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The Plan

• Lecture 1 – Machine Learning Fundamentals

• Lecture 2 – Intro to Neural Networks

• Lecture 3 – Intro to Deep Learning

• Lecture 4 – Intro to Unsupervised Learning

• Lecture 5 – Intro to Deep Generative Models
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Beyond Regression and Classification
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Beyond Regression and Classification

• Not all tasks are predicting a label from features, as in 
classification and regression

• May want to model a high-dim. signal
– Data synthesis / simulation

– Density estimation

– Anomaly detection

– Denoising, super resolution

– Data compression

– …

• Often don’t have labels à Unsupervised Learning
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Unsupervised Learning 5

• Our goal is to study the data density 𝑝(𝑥)

• Even w/o labels, aim to characterize the distribution

Image credit: L. Heinrich



Probability Models 6

"Understanding 𝑝(𝑥)” – ability to do either or both of these 

Image credit: L. Heinrich



Probability Models as Sampling a Process 7

• In many cases, we don’t have a theory of the 
underlying process → Can still learn to sample

• Deep learning can be very good at this!

https://thispersondoesnotexist.com/

face	~	𝑝(face)

https://thispersondoesnotexist.com/


Learning Objective

• Unsupervised learning is more heterogeneous than 
supervised learning

• Many architectures, losses, learning strategies

• Often constructed so model converges to 𝑝(𝑥)
– Variational inference, Adversarial learning, 

Self-supervision, …

• Often framed as modeling the lower dimensional 
“meaningful degrees of freedom” that describe 
the data
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Modeling Data and Meaningful Degrees of Freedom 9

Fleuret, Deep Learning Course

https://fleuret.org/dlc/
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Modeling Data and Meaningful Degrees of Freedom 13

Fleuret, Deep Learning Course

How can we find the “meaningful degrees of 
freedom” in the data?

https://fleuret.org/dlc/


Meaningful Representations

• Dimensionality Reduction / Compression

• Can we learn to:

1. Compress the data to a latent space with smaller 
number of dimensions

2. Recover the original data from this latent space?

• Latent space must encode and retain the 
important information about the data
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Principle Components Analysis
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Dimensionality Reduction

Find a low dimensional (less complex) 
representation of the data with a mapping Z=h(X)
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Principle Components Analysis

• Given data {xi}i=1…N can we find a directions in 
features space that explain most variation of data?
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Principle Components Analysis

• Given data {xi}i=1…N can we find a directions in 
features space that explain most variation of data?

• Data covariance:
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Principle Components Analysis

• Given data {xi}i=1…N can we find a directions in 
features space that explain most variation of data?

• Data covariance:

• Let u1 be the projected direction, we can solve: 
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Principle Components Analysis
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• Given data {xi}i=1…N can we find a directions in 
features space that explain most variation of data?

• Data covariance:

• Let u1 be the projected direction, we can solve: 

Principle Components Analysis

• Principle components are the eigenvectors of the data 
covariance matrix!
– Eigenvalues are the variance explained by that component
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PCA Example 23

[Ng]



PCA Example 24

First principle component, projects on to this axis have large variance
[Ng]



PCA Example 25

Second principle component, projects have small variance
[Ng]



Autoencoders
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Autoencoders

• Map a space to itself through a compression 

𝑥 → 𝑧 → '𝑥
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Data
Latent space

Reconstruction



Autoencoders

• Map a space to itself through a compression 

𝑥 → 𝑧 → '𝑥
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– Encoder: Map from data to a lower dim. latent space
• Neural network 𝑓! 𝑥  with parameters 𝜃 

– Decoder: Map from latent space back to data space
• Neural network 𝑔" 𝑧  with parameters 𝜓 

𝑓! 𝑥



Autoencoders

• Map a space to itself through a compression 

𝑥 → 𝑧 → '𝑥
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– Encoder: Map from data to a lower dim. latent space
• Neural network 𝑓! 𝑥  with parameters 𝜃 

– Decoder: Map from latent space back to data space
• Neural network 𝑔" 𝑧  with parameters 𝜓 

𝑔" 𝑧𝑓! 𝑥



Autoencoder Mappings

• Latent space is of lower dimension than data

• Model must learn a “good” parametrization 
and capture dependencies between components
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Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data 
and encoded-decoded data

• Min. over params. of encoder (𝜃) and decoder (𝜓).

• NOTE: if 𝑓' 𝑥  and 𝑔( 𝑧   are linear, optimal 
solution given by Principle Components Analysis
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Deep Autoencoder 33

𝑥 𝑧 %𝑥	

• When 𝑓' and 𝑔( are multiple neural network 
layers, can learn complex mappings
–  𝑓! and 𝑔" can be Fully Connected, CNNs, RNNs, etc.

– Choice of network structure will depend on data

𝑓(") 𝑔($)𝑓(%) 𝑓($) 𝑔(%) 𝑔(")

𝑓! 𝑔"



Deep Convolutional Autoencoder 34

Fleuret, Deep Learning Course

𝑓! and 𝑔" are five
convolutional layers

https://fleuret.org/dlc/


The Latent Space

• Can look at latent space to see how the model 
arranges the data
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Interpolating in Latent Space 36

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Can We Generate Data with Decoder? 37

• Can we sample in latent space 
and decode to generate data?

Fleuret, Deep Learning Course

https://fleuret.org/dlc/
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Fleuret, Deep Learning Course

• Can we sample in latent space 
and decode to generate data?

• What distribution to sample from 
in latent space?
– Try Gaussian with mean and 

variance from data

https://fleuret.org/dlc/


Can We Generate Data with Decoder?

• Don’t know the right latent space density
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• Can we sample in latent space 
and decode to generate data?

• What distribution to sample from 
in latent space?
– Try Gaussian with mean and 

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Summary

• Unsupervised learning aims to characterize 
data, even without distributions

• Often framed as learning the meaningful 
degrees of freedom of a system

• We saw examples of powerful ways to learn 
these meaningful degrees of freedom, 
e.g. linearly with PCA and non-linearly with 
autoencoders
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Backup
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