Introduction to Machine Learning:

Lecture 3 – Intro to Deep Learning

TRISEP Summer School July 8-12, 2024 • Lecture 1 – Machine Learning Fundamentals

• Lecture 2 – Intro to Neural Networks

• Lecture 3 – Intro to Deep Learning

• Lecture 4 – Intro to Unsupervised Learning

• Lecture 5 – Intro to Deep Generative Models

Deep Learning Resourses

- Deep Learning is a HUGE field
 O(10,000) papers submitted to conferences
- I only condensed *some* parts of what you would find in *some lectures* of a Deep Learning course
 - More details from other lecturers!
- Highly recommend Online-available lectures:
 - Francois Fleuret course at University of Geneva
 - Gilles Louppe course at University of Liege

Deep Neural Networks

- As data complexity grows, need exponentially large number of neurons in a single-layer network to capture all structure in data
- Deep networks *factorize the learning* of structure across layers
- Difficult to train, recently possible with large datasets, fast computing (GPU/TPU) & new training algs. / network structures

Choosing the right function...

- We know a lot about our data
 - What transformations shouldn't affect predictions
 - Symmetries, structures, geometry, ...
- Inductive Bias: we can match models to this knowledge
 - Throw out irrelevant functions we know aren't the solution
 - Bias the learning process towards good solutions

Choosing the right function...

Convolutional Neural Networks

• When the structure of data includes "invariance to translation", a representation meaningful at a certain location can / should be used everywhere

• Convolutional layers build on this idea, that the same "local" transformation is applied everywhere and preserves the signal structure

1D Convolutional Layer Example

1D Convolutional Layers

• Data:

$$x \in \mathbb{R}^{N}$$

- Convolutional kernel of width k: $u \in \mathbb{R}^k$
- Convolution $x \circledast u$ is vector of size M-k+1

$$(x \circledast \mathbf{u})_i = \sum_{b=0}^{k-1} x_{i+b} u_b$$

• Scan across data and multiply by kernel elements

Convolution can implement in particular differential operators, e.g.

 $(0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4) \circledast (-1, 1) = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0).$

or crude "template matcher", e.g.

Fleuret, Deep Learning Course

2D Convolution Over Multiple Channels

2D Convolution Over Multiple Channels

2D Convolution Over Multiple Channels

2D Convolutional Layer

- Input data (tensor) x of size C×H×W
 C channels (e.g. RGB in images)
- Learnable Kernel u of size C×h×w
 The size h×w is the receptive field

$$(\mathbf{x} \circledast \mathbf{u})_{i,j} = \sum_{c=0}^{C-1} (\mathbf{x}_c \circledast \mathbf{u}_c)_{i,j} = \sum_{c=0}^{C-1} \sum_{n=0}^{h-1} \sum_{m=0}^{w-1} \mathbf{x}_{c,n+i,m+j} \mathbf{u}_{c,n,m}$$

Output size (H – h + 1)×(W – w + 1) for each kernel
 Often called *Activation Map* or *Output Feature Map*

Stride – Step Size When Moving Kernel Across Input

Fleuret, <u>Deep Learning Course</u>

Padding – Size of Zero Frame Around Input

Shared Weights: Economic and Equivariant

- Parameters are *shared* by each neuron producing an output in the activation map
- Dramatically reduces number of weights needed to produce an activation map
 - Data: 256×256×3 RGB image
 - Kernel: $3 \times 3 \times 3 \rightarrow 27$ weights
 - Fully connected layer:
 - 256×256×3 inputs \rightarrow 256×256×3 outputs \rightarrow $O(10^{10})$ weights

Shared Weights: Economic and Equivariant

- Parameters are *shared* by each neuron producing an output in the activation map
- Dramatically reduces number of weights needed to produce an activation map
- Convolutional layer does pattern matching at any location → Equivariant to translation

Pooling

• In each channel, find *max* or *average* value of pixels in a pooling area of size *h*×*w*

Output

Pooling

- In each channel, find *max* or *average* value of pixels in a pooling area of size *h*×*w*
- Invariance to permutation within Input pooling area

• Invariance to local perturbations

Normalization

 Maintaining proper statistics of the activations and derivatives is a critical issue to allow the training of deep architectures

"Training Deep Neural Networks is complicated by the fact that **the distribution of each layer's inputs changes during training, as the parameters of the previous layers change**. This slows down the training by requiring lower learning rates and careful parameter initialization ..."

Ioffe, Szegedy, Batch Normalization, ICML 2015

Wu, He, Group Normalization, CoRR 2018

Batch Normalization

- During training, batch normalization shifts and rescales according to the mean and variance estimated on the batch.
 - During test, use empirical moments estimated during training
- Per-component mean and variance on the batch

$$m_{batch} = \frac{1}{B} \sum_{\substack{b=1\\B}}^{B} x_b$$
$$v_{batch} = \frac{1}{B} \sum_{1}^{B} (x_b - m_{batch})^2$$

• Normalize and compute output $\forall b = 1 \dots B$

$$z_b = \frac{x_b - m_{batch}}{\sqrt{\nu_{batch} + \epsilon}}$$

$$y_b = \gamma \odot z_b + \beta$$

- γ and β are parameters to optimize

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

Convolutional Network

• A combination of convolution, pooling, ReLU, and fully connected layers

Convolutional Networks

Residual Connections

 Training very deep networks is made possible because of the skip connections in the residual blocks. Gradients can shortcut the layers and pass through without vanishing.

Deep CNNs

ResNet (He et al, 2015)

Sequential Data

- Many types of data are not fixed in size
- Many types of data have a temporal or sequence-like structure
 - Text
 - Video
 - Speech
 - DNA

— ...

- MLP expects fixed size data
- How to deal with sequences?

Sequential Data

- Given a set \mathcal{X} , let $S(\mathcal{X})$ be the set of sequences, where each element of the sequence $x_i \in \mathcal{X}$
 - $-\mathcal{X}$ could reals \mathbb{R}^{M} , integers \mathbb{Z}^{M} , etc.
 - Sample sequence $x = \{x_1, x_2, \dots, x_T\}$
- Tasks related to sequences:
 - Classification $f: S(\mathcal{X}) \to \{ \mathbf{p} \mid \sum_{c=1}^{N} p_i = 1 \}$
 - Generation $f: \mathbb{R}^d \to S(\mathcal{X})$
 - Seq.-to-seq. translation $f: S(\mathcal{X}) \to S(\mathcal{Y})$

- Input sequence $x \in S(\mathbb{R}^m)$ of *variable* length T(x)
- Recurrent model maintains **recurrent state** $h_t \in \mathbb{R}^q$ updated at each time step *t*. For t = 1, ..., T(x):

$$\boldsymbol{h}_{t+1} = \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{h}_t; \theta)$$

– Simplest model:

 $\phi(\boldsymbol{x}_t, \boldsymbol{h}_t; W, U) = \sigma(W \boldsymbol{x}_t + U \boldsymbol{h}_t)$

• Predictions can be made at any time *t* from the recurrent state

$$\boldsymbol{y}_t = \psi(\boldsymbol{h}_t; \theta)$$

Credit: F. Fleuret

Credit: F. Fleuret
Prediction per sequence element

Although the number of steps T(x) depends on x, this is a standard computational graph and automatic differentiation can deal with it as usual. This is known as "backpropagation through time" (Werbos, <u>1988</u>)

Two Stacked LSTM Layers

Bi-Directional RNN

Forward in time RNN Layer

Backward in time RNN Layer

Gating

- Gating:
 - network can grow very deep,
 in time → vanishing gradients.

Critical component: add pass-through (additive paths) so recurrent state does not go repeatedly through squashing non-linearity.

Long Short Term Memory (LSTM)

- Gating:
 - network can grow very deep,
 in time → vanishing gradients.

- *Critical component*: add pass-through (additive paths) so recurrent state does not go repeatedly through squashing non-linearity.
- LSTM:
 - Add internal state separate from output state
 - Add input, output, and forget gating

Comparison on Toy Problem

Learn to recognize palindrome Sequence size between 1 to 10

x	y
(1, 2, 3, 2, 1)	1
(2,1,2)	1
$\left(3,4,1,2 ight)$	0
(0)	1
(1,4)	0

Examples

Neural machine translation

Text-to-speech synthesis

Many Other Architecture Choices

Graph Neural Networks

 $m_{C \rightarrow F}$

 $n_{E \to F}$

- Permutation invariant data with geometric relationships
 - Features can be local on graph, but meaningful anywhere on graph
- Graph layers can encode these relationships on nodes & edges

Transformers & Deep Sets

- **Deep Sets** and **Transformers** can process permutation invariant sets of data
- *Transformers are very adaptable*: Built using layers of *attention*, Excellent at process sequences, but also images, and other data

Physics Inspired Models

QCD Structured Neural Nets

Hamiltonian Neural Nets

Smith, Ochoa, Inacio, Shoemaker, **MK**, <u>2310.12804</u>

Lorentz Equivariance

Lorentz Group Equivariant Block (LGEB)

2201.08187

- Deep neural networks allow learning complex function by hierarchically structuring the feature learning
- We can use our inductive bias (knowledge) to define models that are well adapted to our problem
- Many neural networks structures are available for training models on a wide array of data types.

Backup

People are now building a **new kind of software** by assembling networks of **parameterized functional blocks** and by **training them from examples using some form of gradient-based optimization**. - Yann LeCun, 2018 People are now building a **new kind of software** by assembling networks of **parameterized functional blocks** and by **training them from examples using some form of gradient-based optimization**. - Yann LeCun, 2018

- Non-linear operations of data with parameters
- Layers (set of operations) designed to perform specific mathematical operations
- Chain together layers to perform desired computation
- Train system (with examples) for desired computation using gradient descent

Many Other Architecture Choices

Stacked RNN

Two Stacked LSTM Layers

What if our data has no time structure?

- Data may be variable in length but have no temporal structure → Data are sets of values
- One option: If we know about the data domain, could try to impose an ordering, then use RNN

• *Better option*: use system that can operate on variable length sets in permutation invariant way

– Why permutation invariant \rightarrow so order doesn't matter

60

Examples

Outlier detection

M. Zaheer et. al 2017

Medical Imaging

With more complex architecture

Figure 5. (a) H&E stained histology image. (b) 27×27 patches centered around all marked nuclei. (c) Ground truth: Patches that belong to the class epithelial. (d) Heatmap: Every patch from (b) multiplied by its corresponding attention weight, we rescaled the attention weights using $a'_k = (a_k - \min(\mathbf{a}))/(\max(\mathbf{a}) - \min(\mathbf{a}))$.

M. Ilse et al., 2018

Graph Neural Networks

- Sequential data has single (directed) connections from data at current time to data at next time
- What about data with more complex dependencies

- Adjacency matrix: $A_{ij} = \delta(edge \ between \ vertex \ i \ and \ j)$
- Each node can have features
- Each edge can have features, e.g. distance between nodes

Image Credit: I. Henrion

Image Credit: I. Henrion

Algorithm 1 Message passing neural networkRequire: $N \times D$ nodes x, adjacency matrix A $h \leftarrow \text{Embed}(x)$ for $t = 1, \dots, T$ do $m \leftarrow \text{Message}(A, h)$ $h \leftarrow \text{VertexUpdate}(h, m)$ end forr = Readout(h)return Classify(r)

Quantum chemistry with graph networks

(E

С
Examples

Learning to simulate physics with graph networks

Figure 2. (a) Our GNS predicts future states represented as particles using its learned dynamics model, d_{θ} , and a fixed update procedure. (b) The d_{θ} uses an "encode-process-decode" scheme, which computes dynamics information, Y, from input state, X. (c) The ENCODER constructs latent graph, G^0 , from the input state, X. (d) The PROCESSOR performs M rounds of learned message-passing over the latent graphs, G^0, \ldots, G^M . (e) The DECODER extracts dynamics information, Y, from the final latent graph, G^M .

Transformers

Challenges of Long Sequences

- Gradients may not explode or vanish, but managing a meaningful context over a long sequence is challenging.
- Bottleneck: fixed length array in model with long input

Bi-Directional

RNN Encoder-Decoder

Additive Attention Mechanism

• Idea: allow RNN to look at all the hidden state sequence when producing an output. Output is generated from context *c*

$$c_{i} = \sum_{j=1}^{T} \alpha_{ij} h_{j} \quad \text{where} \quad \alpha_{ij} = softmax (\beta_{ij})_{over j}$$

and
$$\beta_{ij} = U \tanh(Ws_{i-1} + \widetilde{W}h_{j} + b_{i})$$

1409.0473

Transformers

• Idea: Get rid of the RNN and only use attention

Scaled Dot-Product Attention

Attention
$$(Q, K, V) = \operatorname{softmax} \left(\frac{QK^T}{\sqrt{d}} \right) V$$
 where $\begin{array}{c} Q \in \mathbb{R}^{m \times d} \\ K \in \mathbb{R}^{m \times d} \\ V \in \mathbb{R}^{m \times d_v} \end{array}$

- Project the input "query" onto a "key" to compute the weights for the corresponding "value"
- Return the weighted value

mnvd

Scaled Dot-Product Attention

Attention
$$(Q, K, V) = \operatorname{softmax} \left(\frac{QK^T}{\sqrt{d}} \right) V$$
 where $\begin{array}{c} Q \in \mathbb{R}^{m \times d} \\ K \in \mathbb{R}^{m \times d} \\ V \in \mathbb{R}^{m \times d_v} \end{array}$

- Self-Attention: using input X to define Q,K,V
 - $Q = XW_Q K = XW_K V = XW_V$

Image credit: Wikipedia

 $\pi n \sim d$

Attention Computations

• Lets look at a single query

$$\frac{qK^T}{\sqrt{d}} = \left(\frac{\vec{q_1} \cdot \vec{k_1}}{\sqrt{d}}, \frac{\vec{q_1} \cdot \vec{k_2}}{\sqrt{d}}, \cdots, \frac{\vec{q_1} \cdot \vec{k_m}}{\sqrt{d}}\right)_{1 \times m}$$

softmax
$$\left(\frac{qK^T}{\sqrt{d}}\right) = (p_1, p_2, ..., p_m)_{1 \times m} = \vec{p}$$
 where $p_i = \frac{\exp \frac{\vec{q}_1 \cdot \vec{k}_i}{\sqrt{d}}}{\sum_{j=1}^m \exp \frac{\vec{q}_1 \cdot \vec{k}_j}{\sqrt{d}}}$

Attention
$$(q, K, V)$$
 = softmax $\left(\frac{QK^T}{\sqrt{d}}\right)V = \vec{p}V = \sum_{i=1}^n p_i \vec{v}_i$

• Generalize input to length *n*

$$\text{Attention}(Q, K, T) = \begin{pmatrix} p_{11}\vec{v}_1 + p_{12}\vec{v}_2 + \dots + p_{1m}\vec{v}_m \\ p_{21}\vec{v}_1 + p_{22}\vec{v}_2 + \dots + p_{2m}\vec{v}_m \\ \vdots \\ p_{n1}\vec{v}_1 + p_{n2}\vec{v}_2 + \dots + p_{nm}\vec{v}_m \end{pmatrix} = \begin{pmatrix} \sum_i^m p_{1i}\vec{v}_i \\ \sum_i^m p_{2i}\vec{v}_i \\ \vdots \\ \sum_i^m p_{ni}\vec{v}_i \end{pmatrix}_{n \times d_v}$$