 𝒙; 	𝑼 = 𝜎(𝑼𝒙) 	=

𝜎 𝑢#"𝑥
𝜎 𝑢&"𝑥

⋮
𝜎 𝑢'"𝑥

	 Îℝ'

– s is a point-wise non-linearity acting on each vector element 

• Full model becomes
   ℎ(𝒙; 	𝒘,𝑼) 	= 	𝒘𝑇𝜙(𝒙; 	𝑼)

23



Neural Networks

• Define the basis functions 𝑗	 = 	 {1…𝑑}

      𝜙𝑗(𝒙; 	𝒖) 	= 𝜎(𝒖!"𝒙)

• Put all 𝒖𝑗	Î	ℝ#×%	vectors into matrix 𝑼 

    𝜙 𝒙; 	𝑼 = 𝜎(𝑼𝒙) 	=

𝜎 𝑢#"𝑥
𝜎 𝑢&"𝑥

⋮
𝜎 𝑢'"𝑥

	 Îℝ'

– s is a point-wise non-linearity acting on each vector element 

• Full model becomes
   ℎ(𝒙; 	𝒘,𝑼) 	= 𝑤"𝜙(𝒙; 	𝑼)

24



Feed Forward Neural Network 25

�(x) = �(Ux)

h(x) = wT�(x)

U

Hidden layer
Composed of neurons

f(…) often called the 
activation function



Multi-layer Neural Network

• Multilayer NN
– Each layer adapts basis functions based on previous layer

26

U V



Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

27

h(x) = wT�(Ux)

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)



Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

28

h(x) = wT�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)



Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

• Minimize loss with respect to weights w, U

29

h(x) = wT�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)



Minimizing loss with gradient descent:

• Parameter update:

𝑤 ← 𝑤 − 𝜂
𝜕𝐿 𝑤, 𝑈
𝜕𝑤

𝑈 ← 𝑈 − 𝜂
𝜕𝐿(𝑤, 𝑈)
𝜕𝑈

• How to compute gradients?

30



Chain Rule – Symbolic Differentiation

• Derivative of sigmoid:

• Chain rule to compute gradient w.r.t. w

• Chain rule to compute gradient w.r.t. uj

31

L(w,U) = �
X

i

yi ln(�(h(xi))) + (1� yi) ln(1� �(h(xi)))

@�(x)

@x
= �(x)(1� �(x))

@L

@uj
=

@L

@h

@h

@�

@�

@uj
=

=
X

i

yi(1� �(h(xi)))wj�(ujxi)(1� �(ujxi))xi

+ (1� yi)�(h(xi))wj�(ujxi)(1� �(ujxi))xi

@L

@w
=

@L

@h

@h

@w
=

X

i

yi(1� �(h(xi)))�(Ux) + (1� yi)�(h(x))�(Uxi)



Chain Rule – Symbolic Differentiation

• Derivative of sigmoid:

• Chain rule to compute gradient w.r.t. w

• Chain rule to compute gradient w.r.t. uj

32

L(w,U) = �
X

i

yi ln(�(h(xi))) + (1� yi) ln(1� �(h(xi)))

@�(x)

@x
= �(x)(1� �(x))

@L

@uj
=

@L

@h

@h

@�

@�

@uj
=

=
X

i

yi(1� �(h(xi)))wj�(ujxi)(1� �(ujxi))xi

+ (1� yi)�(h(xi))wj�(ujxi)(1� �(ujxi))xi

@L

@w
=

@L

@h

@h

@w
=

X

i

yi(1� �(h(xi)))�(Ux) + (1� yi)�(h(x))�(Uxi)



Differentiation in Code 33

Baydin, Pearlmutter, Radul, Siskind. 
2018. “Automatic Differentiation in 
Machine Learning: a Survey.” 
Journal of Machine Learning 
Research (JMLR) 



Automatic Differentiation

Exact derivatives for gradient-based optimization come from 
running differentiable code via automatic differentiation

34

Image credit: Wikipedia



Backpropagation – Reverse Mode AD
• Loss function composed of layers of nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

• Backward step (b-prop)

• Compute parameter gradients

35

@L

@�a
=

X

j

@�(a+1)
j

@�a
j

@L

@�(a+1)
j

@L

@wa
=

X

j

@�a
j

@wa

@L

@�a
j

𝐿 𝜙( …𝜙# 𝑥  

𝜙( …𝜙# 𝑥



Training

• Repeat gradient update of weights to reduce loss 
– Each iteration through dataset is called an epoch

• Use validation set to examine for overtraining, and 
determine when to stop training 

36

[graphic from H. Larochelle]



Vanishing Gradients

• Major challenge in DL: Vanishing Gradients

• Small gradients slow down / block, stochastic 
gradient descent à Limits ability to learn!

37

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.Slide credit: G. Louppe

Sigmoid Gradient

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md


Activation Functions

• Vanishing gradient problem

– Derivative of sigmoid
Nearly 0 when x is far from 0!

– Can make gradient descent hard!

38

• Rectified Linear Unit (ReLU)
– ReLU(x) = max{0, x}
– Derivative is constant!

– ReLU gradient doesn’t vanish

∂ReLU(x)
∂x

= 1
0

when x > 0
otherwise

"
#
$

%$



Neural Network Decision Boundaries 39

x1

x2

4-class classification
2-hidden layer NN
ReLU activations
L2 norm regularization

2-class classification
1-hidden layer NN
L2 norm regularization

One neuron Two neuron

Three neurons Four neurons

Five neurons Twenty neurons

Fifty neurons

Image source Image source

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r


Universal approximation theorem

• Feed-forward neural network with a single 
hidden layer containing a finite number of non-
linear neurons (ReLU, Sigmoid, and others) can 
approximate continuous functions arbitrarily 
well on a compact space of ℝ! 

40

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Universal approximation theorem

• Feed-forward neural network with a single 
hidden layer containing a finite number of non-
linear neurons (ReLU, Sigmoid, and others) can 
approximate continuous functions arbitrarily 
well on a compact space of ℝ! 

41

• Better approximation requires larger hidden layer,
this theorem says nothing about relation between the two.

• Can make training error as low as we want by using a 
larger hidden layer. Result states nothing about test error

• Doesn’t say how to find parameters for this approximation

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Deep Neural Networks

• As data complexity grows, need exponentially large number of 
neurons in a single-layer network to capture all structure in data

• Deep networks factorize the learning of structure across layers

• Difficult to train, recently possible with large datasets, fast 
computing (GPU/TPU) & new training algs. / network structures 

42



More Complex Models – Bigger Search Space
More Data – Find Better Solutions 43

Dataset 
Size

Model Complexity

Target solution

Target solution

Target solution

Target solution



Hierarchical Learning of Features 44

2212.06727

Depth

https://arxiv.org/abs/2212.06727


Benefits of Depth 45

Image credit: D. McCandless, T. Evans, P. Barton

2001.08361

1905.11946

https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1905.11946


Neural Network Zoo

• Structure of the networks, and 
the node connectivity can be 
adapted for problem at hand

• Moving inductive bias from 
feature engineering to model 
design 

– Inductive bias:
Knowledge about the problem 

– Feature engineering:
Hand crafted variables 

– Model design:
The data representation and the 
structure of the machine 
learning model / network 

46

Image credit: neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo/


Neural Network Zoo – “Optimization” Perspective 47

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Neural Network Zoo – “Optimization” Perspective 48

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

\

Belkin et. al. 2018

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf


Neural Network Zoo – “Optimization” Perspective 49

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Neural Network Zoo – “Optimization” Perspective 50

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

• Major part of deep learning is choosing the right function

– Need to make gradient descent work, even if substantial 
engineering required 

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Deep Neural Networks Loss Landscape 51

https://arxiv.org/abs/1802.10026

https://arxiv.org/abs/1802.10026


Choosing the right function… 52

TargetUnstructured Models Models with
Inductive Bias

• We know a lot about our data
– What transformations shouldn’t affect predictions
– Symmetries, structures, geometry, …

• Inductive Bias: we can match models to this knowledge
– Throw out irrelevant functions we know aren’t the solution
– Bias the learning process towards good solutions



Choosing the right function… 53

Image credit: Michael Bronstein



Summary

• Neural Networks allow us to combine non-
linear basis selection with feature learning

• But must keep in mind the bias-variance 
tradeoff and how models will generalize

• Deep neural networks allow learning complex 
function by hierarchically structuring the 
feature learning, and we can use inductive bias 
(knowledge) to define models that are well 
adapted to our problem

54



Backup

55



Bias Variance Tradeoff

56



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable 

output y

57

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable 

output y

58

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable 

output y

59

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

• The more complex the model h(x) is, the more data points it will 
capture, and the lower the bias will be. 



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable 

output y

60

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

• The more complex the model h(x) is, the more data points it will 
capture, and the lower the bias will be. 

• More Complexity will make the model "move" more to capture the 
data points, and hence its variance will be larger.



Bias Variance Tradeoff
• Model h(x), defined over dataset, modeling random variable 

output y

61

E[y] = ȳ

E[h(x)] = h̄(x)

• Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))2] = E[(y � ȳ)2] + (ȳ � h̄(x))2 + E[(h(x)� h̄(x))2]

= noise + (bias)2 + variance

• The more complex the model h(x) is, the more data points it will 
capture, and the lower the bias will be. 

• More Complexity will make the model "move" more to capture the 
data points, and hence its variance will be larger.
– As dataset size grows, can reduce variance! Can use more complex model



Automatic Differentiation

62



Automatic Differentiation

Exact derivatives for gradient-based optimization come from 
running differentiable code via automatic differentiation

63

f(x) {…};

df(x) {…};



Automatic Differentiation Example

• All numerical algorithms, when executed, evaluate to 
compositions of a finite set of elementary operations 
with known derivatives 
– Represent as a computational graph showing dependencies

64

𝑓 𝑎, 𝑏 = log 𝑎𝑏

∇𝑓 𝑎, 𝑏 =
1
𝑎
,
1
𝑏



Automatic Differentiation Example

• All numerical algorithms, when executed, evaluate to 
compositions of a finite set of elementary operations 
with known derivatives 
– Represent as a computational graph showing dependencies

65

f(a, b):
   c = a * b
   d = log(c) 
   return d

f(2, 3) = 1.791

2

3

6
1.791

Primals



Automatic Differentiation Example

• All numerical algorithms, when executed, evaluate to 
compositions of a finite set of elementary operations 
with known derivatives 
– Represent as a computational graph showing dependencies

66

f(a, b):
   c = a * b
   d = log(c) 
   return d

2

3

6
1.791

f(2, 3) = 1.791
df(2,3) = [0.5, 0.333]

𝜕𝑐
𝜕𝑎 = 𝑏 = 3

𝜕𝑐
𝜕𝑏 = 𝑎 = 2

𝜕𝑑
𝜕𝑐 =

1
𝑐 = 0.166

Chain Rule:  !"
!#
= !"

!$
!$
!#
= 0.166 ∗ 3 = 0.5



Forward and Reverse Mode

• Derivatives can be computed in Forward Mode and 
Reverse Mode

67

Primals
Derivatives

Derivatives

Forward Mode Single Evaluation: 𝒇 𝒙 :	ℝ! → ℝ"

"𝒇(𝒙)
"𝒙

=

")!
"*!

… ")"
"*!

⋮ ⋱ ⋮
")!
"*#

… ")"
"*#

Reverse Mode Single Evaluation: 𝒇 𝒙 :	ℝ! → ℝ"

"𝒇(𝒙)
"𝒙

=

")!
"*!

… ")"
"*!

⋮ ⋱ ⋮
")!
"*#

… ")"
"*#

Forward Mode

Reverse Mode
Primals

Chain Rule:  !"
!#
= !"

!$
!$
!#


