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The Plan

• Lecture 1 – Machine Learning Fundamentals

• Lecture 2 – Intro to Neural Networks

• Lecture 3 – Intro to Deep Learning

• Lecture 4 – Intro to Unsupervised Learning

• Lecture 5 – Intro to Deep Generative Models
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Deep Learning Resourses

• Deep Learning is a HUGE field
–O(10,000) papers submitted to conferences

• I only condensed some parts of what you 
would find in some lectures of a Deep Learning 
course
–More details from other lecturers!

• Highly recommend Online-available lectures:
– Francois Fleuret course at University of Geneva
– Gilles Louppe course at University of Liege
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https://fleuret.org/dlc/
https://github.com/glouppe/info8010-deep-learning


Deep Neural Networks

• As data complexity grows, need exponentially large number of 
neurons in a single-layer network to capture all structure in data

• Deep networks factorize the learning of structure across layers

• Difficult to train, recently possible with large datasets, fast 
computing (GPU/TPU) & new training algs. / network structures 
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Choosing the right function… 5

TargetUnstructured Models Models with
Inductive Bias

• We know a lot about our data
– What transformations shouldn’t affect predictions
– Symmetries, structures, geometry, …

• Inductive Bias: we can match models to this knowledge
– Throw out irrelevant functions we know aren’t the solution
– Bias the learning process towards good solutions



Choosing the right function… 6

Image credit: Michael Bronstein



Convolutional Neural Networks 7



Convolutional Neural Networks

• When the structure of data includes “invariance to 
translation”, a representation meaningful at a 
certain location can / should be used everywhere
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Fleuret, Deep Learning Course

• Convolutional layers build on this idea, that the 
same “local” transformation is applied everywhere 
and preserves the signal structure

https://fleuret.org/dlc/


1D Convolutional Layer Example 9

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


1D Convolutional Layers

• Data:                                                  𝑥 ∈ ℝ!

• Convolutional kernel of width k:      𝑢 ∈ ℝ"  

• Convolution 𝑥 ⊛ 𝑢 is vector of size M-k+1
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• Scan across data and multiply by kernel elements 



Convolutional Filters 11

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolution Over Multiple Channels 12

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolution Over Multiple Channels 13

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolution Over Multiple Channels 14

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


2D Convolutional Layer

• Input data (tensor) x of size C×𝐻×𝑊 
– C channels (e.g. RGB in images)

• Learnable Kernel u of size C×ℎ×𝑤 
– The size ℎ×𝑤 is the receptive field
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• Output size (𝐻 − ℎ + 1)×(𝑊 −𝑤 + 1) for each kernel 
– Often called Activation Map or Output Feature Map
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Stride – Step Size When Moving Kernel Across Input 16

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Padding – Size of Zero Frame Around Input 17

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Dilation 18



Shared Weights: Economic and Equivariant

• Parameters are shared by each neuron producing an 
output in the activation map

• Dramatically reduces number of weights needed to 
produce an activation map
– Data: 256×256×3 RGB image
– Kernel: 3×3×3 → 27  weights
– Fully connected layer:

• 256×256×3 inputs à 256×256×3 outputs à 𝑂(10!") weights
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Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791


Shared Weights: Economic and Equivariant

• Parameters are shared by each neuron producing an 
output in the activation map

• Dramatically reduces number of weights needed to 
produce an activation map

• Convolutional layer does pattern matching at any 
location à Equivariant to translation
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Y. LeCun et. al. 1998

https://ieeexplore.ieee.org/document/726791


Pooling

• In each channel, find max or average value of 
pixels in a pooling area of size ℎ×𝑤
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Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Pooling

• In each channel, find max or average value of 
pixels in a pooling area of size ℎ×𝑤
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Fleuret, Deep Learning Course

• Invariance to 
permutation within 
pooling area

• Invariance to local 
perturbations

https://fleuret.org/dlc/


Normalization

• Maintaining proper statistics of the activations and derivatives is 
a critical issue to allow the training of deep architectures

“Training Deep Neural Networks is complicated by the fact that 
the distribution of each layer’s inputs changes during training, 
as the parameters of the previous layers change. This slows 
down the training by requiring lower learning rates and careful 
parameter initialization …”
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Ioffe, Szegedy, 
Batch Normalization, ICML 2015

Wu, He, Group Normalization, CoRR 2018



Batch Normalization
• During training, batch normalization shifts and rescales 

according to the mean and variance estimated on the batch.
– During test, use empirical moments estimated during training

• Per-component mean and variance on the batch

• Normalize and compute output ∀𝑏 = 1…𝐵

– 𝛾 and 𝛽 are parameters to optimize
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Convolutional Network

• A combination of convolution, pooling, ReLU, 
and fully connected layers
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Convolutional Networks 26

LeNet
(LeCun et al, 1998)

AlexNet
(Krizhevsky et al, 2012)

ImageNet Classification



Residual Connections

• Training very deep networks is made possible 
because of the skip connections in the residual 
blocks. Gradients can shortcut the layers and 
pass through without vanishing.
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Credits: Deep Dive in Deep Learning , and G. Louppe

https://d2l.ai/
https://glouppe.github.io/info8010-deep-learning/?p=lecture3.md


Deep CNNs 28

ResNet 
(He et al, 2015)

1905.11946

https://arxiv.org/abs/1905.11946


Recurrent Neural Networks 29



Sequential Data

• Many types of data are not fixed in size

• Many types of data have a temporal or 
sequence-like structure
– Text
– Video
– Speech
– DNA
– …

• MLP expects fixed size data

• How to deal with sequences?
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Sequential Data

• Given a set 𝒳, let 𝑆 𝒳  be the set of 
sequences, where each element of the 
sequence 𝑥# ∈ 𝒳
– 𝒳	could reals ℝ-, integers ℤ-, etc.
– Sample sequence 𝑥 = {𝑥., 𝑥/, … , 𝑥0}

• Tasks related to sequences:
– Classification                 𝑓: 	𝑆 𝒳 → {𝒑	| ∑12.3 𝑝4 = 1}
– Generation                    𝑓:	ℝ5 → 𝑆 𝒳
– Seq.-to-seq. translation  𝑓: 	𝑆 𝒳 → 𝑆 𝒴
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Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent States

• Input sequence 𝑥 ∈ 𝑆(ℝ!) of variable length 𝑇(𝑥)

• Recurrent model maintains recurrent state 𝒉" ∈ ℝ# 
updated at each time step 𝑡.  For 𝑡 = 1,… , 𝑇 𝑥 :

𝒉"$% = 𝜙(𝒙", 𝒉"; 𝜃)

– Simplest model: 

𝜙 𝒙! , 𝒉!;𝑊, 𝑈 = 𝜎(𝑊𝒙! + 𝑈𝒉!)

• Predictions can be made at any time 𝑡 from the 
recurrent state

𝒚" = 𝜓(𝒉"; 𝜃)
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Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 33

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 34

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 35

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 36

The movie was great

[0.98] à Positive Sentiment

Sentiment
Analysis

Credit: F. Fleuret

https://fleuret.org/dlc/


Recurrent Neural Networks 37

Credit: F. Fleuret

Prediction per sequence element

Although the number of  steps 𝑇(𝑥) depends on 𝑥, this is a standard 
computational graph and automatic differentiation can deal with it as 
usual. This is known as “backpropagation through time” (Werbos, 1988)

https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-12-1-RNN-basics.pdf


Stacked RNN 38

𝒙!:#

𝒘

𝑹𝑵𝑵 𝒉!:# 𝑹𝑵𝑵 𝒉!:%
(𝟐) … 𝑹𝑵𝑵 𝒉!:%

(𝑵)



Stacked RNN 39
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Bi-Directional RNN 40
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• Gating:
– network can grow very deep, 

in time à vanishing gradients. 
– Critical component: add pass-through (additive paths) 

so recurrent state does not go repeatedly through 
squashing non-linearity. 

Gating 41

Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf


• Gating:
– network can grow very deep, 

in time à vanishing gradients. 
– Critical component: add pass-through (additive paths) 

so recurrent state does not go repeatedly through 
squashing non-linearity. 

• LSTM: 
– Add internal state separate 

from output state
– Add input, output, and 

forget gating

Long Short Term Memory (LSTM) 42
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Credit: Gilles Louppe

https://glouppe.github.io/info8010-deep-learning/pdf/lec5.pdf


Comparison on Toy Problem 43

Learn to recognize palindrome
Sequence size between 1 to 10

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture6.md


Examples 44

Y. Wu et al, 2016

https://arxiv.org/abs/1609.08144


Examples 45

Shen et al., 2017

https://arxiv.org/abs/1712.05884


Many Other Architecture Choices
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Graph Neural Networks

• Permutation invariant data 
with geometric relationships
– Features can be local on graph, 

but meaningful anywhere on graph

• Graph layers can encode these 
relationships on nodes & edges
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Sanchez-Gonzalez et al. 2020

https://arxiv.org/abs/2002.09405


Transformers & Deep Sets

• Deep Sets and Transformers can process 
permutation invariant sets of data

• Transformers are very adaptable: 
Built using layers of attention, 
Excellent at process sequences, 
but also images, and other data
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Physics Inspired Models 49

1702.00748
1711.02633

2201.08187

1906.01563

QCD Structured Neural Nets
Hamiltonian Neural Nets

Lorentz Equivariance
Differentiable Vertexing

Smith, Ochoa, Inacio, 
Shoemaker, MK, 2310.12804

https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1711.02633
https://arxiv.org/abs/2201.08187
https://arxiv.org/abs/1906.01563
https://arxiv.org/abs/2310.12804


Summary

• Deep neural networks allow learning complex 
function by hierarchically structuring the 
feature learning

• We can use our inductive bias (knowledge) to 
define models that are well adapted to our 
problem

• Many neural networks structures are available 
for training models on a wide array of data 
types.
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Backup

51



Modern Neural Networks 52

People are now building a new kind of software by 
assembling networks of parameterized functional 
blocks and by training them from examples using 
some form of gradient-based optimization.   
        - Yann LeCun, 2018



Modern Neural Networks

• Non-linear operations of data with parameters

• Layers (set of operations) designed to perform specific 
mathematical operations

• Chain together layers to perform desired computation

• Train system (with examples) for desired computation 
using gradient descent

53

People are now building a new kind of software by 
assembling networks of parameterized functional 
blocks and by training them from examples using 
some form of gradient-based optimization.   
        - Yann LeCun, 2018



Many Other Architecture Choices 54

Image Credit: I. Henrion

Graph Neural NetworksDeep Sets

Attention and Transformers

+ More…

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Stacked RNN 55
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Deep Sets

56



What if our data has no time structure? 

• Data may be variable in length but have no 
temporal structure à Data are sets of values 

• One option: If we know about the data domain, 
could try to impose an ordering, then use RNN

• Better option: use system that can operate on 
variable length sets in permutation invariant way

– Why permutation invariant à so order doesn’t matter
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Deep Sets 58
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Deep Sets 59
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Deep Sets 60
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Deep Sets 61
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Deep Sets 62
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Examples 63

M. Zaheer et. al 2017

Outlier detection

Medical Imaging

M. Ilse et al., 2018

With more complex architecture

https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1802.04712


Graph Neural Networks
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Graph Data

• Sequential data has single (directed) connections 
from data at current time to data at next time

• What about data with more complex 
dependencies  
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x1 x2 x3 xT…

Image Credit: I. Henrion Image credit: N. Wang et al., 2018

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf
https://arxiv.org/abs/1804.01654


Graphs

• Adjacency matrix: 𝐴!* = 𝛿(𝑒𝑑𝑔𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑣𝑒𝑟𝑡𝑒𝑥	𝑖	𝑎𝑛𝑑	𝑗)

• Each node can have features

• Each edge can have features, e.g. distance between nodes
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Vertex / node

Edge

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 67

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 68

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 69

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 70

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Neural Message Passing 71

Image Credit: I. Henrion

https://indico.physics.lbl.gov/event/546/contributions/1289/attachments/1180/1312/ihenrion-ml4jets.pdf


Examples 72

Schutt et al. 2017

https://www.nature.com/articles/ncomms13890


Examples 73

Sanchez-Gonzalez et al. 2020

https://arxiv.org/abs/2002.09405


Transformers
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Challenges of Long Sequences

• Gradients may not explode or vanish, but managing a 
meaningful context over a long sequence is challenging.

• Bottleneck: fixed length array in model with long input
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RNN Encoder-DecoderBi-Directional



Additive Attention Mechanism

• Idea: allow RNN to look at all the hidden state sequence when 
producing an output. Output is generated from context 𝑐
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1409.0473

𝑐! = ∑*#'D 𝛼!*ℎ*  where  𝛼!* = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝛽!* EFGH	* 

     and  𝛽!* = 𝑈	tanh(𝑊𝑠!&' + M𝑊ℎ* + 𝑏!)

https://arxiv.org/abs/1409.0473


Transformers

• Idea: Get rid of the RNN and only use attention
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Scaled Dot-Product Attention

• Project the input “query” onto a “key” to compute the 
weights for the corresponding “value”

• Return the weighted value

78

where

Query Key Value



Scaled Dot-Product Attention

• Self-Attention: using input 𝑋 to define Q,K,V

𝑄 = 𝑋𝑊&   𝐾 = 𝑋𝑊'   𝑉 = 𝑋𝑊(
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where

Image credit: Wikipedia

https://en.wikipedia.org/wiki/Attention_(machine_learning)


Attention Computations 80

• Lets look at a single query

• Generalize input to length 𝑛


