Introduction to Machine Learning:

Lecture 4 – Unsupervised Learning

TRISEP Summer School July 8-12, 2024 • Lecture 1 – Machine Learning Fundamentals

• Lecture 2 – Intro to Neural Networks

• Lecture 3 – Intro to Deep Learning

• Lecture 4 – Intro to Unsupervised Learning

• Lecture 5 – Intro to Deep Generative Models

Beyond Regression and Classification

Beyond Regression and Classification

- Not all tasks are predicting a label from features, as in classification and regression
- May want to model a high-dim. signal
 - Data synthesis / simulation
 - Density estimation
 - Anomaly detection
 - Denoising, super resolution
 - Data compression

• Often don't have labels \rightarrow Unsupervised Learning

Unsupervised Learning

- Our goal is to study the data density p(x)
- Even w/o labels, aim to characterize the distribution

Probability Models

"Understanding p(x)" – ability to do either or both of these

Probability Models as Sampling a Process

- In many cases, we don't have a theory of the underlying process \rightarrow Can still learn to sample
- Deep learning can be very good at this!

face ~ p(face)

https://thispersondoesnotexist.com/

- Unsupervised learning is more heterogeneous than supervised learning
- Many architectures, losses, learning strategies
- Often constructed so model converges to p(x)
 - Variational inference, Adversarial learning, Self-supervision, ...
- Often framed as modeling the lower dimensional "meaningful degrees of freedom" that describe the data

Original space ${\mathcal X}$

Original space \mathcal{X}

How can we find the "meaningful degrees of freedom" in the data?

Fleuret, Deep Learning Course

- Dimensionality Reduction / Compression
- Can we learn to:
 - 1. Compress the data to a *latent space* with smaller number of dimensions
 - 2. Recover the original data from this latent space?
- Latent space must encode and retain the important information about the data

Find a low dimensional (less complex) representation of the data with a mapping Z=h(X)

• Given data $\{\mathbf{x}_i\}_{i=1...N}$ can we find a directions in features space that explain most variation of data?

- Given data $\{x_i\}_{i=1...N}$ can we find a directions in features space that explain most variation of data?
- Data covariance: $\mathbf{S} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i \bar{\mathbf{x}})^2$

- Given data $\{x_i\}_{i=1...N}$ can we find a directions in features space that explain most variation of data?
- Data covariance: $\mathbf{S} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i \bar{\mathbf{x}})^2$
- Let **u**₁ be the projected direction, we can solve:

- Given data $\{x_i\}_{i=1...N}$ can we find a directions in features space that explain most variation of data?
- Data covariance: $\mathbf{S} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i \bar{\mathbf{x}})^2$
- Let **u**₁ be the projected direction, we can solve:

$$\mathbf{u}_{1}^{*} = \arg \max_{\mathbf{u}_{1}} \mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1} + \lambda (1 - \mathbf{u}_{1}^{T} \mathbf{u}_{1})$$

$$\nabla_{u_{1}} [\mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1} + \lambda (1 - \mathbf{u}_{1}^{T} \mathbf{u}_{1})] = \mathbf{S} \mathbf{u}_{1} - \lambda \mathbf{u}_{1} = 0$$

- Given data $\{x_i\}_{i=1...N}$ can we find a directions in features space that explain most variation of data?
- Data covariance: $\mathbf{S} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i \bar{\mathbf{x}})^2$
- Let **u**₁ be the projected direction, we can solve:

$$\mathbf{u}_{1}^{*} = \arg \max_{\mathbf{u}_{1}} \mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1} + \lambda (1 - \mathbf{u}_{1}^{T} \mathbf{u}_{1})$$
$$\rightarrow \mathbf{S} \mathbf{u}_{1} = \lambda \mathbf{u}_{1}$$
Unit length vector constraint

- Given data $\{x_i\}_{i=1...N}$ can we find a directions in features space that explain most variation of data?
- Data covariance: $\mathbf{S} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i \bar{\mathbf{x}})^2$
- Let **u**₁ be the projected direction, we can solve:

- *Principle components* are the **eigenvectors** of the data covariance matrix!
 - Eigenvalues are the variance explained by that component

PCA Example

PCA Example

First principle component, projects on to this axis have large variance

PCA Example

Second principle component, projects have small variance

• Map a space to itself through a compression

• Map a space to itself through a compression

$$x \to z \to \hat{x}$$

- Encoder: Map from data to a lower dim. latent space
 - Neural network $f_{\theta}(x)$ with parameters θ

• Map a space to itself through a compression

$$x \to z \to \hat{x}$$

- Encoder: Map from data to a lower dim. latent space
 - Neural network $f_{\theta}(x)$ with parameters θ
- **Decoder**: Map from latent space back to data space
 - Neural network $g_{\psi}(z)$ with parameters ψ

Autoencoder Mappings

- Latent space is of lower dimension than data
- Model must learn a "good" parametrization and capture dependencies between components

Autoencoder Loss

$$L(\boldsymbol{\theta}, \boldsymbol{\psi}) = \frac{1}{N} \sum_{n} \left\| x_n - g_{\boldsymbol{\psi}}(f_{\boldsymbol{\theta}}(x_n)) \right\|^2$$

- Loss: mean reconstruction loss (MSE) between data and encoded-decoded data
- Min. over params. of encoder (θ) and decoder (ψ).

Autoencoder Loss

$$L(\boldsymbol{\theta}, \boldsymbol{\psi}) = \frac{1}{N} \sum_{n} \left\| x_n - g_{\boldsymbol{\psi}}(f_{\boldsymbol{\theta}}(x_n)) \right\|^2$$

- Loss: mean reconstruction loss (MSE) between data and encoded-decoded data
- Min. over params. of encoder (θ) and decoder (ψ).
- NOTE: if $f_{\theta}(x)$ and $g_{\psi}(z)$ are linear, optimal solution given by Principle Components Analysis

Deep Autoencoder

- When f_{θ} and g_{ψ} are multiple neural network layers, can learn complex mappings
 - f_{θ} and g_{ψ} can be Fully Connected, CNNs, RNNs, etc.
 - Choice of network structure will depend on data

Deep Convolutional Autoencoder

X (original samples) 721041495906 901597349665 407401313472 f_{θ} and g_{ψ} are five $g \circ f(X)$ (CNN, d = 16) convolutional layers 721041495906 901597849665 407401313472 $g \circ f(X)$ (PCA, d = 16) 721041496900 901397349665 407901313022

The Latent Space

• Can look at latent space to see how the model arranges the data

Interpolating in Latent Space

 $\alpha \in [0,1], \quad \xi(x,x',\alpha) = g((1-\alpha)f(x) + \alpha f(x')).$

Autoencoder interpolation (d = 8)

Can We Generate Data with Decoder?

• Can we sample in latent space and decode to generate data?

Can We Generate Data with Decoder?

• Can we sample in latent space and decode to generate data?

- What distribution to sample from in latent space?
 - Try Gaussian with mean and variance from data

Autoencoder sampling (d = 16) R 8 8 3 2 7 3 4 8 6 3 4 0 9 3 4 6 6 7 5 5 3 5 6 3 1 9 4 8 8 9 4 8 3 8 5

Can We Generate Data with Decoder?

• Can we sample in latent space and decode to generate data?

- What distribution to sample from in latent space?
 - Try Gaussian with mean and variance from data

Autoencoder sampling (d = 16) R 8 8 3 2 7 3 4 8 6 3 4 0 9 3 4 6 6 7 9 5 3 5 6 3 1 9 9 9 8 9 5 8 5 8 5

• Don't know the right latent space density

Fleuret, Deep Learning Course

• Unsupervised learning aims to characterize data, even without distributions

• Often framed as learning the meaningful degrees of freedom of a system

• We saw examples of powerful ways to learn these meaningful degrees of freedom, e.g. linearly with PCA and non-linearly with autoencoders

Backup