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The Plan

* Lecture 1 — Machine Learning Fundamentals
* Lecture 2 — Intro to Neural Networks

* Lecture 3 — Intro to Deep Learning

* Lecture 4 — Intro to Unsupervised Learning

* Lecture 5 — Intro to Deep Generative Models



Beyond Regression and Classification



Beyond Regression and Classification

 Not all tasks are predicting a label from features, as in
classification and regression

* May want to model a high-dim. signal
— Data synthesis / simulation
— Density estimation
— Anomaly detection
— Denoising, super resolution

— Data compression

» Often don’t have labels = Unsupervised Learning



Unsupervised Learning

* Our goal is to study the data density p(x)

* Even w/o labels, aim to characterize the distribution
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Probability Models ;

A process | A formula
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Generating new samples
from randomness

Evaluating the Probability
for a given sample

"Understanding p(x)” — ability to do either or both of these



Probability Models as Sampling a Process

* In many cases, we don’t have a theory of the
underlying process — Can still learn to sample

* Deep learning can be very good at this!

face ~ p(face)

https://thispersondoesnotexist.com/



https://thispersondoesnotexist.com/

Learning Objective ;

» Unsupervised learning is more heterogeneous than
supervised learning

* Many architectures, losses, learning strategies

» Often constructed so model converges to p(x)

— Variational inference, Adversarial learning,
Self-supervision, ...

 Often framed as modeling the lower dimensional
“meaningful degrees of freedom” that describe

the data



Modeling Data and Meaningful Degrees of Freedom
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Modeling Data and Meaningful Degrees of Freedom
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Modeling Data and Meaningful Degrees of Freedom
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Modeling Data and Meaningful Degrees of Freedom
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Modeling Data and Meaningful Degrees of Freedom
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How can we find the “meaningful degrees of
freedom” in the data?
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Meaningful Representations
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* Dimensionality Reduction / Compression

e Can we learn to:

1. Compress the data to a latent space with smaller
number of dimensions

2. Recover the original data from this latent space?

» Latent space must encode and retain the
important information about the data
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Principle Components Analysis



Dimensionality Reduction
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Find a low dimensional (less complex)
representation of the data with a mapping Z=h(X)



Principle Components Analysis
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* Given data {x},_; \can we find a directions in
features space that explain most variation of data?



Principle Components Analysis
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* Given data {x},_; \can we find a directions in
features space that explain most variation of data?

. 1
» Data covariance: S=—> (x; — %)’
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Principle Components Analysis

* Given data {x},_; \can we find a directions in
features space that explain most variation of data?

. 1
Data covariance: S= ) (x; — %)’

Let u, be the projected direction, we can solve:

Variance of projected data Unit length vector constraint
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Principle Components Analysis
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* Given data {x},_; \can we find a directions in
features space that explain most variation of data?

» Data covariance: S=—> (x; — %)’

Let u, be the projected direction, we can solve:

Variance of projected data Unit length vector constraint

A

A
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u} = argmax ul Su; + )\(1 —uluy)
uj

Vo, [uiSu; + A(1 —ujuy) ] =Su; —Auy =0
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Principle Components Analysis

* Given data {x},_; \can we find a directions in
features space that explain most variation of data?

. 1
Data covariance: S= ) (x; — %)’

Let u, be the projected direction, we can solve:

Variance of projected data Unit length vector constraint

A
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u} = argmax ul Su; + )\(1 —uluy)
uj
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Principle Components Analysis
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Given data {x;};_; ycan we find a directions in
features space that explain most variation of data?

. 1
Data covariance: S= ) (x; — %)’

Let u, be the projected direction, we can solve:

Variance of projected data Unit length vector constraint

A

A
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u} = argmax ul Su; + )\(1 —uluy)
uj

— Su; = A\uy

Principle components are the eigenvectors of the data
covariance matrix!

— Eigenvalues are the variance explained by that component



PCA Example
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PCA Example
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First principle component, projects on to this axis have large variance

[Ng]



PCA Example
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Second principle component, projects have small variance

[Ng]



26

Autoencoders



Autoencoders
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* Map a space to itself through a compression

X—>Z-oX

Data Reconstruction
Latent space



Autoencoders N

* Map a space to itself through a compression

X—>Z-oX

— Encoder: Map from data to a lower dim. latent space

 Neural network fy(x) with parameters 6

fo(x)

Encoder
Network —

(conv)




Autoencoders
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* Map a space to itself through a compression

X—>Z-oX

— Encoder: Map from data to a lower dim. latent space

 Neural network fy(x) with parameters 6

— Decoder: Map from latent space back to data space

* Neural network g,,(z) with parameters i

3

—

fo(x)

Encoder
Network

(conv)

9y (z)

Decoder
- = Network |

(deconv)




Autoencoder Mappings .
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» Latent space is of lower dimension than data

* Model must learn a “good” parametrization
and capture dependencies between components
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Autoencoder Loss .

, 2
L(O,)) = Nzuxn - gw(fe (xn))H

* Loss: mean reconstruction loss (MSE) between data
and encoded-decoded data

* Min. over params. of encoder (8) and decoder ().

fo(x) Iy (2)

B R
-y N Encoder b — Decoder — B

Network Network

(conv) (deconv)




Autoencoder Loss
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, 2
L(O,)) = Nzuxn — Yy (fH (xn))H

* Loss: mean reconstruction loss (MSE) between data
and encoded-decoded data

* Min. over params. of encoder (8) and decoder ().

* NOTE: if fo(x) and gy, (2) are linear, optimal
solution given by Principle Components Analysis



Deep Autoencoder

fo Gy

( \ )

* When fy and gy, are multiple neural network
layers, can learn complex mappings

— fo and gy, can be Fully Connected, CNNs, RNNs, etc.

— Choice of network structure will depend on data

=
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Deep Convolutional Autoencoder

X (original samples)
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The Latent Space
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 Can look at latent space to see how the model
arranges the data
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Interpolating in Latent Space
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Can We Generate Data with Decoder?
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« Can we sample in latent space
and decode to generate data?

Fleuret, Deep Learning Course
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Can We Generate Data with Decoder? N

« Can we sample in latent space
g
and decode to generate data? . /\\@

— Latent space &

Original space &

« What distribution to sample from

Autoencoder sampling (d = 16)

in latent space? R 2323353604
— Try Gaussian with mean and 03§37 553480
variance from data 3 ¢HhoR2DLFTSESBE
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Can We Generate Data with Decoder? .

« Can we sample in latent space
g
and decode to generate data? . /\\@

— Latent space &

Original space &

« What distribution to sample from

Autoencoder sampling (d = 16)

in latent space? R 2323353604
— Try Gaussian with mean and 0345237 %5534 60
variance from data 3 ¢HhoR2DLFTSESBE

* Don't know the right latent space density

Fleuret, Deep Learning Course
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Summary
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» Unsupervised learning aims to characterize
data, even without distributions

» Often framed as learning the meaningful
degrees of freedom of a system

» We saw examples of powerful ways to learn
these meaningful degrees of freedom,
e.g. linearly with PCA and non-linearly with
autoencoders
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