Introduction to Machine Learning:

Lecture 3 — Intro to Deep Learning

Michael Kagan

TRISEP Summer School
July 8-12, 2024

The Plan

* Lecture 1 — Machine Learning Fundamentals
* Lecture 2 — Intro to Neural Networks

* Lecture 3 — Intro to Deep Learning

* Lecture 4 — Intro to Unsupervised Learning

* Lecture 5 — Intro to Deep Generative Models

Deep Learning Resourses

* Deep Learning is a HUGE field
— O(10,000) papers submitted to conferences

* | only condensed some parts of what you
would find in some lectures of a Deep Learning

course
— More details from other lecturers!

* Highly recommend Online-available lectures:
— Francois Fleuret course at University of Geneva
— Gilles Louppe course at University of Liege

https://fleuret.org/dlc/
https://github.com/glouppe/info8010-deep-learning

Deep Neural Networks

) hidden layer 1 hidden layer 2 hidden layer 3
input layver

)
— n p
— = J—F g
N— "\'<(f/7; —
N P 7 o< 7 output layer
— ‘\
s
)V
—________ ~ =] __-—-:-:‘—-__ _— / '_,_-—""_‘“—\ "
‘ —

* As data complexity grows, need exponentially large number of
neurons in a single-layer network to capture all structure in data

* Deep networks factorize the learning of structure across layers

« Difficult to train, recently possible with large datasets, fast
computing (GPU/TPU) & new training algs. / network structures

Choosing the right function...

* We know a lot about our data
— What transformations shouldn’t affect predictions
— Symmetries, structures, geometry, ...

* Inductive Bias: we can match models to this knowledge

— Throw out irrelevant functions we know aren’t the solution
— Bias the learning process towards good solutions

Unstructured Models

A/.\ Models with

Inductive Bias

Choosing the right function...

Convolutional Neural Networks

Convolutional Neural Networks

* When the structure of data includes “invariance to
translation”, a representation meaningful at a
certain location can / should be used everywhere

* Convolutional layers build on this 1dea, that the
same “local” transformation 1s applied everywhere
and preserves the signal structure

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

1D Convolutional Layer Example

Input
1 4 -1 0 -2 3
. VY »
1 2 0 -1
Output
‘ W-w+1 ’

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

1D Convolutional Layers

10

e Data: x € RM
« Convolutional kernel of width k: 1 € R¥

e Convolution x & u is vector of size M-k+1

k-1

(x®u); = 2 Xi+pUp

b=0

* Scan across data and multiply by kernel elements

Convolutional Filters .

Convolution can implement in particular differential operators, e.g.

(0,0,0,0,1,2,3,4,4,4,4)® (—1,1) = (0,0,0,1,1,1,1,0,0,0).

W®L’1=Jm_

or crude “template matcher”, e.g.

B 1 v .

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolution Over Multiple Channels -

Input
Output

Kernel

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolution Over Multiple Channels

Input

Fleuret, Deep Learning Course

Kernel

W-w-+1

H-—h+1

Output

https://fleuret.org/dlc/

2D Convolution Over Multiple Channels

Input
Output

Kernels W-w+1

D
H—-h+1
H hI

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

2D Convolutional Layer

15

* Input data (tensor) x of size CXHXW
— C channels (e.g. RGB in images)

* Learnable Kernel u of size CxhXw
— The size hXw is the receptive field

C-1h-1w-1

(x® u)l] E(xc@)uc)u Zzzxcn+lm+]ucnm

c=0n=0m=0

* Output size (H—h+))x(W —w + 1) for each kernel
— Often called Activation Map or Output Feature Map

16

Stride — Step Size When Moving Kernel Across Input

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Padding — Size of Zero Frame Around Input

17

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Dilation

18

Shared Weights: Economic and Equivariant

19

 Parameters are shared by each neuron producing an
output in the activation map

» Dramatically reduces number of weights needed to
produce an activation map

— Data: 256x256%x3 RGB image
— Kernel: 3x3x3 = 27 weights

— Fully connected layer:
« 256X256X3 inputs = 256x256x%3 outputs = 0(101%) weights

Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791

Shared Weights: Economic and Equivariant

20

 Parameters are shared by each neuron producing an
output in the activation map

» Dramatically reduces number of weights needed to
produce an activation map

 Convolutional layer does pattern matching at any
location = Equivariant to translation

. = RESEARCH

) R
-

—
‘ I
S =
T

-
el ==
o“! S——

-
T
il ==
l‘ ‘-
~ Pty
4 ==

—

~
i

4
(5]

Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791

Pooling 21

* In each channel, find max or average value of
pixels in a pooling area of size hxw

Input

Output

rw

sh

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Pooling 2

* In each channel, find max or average value of
pixels in a pooling area of size hxw

e [nvariance to

permutation within input

pooling area L

* Invariance to local
perturbations Output T

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Normalization N

* Maintaining proper statistics of the activations and derivatives is
a critical issue to allow the training of deep architectures

“Training Deep Neural Networks is complicated by the fact that
the distribution of each layer’s inputs changes during training,
as the parameters of the previous layers change. This slows
down the training by requiring lower learning rates and careful
parameter initialization ...”

loffe, Szegedy,
Batch Normalization, ICML 2015

Wu, He, Group Normalization, CoRR 2018

Batch Normalization 5

* During training, batch normalization shifts and rescales
according to the mean and variance estimated on the batch.

— During test, use empirical moments estimated during training

* Per-component mean and variance on the batch

B
1
Mpatch = B Xb
b=1

1 B
— 2
Ubatch = E § (xb - mbatch)
1

* Normalize and compute output Vb =1 ...B

081

_ Xp — Mpqatch
Zb - + Ao o
\/vbatch € 0.6;:‘ ,*I
= = =Inception
o - = BN-Baseline
0.5(-1 - BN-x5
= : —— BN-x30
yb - VQZb + ﬁ 4 + BN—iS—Sigmoid
: 4 Steps to match Inception
o4 5M 10M 15M 20M 25M 30M

d . . Figure 2: Single crop validation accuracy of Inception
- y an ﬁ are parameters tO Optl mize and its batch-normalized variants, vs. the number of

training steps.

Convolutional Network N

* A combination of convolution, pooling, Rel U,
and fully connected layers

convolution linear max convolution
rectification pooling

convolution layer pooling layer

Convolutional Networks

26

Dense (1000)

t
Dense (4096)
t
Dense (4096)

t

3x3 MaxPool, stride 2
t

Dense (10) 3x3 Conv (384), pad 1
i t

Dense (84) 3x3 Conv (384), pad 1
| t

Dense (120) 3x3 Conv (384), pad 1
t t

2x2 AvgPool, stride 2 3x3 MaxPool, stride 2
t t

5x5 Conv (16) 5x5 Conv (256), pad 2
t t

2x2 AvgPool, stride 2 3x3 MaxPool, stride 2
t

5x5 Conv1(6), pad 2 11x11 Conv (96), stride 4

t t

image (28x28)

image (3x224x224)

LeNet

(LeCun et al, 1998)

AlexNet

(Krizhevsky et al, 2012)

ImageNet Classification

>
ha
K

N
K
R
W
—

Residual Connections

* Training very deep networks is made possible
because of the skip connections in the residual
pblocks. Gradients can shortcut the layers and
nass through without vanishing.

Activation function Activation function
A
f(x) + x
X
f(x) f(x)
——————————————————————————————
| I | I
I Weight layer : I Weight layer :
I I
[4 : |) :
| | Activation function | | ! Activation function |
I I

: t I : A I
| Weight layer : | Weight layer :
: } | : 4 |

X x

https://d2l.ai/
https://glouppe.github.io/info8010-deep-learning/?p=lecture3.md

Deep CNNs

28

| Global Average Pool |

| 3x3 Max Pooling |
*

| Batch Norm |

)
| 7x7 Conv |

ResNet

(He et al, 2015)

SYO0|] 18NS8Y X¢ H

841

o

Imagenet Top-1 Accuracy (%)

1905.11946

o0
8]

0

|
=)

P
s

“ Xception

?
|
I
Bb .DenseNet-201
I
' []
I ResNet-50
' .

. -
I' ‘Inception-v2

EfficientNet-B7

AmoebaNe_t_—A__ ————

p———

”
~7 NASNet-A .

.
.
.
.
.
.
.
.®
©"

et ResNeXt-101

Lo
*" Inception-ResNet-v2

eResNet-152

«*
.«*
.

AmoebaNet-C

—‘

.
.®

Topl Acc. #Params

ResNet-152 (He et al., 2016) 77.8% 60M
EfficientNet-B1 79.1% 7.8M
ResNeXt-101 (Xie et al., 2017)| 80.9% 84M

EfficientNet-B3

81.6% 12M

SENet (Hu et al., 2018)
NASNet-A (Zoph et al., 2018)
EfficientNet-B4

82.7% 146M
82.7% 89M
82.9% 19M

Number of Parameters (Millions)

14 GPipe (Huang et al., 2018) T 84.3% 556M
NASNet-A EfficientNet-B7 84.3% 66M
° "Not plotted
ResNet-34 ' ' ' ' . '
20 40 60 80 100 120 140 160 180

https://arxiv.org/abs/1905.11946

Recurrent Neural Networks

29

Sequential Data

30

* Many types of data are not fixed in size

* Many types of data have a temporal or
sequence-like structure

— Text

— Video
— Speech
— DNA

* MLP expects fixed size data

* How to deal with sequences?

Sequential Data .

* Given a set X, let S(X) be the set of
sequences, where each element of the

sequence x; € X
— X could reals RM, integers ZM, etc.
— Sample sequence x = {x4, x5, ..., X1}

» Tasks related to sequences:
— Classification SO ->{p|X¥ p; =1}
— Generation f: R* > S(X0)
— Seq.-to-seq. translation f: S(X) = S(Y)

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent States N

* Input sequence x € S(R™) of variable length T (x)

* Recurrent model maintains recurrent state h, € R4
updated at each time step t. Fort =1,...,T(x):

hiy1 = ¢(x¢, he; 0)

— Simplest model:

¢(xt, ht, W, U) — O-(Wxt ‘I‘ Uht)

* Predictions can be made at any time t from the
recurrent state

Y: = Y(hs; 0)

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks

33

ho

Credit: F. Fleuret

h

https://fleuret.org/dlc/

Recurrent Neural Networks

34

hy

x2

o —>|h1t—; e hr
| |
XT —1 AT
J

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks

35

ho

h

X1

x2

XT—1

xT

Credit: F. Fleuret

https://fleuret.org/dlc/

Recurrent Neural Networks

36

[0.98] = Positive Sentiment

Credit: F. Fleuret

YT
v
1
h0|7—¢ﬁh1|7—¢ OﬁhT_lw-OHhT

| | | |

X1 x2 XT —1 XT

J
The movie was great

Sentiment
Analysis

https://fleuret.org/dlc/

Recurrent Neural Networks

Prediction per sequence element

4 3\ 3\)
N YT—1 YT
k‘ v \—4 v \. v
1 1 1
hO I (® > hl K (] % hT-—l }7- % hT
X1 X2 XT -1 XT
w | —— y, y. y,

Although the number of steps T'(x) depends on x, this is a standard
computational graph and automatic differentiation can deal with 1t as
usual. This 1s known as “backpropagation through time” (Werbos, 1988)

Credit: F. Fleuret

https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-12-1-RNN-basics.pdf

Stacked RNN

38

X1.1 |_ RNN ﬁhl:T

RNN

(2)
h'l:T

RNN

(V)
hl:T

Stacked RNN

39

Two Stacked LSTM Layers

»®@ = r® $@ h(TZ_) ¢@ h(TZ)
hg ® % hy '7_ ® > % hr_4 ® hr
X1 x2 XT —1 AT
Z 2

2"d RNN Layer

1t RNN Layer

Bi-Directional RNN

—>
Forward in time RNN Layer

h” | ¢® —> |n || ¢ 9O > |2, | F——1® [—> | n{’
w X1 X2 XT-1 X7
Ol P e I IO $@ $@] |1, | €=—¢@ |—— |

Backward in time RNN Layer
6—-

Gating "

* Gating: @ Pl @

— network can grow very deep,

in time = vanishing gradients.

— Critical component: add pass-through (additive paths)
so recurrent state does not go repeatedly through
squashing non-linearity.

Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

Long Short Term Memory (LSTM) -

* Gating: @ Pl @

— network can grow very deep,

in time = vanishing gradients.

— Critical component: add pass-through (additive paths)
so recurrent state does not go repeatedly through
squashing non-linearity.

» LSTM: ()
— Add internal state separate G!D 5 G:D *
from output state ? L
— Add input, output, and @ Tt @

forget gating @

Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

Comparison on Toy Problem ;

0.7 - —— RNN
- ==~ Stacked RNN
Learn to recognize palindrome R\ —-=- BiRNN
Sequence size between 1 to 10 _ 0.6 - — LSTM
x y g
@ 0.5 -
(1,2,3,2,1) 1 3
(2,1,2) 1 S ..
(3,4,1,2) 0 |
(0) 1
(1,4) 0 0.3-
0 5 10 15 20 25
Epoch

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture6.md

Examples

44

Y. Wu et al, 2016

Neural machine translation

Y,, >y, > —> </s>
- L3 .y
A T T PR e P ; Rt
/ Encoder LSTMs ; *
GPU8
8ilayers
GPU3
GPU2
GPU2
GPU1
Encoder @ Il 601 el 62 1—> O3 Pl 04 [l O [Em==ri O
Decoder do —_— ds e 4 dz A ds

GPU3

GPU2

GPU1

https://arxiv.org/abs/1609.08144

Examples

45

Text-to-speech synthesis

Mel Spectrogram

5 Conv Layer
Post-Net

T

Waveform
Samples

*

WaveNet

l [Linear

MoL

" J

[2 Layer I l 2 LSTM __Projection
Pre-Net Layers ST

Stop Token

i) | Projection |

Location

Sensitive
Attention

T A Character 3 Conv
P Embedding Layers

Shen et al., 2017

Bidirectional
LSTM

https://arxiv.org/abs/1712.05884

46

Many Other Architecture Choices

Graph Neural Networks .

Permutation invariant data
with geometric relationships

— Features can be local on graph,
but meaningful anywhere on graph

T wan

Graph layers can encode these
relationships on nodes & edges

Sanchez-Gonzalez et al. 2020

| Learned simulator B e S
o 1 {
x

ENCODER PRoc ESSOR DECODER
—>| |— G —»l |—;y

(c) Construct graph W0 (d) Pass messages (e) Extract dynamics info

J
© < < ©
. A o "
o — 5 FiD= YA 5= Yt oy —> _ ©
0 x o Vi CE~ Vi \‘-‘\ ~ Vi Vi ¢ © yi
N -
© © © 4 ; - & Cwg © ©® o
© C

https://arxiv.org/abs/2002.09405

Transformers & Deep Sets p

* Deep Sets and Transformers can process
permutation invariant sets of data

» Transformers are very adaptable:
Built using layers of attention, TN
“xcellent at process sequences, B E =L
put also images, and other data -

Query

Output

Layer:| 5 4| Attention: | Input - Input 4 Probabilties
.
The_ The_
animal_ animal_ Attention Is All You Need
didn_ didn_ Feed
, , Forward
t_ t_ Add & Norm
= - Multi-Head
r cross . Attention
hsis - Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit* fionvaic Nx
the_ the_ Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com
street_ street_ e A s Vasked
Multi-Head Multi-Head
because_ because_ Llion Jones* Aidan N. Gomez* ' Eukasz Kaiser* Attention Jenton
it it Google Research University of Toronto Google Brain]
I = L 1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com Q J U ')
was_ o was_ . Eositig'nal A A Positional
~ Illia Polosukhin* ncoding Encoding
too_ ~ too_ illia.polosukhin@gmail.com Input Output
ﬁm tire Embedding Embedding]
; g ! !
I - Inputs Outputs

(shifted right)

Physics Inspired Models -

QCD Structured Neural Nets

1702.00748 ° Hamiltonian Neural Nets
1711.02633 ¥y =
.', ’ '..) — : P
Y ’H ‘ LA V >) . I’:l — D »pn
i < ; \ . » . » =i X

1906.01563

Differentiable Vertexing

NDIVE . .
Weigt vereex Lorentz Equivariance
Predictor —> % — Fitter
Weights pl+1 xlt1
l 7] —_—
Vertex
l —
* Jet Flavour
Track Track Params at SV Track B Classifier [¢] [¢x]
Extrapolator / Processor
e
Track Params at PV | , Track Origin
Classifier
Per Track
* Concat.
Track
Processor |, Track Pair h! x!
Classifier

D MLP (] Sum Pooling @ Minkowski Norm &

Inner Product
Smith, Ochoa, Inacio,
Shoemaker, MK, 2310.12804

Lorentz Group Equivariant Block (LGEB)
2201.08187

https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1711.02633
https://arxiv.org/abs/2201.08187
https://arxiv.org/abs/1906.01563
https://arxiv.org/abs/2310.12804

Summary

50

* Deep neural networks allow learning complex
function by hierarchically structuring the
feature learning

* We can use our inductive bias (knowledge) to
define models that are well adapted to our
problem

* Many neural networks structures are available
for training models on a wide array of data

types.

51

Backup

Modern Neural Networks .

People are now building a new kind of software by
assembling networks of parameterized functional
blocks and by training them from examples using

some form of gradient-based optimization.
-Yann LeCun, 2018

Modern Neural Networks

53

People are now building a new kind of software by
assembling networks of parameterized functional
blocks and by training them from examples using

some form of gradient-based optimization.
-Yann LeCun, 2018

* Non-linear operations of data with parameters

* Layers (set of operations) designed to perform specific
mathematical operations

 Chain together layers to perform desired computation

* Train system (with examples) for desired computation
using gradient descent

Many Other Architecture Choices

54

Deep Sets

~

/ Graph Neural Networks

~t X
;= (A7)

m? ;= O'(A,Jff?]t)
ht = GRU(h{ L, Ty,

~

Image Credit: I. Henrion

/

Attention
weights
Input hay
Value

Output

Attention and Transformers \

Vi,

/

L + More...

C
Attention(Q, K, V) = softmax(——=—)}

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Stacked RNN

55

Two Stacked LSTM Layers

(2) ! 1 (N)
h'l:T RNN hl:T
Zoom in
h(()z) ¢(2)) r® »®@) h(T) : ¢(2) h(T2>
ho o [—>|h1 [@ 0%"T—1|7‘¢%h7‘
X1 x2 XT—1 xT
Z Z

2"d RNN Layer

1t RNN Layer

56

Deep Sets

What if our data has no time structure?

57

» Data may be variable in length but have no
temporal structure = Data are sets of values

* One option: If we know about the data domain,
could try to impose an ordering, then use RNN

* Better option: use system that can operate on
variable length sets in permutation invariant way

— Why permutation invariant = so order doesn’t matter

Deep Sets

58

Deep Sets

59

— &

X2

Deep Sets

60

— &

— &

X2

Xt

Deep Sets

61

— &

X2

Permutation invariant

/ operation: Sum, Max, ...

— &

Xt

Deep Sets

62

F — vy
1
ﬁl:T
h, hy
A A

— &

X2

— &

Xt

Examples

63

Medical Imaging

With more complex architecture

Outlier detection

e :
s

) 455

s

1R ,*.“*u"“”
Ep“ﬁ faﬂ‘:" -

(<) (d)

Figure 5. (a) H&E stained histology image. (b) 27x27 patches
centered around all marked nuclei. (c) Ground truth: Patches that
belong to the class epithelial. (d) Heatmap: Every patch from (b)
multiplied by its corresponding attention weight, we rescaled the
attention weights using aj, = (ax —min(a))/(max(a) —min(a)).

M. llse et al., 2018

black hair &
brown hair

. Zaheer et. al 2017

https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1802.04712

64

Graph Neural Networks

Graph Data .

h

 Sequential data has single (directed) connections
from data at current time to data at next time

» What about data with more complex
dependencies

Image Credit: |. Henrion Image credit: N. Wang et al., 2018

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf
https://arxiv.org/abs/1804.01654

Graphs

66

Edge

|

Vertex / node

* Adjacency matrix: A;; = §(edge between vertex i and j)
* Each node can have features

 Each edge can have features, e.g. distance between nodes

Image Credit: |. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

67

Image Credit: |. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

68

Image Credit: |. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

69

mG—F

myF

Image Credit: |. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

70

m;_,; = o(A;m;)

ht = GRU(h' 1, X;m!

_[—)I

Image Credit: |. Henrion

)

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing

71

Algorithm 1 Message passing neural network

Require: N x D nodes x, adjacency matrix A
h «<—Embed(x)

fort=1,..., T do
m < Message(A, h)
h < VertexUpdate(h, m)
end for
r = Readout(h)
return Classify(r)

Image Credit: |. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Examples

72

Quantum chemistry with graph networks

N CH3© z-12, z 2 |
DD - D,
OH 1" 12 in
© /_/=° D Dy Dy, Dy,
J : :
o D, Dp D,,

Feedback loop

Gaussian expansion
@ Hyperbolic tangent
@ Element-wise product

®/ @ Element-wise sum

- jn“((w"n‘-l‘)
> (wedyent)) |

Schutt et al. 2017

Mean abs. error (kcal mol™ ")

Total energy (kcal mor) &

Molecules with = 20 atoms

T
100 200

https://www.nature.com/articles/ncomms13890

Examples

73

Learning to simulate physics with graph networks

(@ X'

(b) ENCODER

— (0

X—

(¢) Construct graph

© X
© & . e?.j
¢ © X; \A
¢ © ¢
<

Learned simulator, sy

G

DECODER

G.M >

o —1
GN? PROCESSOR
>(+ Gl S GM—l r
(d) Pass messages
m+1
&‘i’ e k'::’ez 1+
i I ’V = f:k l.;v:n+1
A
k L

_>Y

(e) Extract dynamics info
C

C
@ —> [)
VzM © € Yi

¢ © ¢
C

Figure 2. (a) Our GNS predicts future states represented as particles using its learned dynamics model, dy, and a fixed update procedure.
(b) The dp uses an “encode-process-decode” scheme, which computes dynamics information, Y, from input state, X . (¢) The ENCODER
constructs latent graph, G°, from the input state, X . (d) The PROCESSOR performs M rounds of learned message-passing over the latent

graphs, G°, . ..

Sanchez-Gonzalez et al. 2020

: " Eopa (e) The DECODER extracts dynamics information, Y, from the final latent graph, GG g

https://arxiv.org/abs/2002.09405

74

Transformers

Challenges of Long Sequences .

 Gradients may not explode or vanish, but managing a
meaningful context over a long sequence is challenging.

» Bottleneck: fixed length array in model with long input

Bi-Directional RNN Encoder-Decoder

76

Additive Attention Mechanism

* Idea: allow RNN to look at all the hidden state sequence when
producing an output. Output is generated from context c

— \'T —
Ci = j=1 (leh] where aij = Softmax(ﬁij)overj

and 'BU =U tanh(WSi_l + Wh] + bl)

reement

el
7}
c

Ry
(9]

in
August
1992
<end>

accord

. : zone
10H — RNNsearch-50 f................ e S] éconorlnique
----- RNNsearch-30 | : o NN europeenne

N - a

3P == RNNemes0 o S T |
- RNNenc-30 [: :
I

BLEU score

été

signé

1 1 L 1
0 10 20 30 40 50 60 en

ao(t
Sentence length
K) 1992

<end>

1409.0473

https://arxiv.org/abs/1409.0473

77

Transformers

* Idea: Get rid of the RNN and only use attention

ﬁ Layer Norm.

ﬁ Feed-Forward g 7

ﬁ Layer Norm. Q

Attention

o > o

ﬁ Multi-Head

—

ﬁ Layer Norm. g

—

Multi-Head
Attention

SINE

Encoder

ﬁmoom-mogm&g /

ﬁ Layer Norm. w

Masked

Multi-Head >
; S
Attention Wu
I =
Z
___ x

k=)

5}

Scaled Dot-Product Attention .

Q = Rn.xd
' Q K* ” mXxd
Attention (Q, K, V') = softmax V where K € R™*¢
\/E V € R"”de
Query Key Value
a (1) U1
I/ nxd \km) mxd Um mXdy

» Project the input “query” onto a “key” to compute the
weights for the corresponding “value”

 Return the weighted value

Scaled Dot-Product Attention .

Q c R" X d
) V where K € RmXxd
V € R'n‘z.xdv

QK"
Vd

Attention (Q, K, V') = softmax (

« Self-Attention: using input X to define Q,K,V

(A) attention

X = "that" 6
> . R—
X a = soft
O weights
X " — -
X R Context q K A
—— = Q| | . o
1 5 il - . W,) * (XW;
g > E softmax (2Wq) * () XW,
+/100
S
a 6 Legend
E wv V = XW x = word vector for "that"
—— - Bl > E v A = 3 neural networks in parallel
[E— a = vector of soft weights for "that".
300 wide 9 — = softmax(XW XW T / sqrt(100))
100 wide : Bl

X = word vectors stacked together as

Wiki[gedia sentence matrix

https://en.wikipedia.org/wiki/Attention_(machine_learning)

Attention Computations

80

» Lets look at a single query

qKT: G-k G- ks @y - km
\/a \/(—1 | \/(—1 | | \/E 1xm

q1-k;

gK* XPVa

softmax (W) - (plaPZa “'aan)len — ﬁ where Pi =

K']' n
Attention(q, K, V') = softmax (Q) V =pV = Z Div;
Vd i=1
* Generalize input to length n
pllﬁl + P12772 + -+ plm,777n Z;"’ pliﬁi

- - . m —
P21V1 + P22U2 + -+ + P2amUm > i P2t

Attention(Q, K, T) =

. - - m o
Pn1U1 + Pn2V2 + ** + PrmUm ZL PniVq nxd,

T'TL (TIE
D j—1€Xp _l\/E

