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The Plan

* Lecture 1 — Machine Learning Fundamentals
* Lecture 2 — Intro to Neural Networks

* Lecture 3 — Intro to Deep Learning

* Lecture 4 — Intro to Unsupervised Learning

* Lecture 5 — Intro to Deep Generative Models



Deep Learning Resourses

* Deep Learning is a HUGE field
— O(10,000) papers submitted to conferences

* | only condensed some parts of what you
would find in some lectures of a Deep Learning

course
— More details from other lecturers!

* Highly recommend Online-available lectures:
— Francois Fleuret course at University of Geneva
— Gilles Louppe course at University of Liege



https://fleuret.org/dlc/
https://github.com/glouppe/info8010-deep-learning

Deep Neural Networks
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* As data complexity grows, need exponentially large number of
neurons in a single-layer network to capture all structure in data

* Deep networks factorize the learning of structure across layers

« Difficult to train, recently possible with large datasets, fast
computing (GPU/TPU) & new training algs. / network structures



Choosing the right function...

* We know a lot about our data
— What transformations shouldn’t affect predictions
— Symmetries, structures, geometry, ...

* Inductive Bias: we can match models to this knowledge

— Throw out irrelevant functions we know aren’t the solution
— Bias the learning process towards good solutions

Unstructured Models

A/.\ Models with

Inductive Bias



Choosing the right function...




Convolutional Neural Networks




Convolutional Neural Networks

* When the structure of data includes “invariance to
translation”, a representation meaningful at a
certain location can / should be used everywhere

* Convolutional layers build on this 1dea, that the
same “local” transformation 1s applied everywhere
and preserves the signal structure

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

1D Convolutional Layer Example
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Fleuret, Deep Learning Course



https://fleuret.org/dlc/

1D Convolutional Layers

10

e Data: x € RM
« Convolutional kernel of width k: 1 € R¥

e Convolution x & u is vector of size M-k+1

k-1

(x®u); = 2 Xi+pUp

b=0

* Scan across data and multiply by kernel elements



Convolutional Filters .

Convolution can implement in particular differential operators, e.g.

(0,0,0,0,1,2,3,4,4,4,4)® (—1,1) = (0,0,0,1,1,1,1,0,0,0).

W®L’1=Jm_

or crude “template matcher”, e.g.

B 1 v .

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

2D Convolution Over Multiple Channels -

Input
Output

Kernel

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

2D Convolution Over Multiple Channels

Input

Fleuret, Deep Learning Course

Kernel

W-w-+1

H-—h+1

Output



https://fleuret.org/dlc/

2D Convolution Over Multiple Channels

Input
Output

Kernels W-w+1

D
H—-h+1
H hI

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

2D Convolutional Layer

15

* Input data (tensor) x of size CXHXW
— C channels (e.g. RGB in images)

* Learnable Kernel u of size CxhXw
— The size hXw is the receptive field

C-1h-1w-1

(x® u)l] E(xc@)uc)u Zzzxcn+lm+]ucnm

c=0n=0m=0

* Output size (H—h+ ))x(W —w + 1) for each kernel
— Often called Activation Map or Output Feature Map
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Stride — Step Size When Moving Kernel Across Input

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Padding — Size of Zero Frame Around Input

17

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Dilation
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Shared Weights: Economic and Equivariant

19

 Parameters are shared by each neuron producing an
output in the activation map

» Dramatically reduces number of weights needed to
produce an activation map

— Data: 256x256%x3 RGB image
— Kernel: 3x3x3 = 27 weights

— Fully connected layer:
« 256X256X3 inputs = 256x256x%3 outputs = 0(101%) weights

Y. LeCun et. al. 1998


https://ieeexplore.ieee.org/document/726791

Shared Weights: Economic and Equivariant
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 Parameters are shared by each neuron producing an
output in the activation map

» Dramatically reduces number of weights needed to
produce an activation map

 Convolutional layer does pattern matching at any
location = Equivariant to translation

. = RESEARCH

) R
-

—
‘ I
S =
T

-
el ==
o“! S——

-
T
il ==
l‘ ‘-
~ Pty
4 ==

—

~
i

4
(5]

Y. LeCun et. al. 1998


https://ieeexplore.ieee.org/document/726791

Pooling 21

* In each channel, find max or average value of
pixels in a pooling area of size hxw

Input

Output

rw

sh

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Pooling 2

* In each channel, find max or average value of
pixels in a pooling area of size hxw

e [nvariance to

permutation within input

pooling area L

* Invariance to local
perturbations Output T

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Normalization N

* Maintaining proper statistics of the activations and derivatives is
a critical issue to allow the training of deep architectures

“Training Deep Neural Networks is complicated by the fact that
the distribution of each layer’s inputs changes during training,
as the parameters of the previous layers change. This slows
down the training by requiring lower learning rates and careful
parameter initialization ...”

loffe, Szegedy,
Batch Normalization, ICML 2015

Wu, He, Group Normalization, CoRR 2018



Batch Normalization 5

* During training, batch normalization shifts and rescales
according to the mean and variance estimated on the batch.

— During test, use empirical moments estimated during training

* Per-component mean and variance on the batch

B
1
Mpatch = B Xb
b=1

1 B
— 2
Ubatch = E § (xb - mbatch)
1

* Normalize and compute output Vb =1 ...B

081

_ Xp — Mpqatch
Zb - + Ao o
\/vbatch € 0.6;:‘ ,*I
= = =Inception
o - = BN-Baseline
0.5(-1 - BN-x5
= : —— BN-x30
yb - VQZb + ﬁ 4 + BN—iS—Sigmoid
: 4 Steps to match Inception
o4 5M 10M 15M 20M 25M 30M

d . . Figure 2: Single crop validation accuracy of Inception
- y an ﬁ are parameters tO Optl mize and its batch-normalized variants, vs. the number of

training steps.



Convolutional Network N

* A combination of convolution, pooling, Rel U,
and fully connected layers

convolution linear max convolution
rectification pooling

convolution layer pooling layer



Convolutional Networks

26
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Residual Connections

* Training very deep networks is made possible
because of the skip connections in the residual
pblocks. Gradients can shortcut the layers and
nass through without vanishing.

Activation function Activation function
A
f(x) + x
X
f(x) f(x)
——————————————————————————————
| I | I
I Weight layer : I Weight layer :
I I
[ 4 : | ) :
| | Activation function | | ! Activation function |
I I

: t I : A I
| Weight layer : | Weight layer :
: } | : 4 |

X x



https://d2l.ai/
https://glouppe.github.io/info8010-deep-learning/?p=lecture3.md

Deep CNNs

28

| Global Average Pool |

| 3x3 Max Pooling |
*

| Batch Norm |

)
| 7x7 Conv |

ResNet

(He et al, 2015)
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https://arxiv.org/abs/1905.11946

Recurrent Neural Networks

29




Sequential Data

30

* Many types of data are not fixed in size

* Many types of data have a temporal or
sequence-like structure

— Text

— Video
— Speech
— DNA

* MLP expects fixed size data

* How to deal with sequences?



Sequential Data .

* Given a set X, let S(X) be the set of
sequences, where each element of the

sequence x; € X
— X could reals RM, integers ZM, etc.
— Sample sequence x = {x4, x5, ..., X1}

» Tasks related to sequences:
— Classification SO ->{p|X¥ p; =1}
— Generation f: R* > S(X0)
— Seq.-to-seq. translation f: S(X) = S(Y)

Credit: F. Fleuret


https://fleuret.org/dlc/

Recurrent States N

* Input sequence x € S(R™) of variable length T (x)

* Recurrent model maintains recurrent state h, € R4
updated at each time step t. Fort =1,...,T(x):

hiy1 = ¢(x¢, he; 0)

— Simplest model:

¢(xt, ht, W, U) — O-(Wxt ‘I‘ Uht)

* Predictions can be made at any time t from the
recurrent state

Y: = Y(hs; 0)

Credit: F. Fleuret


https://fleuret.org/dlc/

Recurrent Neural Networks
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ho

Credit: F. Fleuret

h



https://fleuret.org/dlc/

Recurrent Neural Networks
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https://fleuret.org/dlc/

Recurrent Neural Networks
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Credit: F. Fleuret


https://fleuret.org/dlc/

Recurrent Neural Networks
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[0.98] = Positive Sentiment

Credit: F. Fleuret
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The movie was great

Sentiment
Analysis


https://fleuret.org/dlc/

Recurrent Neural Networks

Prediction per sequence element
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Although the number of steps T'(x) depends on x, this is a standard
computational graph and automatic differentiation can deal with 1t as
usual. This 1s known as “backpropagation through time” (Werbos, 1988)

Credit: F. Fleuret



https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-12-1-RNN-basics.pdf

Stacked RNN
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X1.1 |_ RNN ﬁhl:T

RNN

(2)
h'l:T

RNN

(V)
hl:T




Stacked RNN
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Two Stacked LSTM Layers

»®@ = r® $@ h(TZ_) ¢@ h(TZ)
hg ® % hy '7_ ® > % hr_4 ® hr
X1 x2 XT —1 AT
Z 2

2"d RNN Layer

1t RNN Layer



Bi-Directional RNN

—>
Forward in time RNN Layer
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Backward in time RNN Layer
6—-



Gating "

* Gating: @ Pl @

— network can grow very deep,

in time = vanishing gradients.

— Critical component: add pass-through (additive paths)
so recurrent state does not go repeatedly through
squashing non-linearity.

Credit: Gilles Louppe


https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

Long Short Term Memory (LSTM) -

* Gating: @ Pl @

— network can grow very deep,

in time = vanishing gradients.

— Critical component: add pass-through (additive paths)
so recurrent state does not go repeatedly through
squashing non-linearity.

» LSTM: ()
— Add internal state separate G!D 5 G:D *
from output state ? L
— Add input, output, and @ Tt @

forget gating @

Credit: Gilles Louppe


https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf

Comparison on Toy Problem ;

0.7 - —— RNN
- ==~ Stacked RNN
Learn to recognize palindrome R\ —-=- BiRNN
Sequence size between 1 to 10 _ 0.6 - — LSTM
x y g
@ 0.5 -
(1,2,3,2,1) 1 3
(2,1,2) 1 S ..
(3,4,1,2) 0 |
(0) 1
(1,4) 0 0.3-
0 5 10 15 20 25
Epoch

Slide credit: G. Louppe


https://glouppe.github.io/info8010-deep-learning/?p=lecture6.md

Examples
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Y. Wu et al, 2016

Neural machine translation

Y,, >y, > —> </s>
- L3 .y
A T T PR e P ; Rt
/ Encoder LSTMs ; *
GPU8
8ilayers
GPU3
GPU2
GPU2
GPU1
Encoder @ Il 601 el 62 1—> O3 Pl 04 [l O [Em==ri O
Decoder do —_— ds e 4 dz A ds

GPU3

GPU2

GPU1



https://arxiv.org/abs/1609.08144

Examples
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Text-to-speech synthesis

Mel Spectrogram

5 Conv Layer
Post-Net

T

Waveform
Samples

*

WaveNet

l [ Linear

MoL

" J

[ 2 Layer I l 2 LSTM __Projection
Pre-Net Layers ST

Stop Token

i) | Projection |

Location

Sensitive
Attention

T A Character 3 Conv
P Embedding Layers

Shen et al., 2017

Bidirectional
LSTM



https://arxiv.org/abs/1712.05884
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Many Other Architecture Choices



Graph Neural Networks .

Permutation invariant data
with geometric relationships

— Features can be local on graph,
but meaningful anywhere on graph

T wan

Graph layers can encode these
relationships on nodes & edges

Sanchez-Gonzalez et al. 2020
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https://arxiv.org/abs/2002.09405

Transformers & Deep Sets p

* Deep Sets and Transformers can process
permutation invariant sets of data

» Transformers are very adaptable:
Built using layers of attention, TN
“xcellent at process sequences, B E =L
put also images, and other data -
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Physics Inspired Models -

QCD Structured Neural Nets

1702.00748 ° Hamiltonian Neural Nets
1711.02633 ¥y =
.', ’ '.. ) — : P
Y ’H ‘ LA V > ) . I’:l — D »pn
i < ; \ . » . » =i X

1906.01563

Differentiable Vertexing

NDIVE . .
Weigt vereex Lorentz Equivariance
Predictor —> % — Fitter
Weights pl+1 xlt1
l 7] —_—
Vertex
l —
* Jet Flavour
Track Track Params at SV Track B Classifier [ ¢ ] [ ¢x ]
Extrapolator / Processor
e
Track Params at PV | , Track Origin
Classifier
Per Track
* Concat.
Track
Processor |, Track Pair h! x!
Classifier

D MLP (] Sum Pooling @ Minkowski Norm &

Inner Product
Smith, Ochoa, Inacio,
Shoemaker, MK, 2310.12804

Lorentz Group Equivariant Block (LGEB)
2201.08187


https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1711.02633
https://arxiv.org/abs/2201.08187
https://arxiv.org/abs/1906.01563
https://arxiv.org/abs/2310.12804

Summary

50

* Deep neural networks allow learning complex
function by hierarchically structuring the
feature learning

* We can use our inductive bias (knowledge) to
define models that are well adapted to our
problem

* Many neural networks structures are available
for training models on a wide array of data

types.
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Backup



Modern Neural Networks .

People are now building a new kind of software by
assembling networks of parameterized functional
blocks and by training them from examples using

some form of gradient-based optimization.
-Yann LeCun, 2018



Modern Neural Networks

53

People are now building a new kind of software by
assembling networks of parameterized functional
blocks and by training them from examples using

some form of gradient-based optimization.
-Yann LeCun, 2018

* Non-linear operations of data with parameters

* Layers (set of operations) designed to perform specific
mathematical operations

 Chain together layers to perform desired computation

* Train system (with examples) for desired computation
using gradient descent



Many Other Architecture Choices
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Deep Sets

~

/ Graph Neural Networks

~t X
;= (A7)

m? ;= O'(A,Jff?]t)
ht = GRU(h{ L, Ty,

~

Image Credit: I. Henrion

/

Attention
weights
Input hay
Value

Output

Attention and Transformers \

Vi,

/

L + More...

C
Attention(Q, K, V) = softmax(——=—)}


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Stacked RNN
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Two Stacked LSTM Layers

(2) ! 1 (N)
h'l:T RNN hl:T
Zoom in
h(()z) ¢(2) ) r® »®@ ) h(T) : ¢(2) h(T2>
ho o [—>|h1 [ @ 0%"T—1|7‘¢%h7‘
X1 x2 XT—1 xT
Z Z

2"d RNN Layer

1t RNN Layer
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Deep Sets



What if our data has no time structure?

57

» Data may be variable in length but have no
temporal structure = Data are sets of values

* One option: If we know about the data domain,
could try to impose an ordering, then use RNN

* Better option: use system that can operate on
variable length sets in permutation invariant way

— Why permutation invariant = so order doesn’t matter



Deep Sets
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Deep Sets
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Deep Sets
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Deep Sets
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— &

X2

Permutation invariant

/ operation: Sum, Max, ...

— &

Xt




Deep Sets
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Examples
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Medical Imaging

With more complex architecture

Outlier detection

e :
s

) 455

s

1R ,*.“*u"“”
Ep“ﬁ faﬂ‘:" -

(<) (d)

Figure 5. (a) H&E stained histology image. (b) 27x27 patches
centered around all marked nuclei. (c) Ground truth: Patches that
belong to the class epithelial. (d) Heatmap: Every patch from (b)
multiplied by its corresponding attention weight, we rescaled the
attention weights using aj, = (ax —min(a))/(max(a) —min(a)).

M. llse et al., 2018

black hair &
brown hair

. Zaheer et. al 2017


https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1802.04712
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Graph Neural Networks



Graph Data .

h

 Sequential data has single (directed) connections
from data at current time to data at next time

» What about data with more complex
dependencies

Image Credit: |. Henrion Image credit: N. Wang et al., 2018


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf
https://arxiv.org/abs/1804.01654

Graphs
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Edge

|

Vertex / node

* Adjacency matrix: A;; = §(edge between vertex i and j)
* Each node can have features

 Each edge can have features, e.g. distance between nodes

Image Credit: |. Henrion


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing
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Image Credit: |. Henrion


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing
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Image Credit: |. Henrion



https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing
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mG—F

myF

Image Credit: |. Henrion


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing
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m;_,; = o(A;m;)

ht = GRU(h' 1, X;m!

_[—)I

Image Credit: |. Henrion

)


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Neural Message Passing
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Algorithm 1 Message passing neural network

Require: N x D nodes x, adjacency matrix A
h «<—Embed(x)

fort=1,..., T do
m < Message(A, h)
h < VertexUpdate(h, m)
end for
r = Readout(h)
return Classify(r)

Image Credit: |. Henrion


https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf

Examples
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Quantum chemistry with graph networks

N CH3© z-12, z 2 |
DD - D,
OH 1" 12 in
© /_/=° D Dy Dy, Dy,
J : :
o D, Dp D,,

Feedback loop

Gaussian expansion
@ Hyperbolic tangent
@ Element-wise product

®/ @ Element-wise sum

- jn“((w"n‘-l‘)
> (wedyent)) |

Schutt et al. 2017

Mean abs. error (kcal mol™ ")

Total energy (kcal mor) &

Molecules with = 20 atoms

T
100 200



https://www.nature.com/articles/ncomms13890

Examples
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Learning to simulate physics with graph networks

(@ X'

(b) ENCODER

— (0

X—

(¢) Construct graph

© X
© & . e?.j
¢ © X; \A
¢ © ¢
<

Learned simulator, sy

G

DECODER

G.M >

o —1
GN? PROCESSOR
>(+ Gl S GM—l r
(d) Pass messages
m+1
&‘i’ e k'::’ez 1+
i I ’V = f:k l.;v:n+1
# A #
k L

_>Y

(e)  Extract dynamics info
C

C
@ —> [ )
VzM © € Yi

¢ © ¢
C

Figure 2. (a) Our GNS predicts future states represented as particles using its learned dynamics model, dy, and a fixed update procedure.
(b) The dp uses an “encode-process-decode” scheme, which computes dynamics information, Y, from input state, X . (¢) The ENCODER
constructs latent graph, G°, from the input state, X . (d) The PROCESSOR performs M rounds of learned message-passing over the latent

graphs, G°, . ..

Sanchez-Gonzalez et al. 2020

: " Eopa (e) The DECODER extracts dynamics information, Y, from the final latent graph, GG g


https://arxiv.org/abs/2002.09405
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Transformers



Challenges of Long Sequences .

 Gradients may not explode or vanish, but managing a
meaningful context over a long sequence is challenging.

» Bottleneck: fixed length array in model with long input

Bi-Directional RNN Encoder-Decoder
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Additive Attention Mechanism

* Idea: allow RNN to look at all the hidden state sequence when
producing an output. Output is generated from context c

— \'T —
Ci = j=1 (leh] where aij = Softmax(ﬁij)overj

and 'BU =U tanh(WSi_l + Wh] + bl)

reement

el
7}
c

Ry
(9]

in
August
1992
<end>

accord

. : zone
10H — RNNsearch-50 f................ e S ] éconorlnique
----- RNNsearch-30 | : o NN europeenne

N - a

3P == RNNemes0 o S T |
- RNNenc-30 [ : :
I

BLEU score

été

signé

1 1 L 1
0 10 20 30 40 50 60 en

ao(t
Sentence length
K ) 1992

<end>

1409.0473


https://arxiv.org/abs/1409.0473
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Transformers

* Idea: Get rid of the RNN and only use attention

ﬁ Layer Norm.

ﬁ Feed-Forward g 7

ﬁ Layer Norm. Q

Attention

o > o

ﬁ Multi-Head

—

ﬁ Layer Norm. g

—

Multi-Head
Attention

SINE

Encoder

ﬁmoom-mogm&g /

ﬁ Layer Norm. w

Masked

Multi-Head >
; S
Attention Wu
I =
Z
___________________________________________ x

k=)

5}



Scaled Dot-Product Attention .

Q = Rn.xd
' Q K* ” mXxd
Attention (Q, K, V') = softmax V where K € R™*¢
\/E V € R"”de
Query Key Value
a (1) U1
I/ nxd \km) mxd Um mXdy

» Project the input “query” onto a “key” to compute the
weights for the corresponding “value”

 Return the weighted value



Scaled Dot-Product Attention .

Q c R" X d
) V where K € RmXxd
V € R'n‘z.xdv

QK"
Vd

Attention (Q, K, V') = softmax (

« Self-Attention: using input X to define Q,K,V

(A) attention

X = "that" 6
> . R—
X a = soft
O weights
X " — -
X R Context q K A
—— = Q| | . o
1 5 il - . W,) * (XW;
g > E softmax (2Wq) * ( ) XW,
+/100
S
a 6 Legend
E wv V = XW x = word vector for "that"
—— - Bl > E v A = 3 neural networks in parallel
[ E— a = vector of soft weights for "that".
300 wide 9 — = softmax( XW XW T / sqrt(100) )
100 wide : Bl

X = word vectors stacked together as

Wiki[gedia sentence matrix


https://en.wikipedia.org/wiki/Attention_(machine_learning)

Attention Computations
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» Lets look at a single query

qKT: G-k G- ks @y - km
\/a \/(—1 | \/(—1 | | \/E 1xm

q1-k;

gK* XPVa

softmax (W) - (plaPZa “'aan)len — ﬁ where Pi =

K']' n
Attention(q, K, V') = softmax (Q ) V =pV = Z Div;
Vd i=1
* Generalize input to length n
pllﬁl + P12772 + -+ plm,777n Z;"’ pliﬁi

- - . m —
P21V1 + P22U2 + -+ + P2amUm > i P2t

Attention(Q, K, T) =

. - - m o
Pn1U1 + Pn2V2 + ** + PrmUm ZL PniVq nxd,

T'TL (TIE
D j—1€Xp _l\/E



