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               B      
              but    
           not A

What is probability?
Kolomogorov's axioms:

1) The probability of an event E is a real number P(E)≥0.
2) If two events E

1
 and E

2
 are mutually exclusive, then 

    P(E
1
 or E

2
) = P(E

1
) + P(E

2
)

3) Summing over all possible mutually exclusive outcomes, we 
get

All of probability follows from these axioms ... for example:

A but not B

Both A & B

But what does P mean?
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Interpretations of probability

There are multiple, sometimes mutually exclusive, ways to interpret
probability.  WHICH DO YOU BELIEVE?

1) The frequentist school: Probability is a statement about 
frequency.  If you repeat a measurement 1000 times and get the 
same outcome 200 times, the probability of that outcome is 0.2.

2) The Bayesian school: Probability is a statement about our 
knowledge.   While I say the probability of rain tomorrow is 1/3, 
you may have reason to believe otherwise and may rightfully 
assign a different probability. In this sense probability estimates 
are subjective.
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Problems with the frequentist interpretation

1) We naturally want to talk about the probability of events that are 
not repeatable even in principle.  Tomorrow only happens once---
can we meaningfully talk about it?  Maybe we want to talk about 
the probability of some cosmological parameter, but we only have 
one universe!  A strict interpretation of probability as frequency 
says that we cannot use the concept of probability in this way.

2) Probability depends on the choice of ensemble you compare to. 
The probability of someone in a crowd of people being a physicist 
depends on whether you are talking about a crowd at a hockey 
game, a crowd at a university club, or a crowd at a neutrino 
summer school.

In spite of these conceptual problems, the “frequentist 
interpretation” is the most usual interpretation used in particle 
physics.
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The Bayesian interpretation

This goes most commonly by the name “Bayesian statistics”.  In this 
view probability is a way of quantifying our knowledge of a situation.  
P(E)=1 means that it is 100% certain that E is the case.  Our estimation 
of P depends on how much information we have available, and is 
subject to revision.

The Bayesian interpretation is the cleanest conceptually, and actually is 
the oldest interpretation.  Although it is gaining in popularity in recent 
years, it's still not common in particle physics, although it dominates 
cosmology, GW astronomy, and other fields.  The main objections are:

1) As a statement about our knowledge, Bayesian probabilities are 
“subjective”.  Science is supposed to be an objective subject.
2) It is not always obvious how to quantify the prior state of our 
knowledge upon which we base our probability estimate.

Purely anecdotal personal observation: the most common reason for 
scientists not to be Bayesian is sociological and not scientific.
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Frequentist vs. Bayesian: does it matter?

You might hope that such issues would be of philosophical interest 
only, and as relevant to practice as the hundreds of interpretations 
of QM.

Unfortunately it DOES matter. The interpretive framework 
determines which questions we ask, how we try to answer them, 
and what conclusions we draw.

This mini-course will attempt to make you “bilingual”, comfortable 
in both schools of thought.  In many cases the Bayesian approach 
is simpler to understand.

However, be careful to be clear what interpretation you are using 
and to avoid inconsistency.
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Frequentist vs. Bayesian Comparison

Bayesian Approach
 “The probability of the particle's 

mass being between 1020 and 
1040 MeV is 98%.”

 Considers the data to be known 
and fixed, and calculates 
probabilities of hypotheses or 
parameters.

 Requires a priori estimation of the 
model's likelihood, naturally 
incorporating prior knowledge.

 Well-defined, automated “recipe” 
for handling almost all problems.

 Requires a model of the data.

Frequentist Approach
 “If the true value of the particle's 

mass is 1030 MeV, then if we 
repeated the experiment 100 times 
only twice would we get a 
measurement smaller than 1020 or 
bigger than 1040.”

 Considers the model parameters to 
be fixed (but unknown), and 
calculates the probability of the 
data given those parameters.

 Uses “random variables” to model 
the outcome of unobserved data.

 Many “ad hoc” approaches required 
depending on question being 
asked.  Not all consistent!

 Requires a model of the data.
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Basic mathematics of probability

1) P(A or B) = P(A) + P(B) – P(A & B)

2) Conditional probability:  P(A & B) = P(B) P(A|B).
Read “the probability of B times the probability of A given 
B”.

3) A special case of conditional probability: if A and B are 
independent of each other (nothing connects them), then 

P(A & B) = P(A) P(B)



Bayes' Theorem H = a hypothesis (e.g. “SUSY 
exists at the TeV scale”)
I = prior knowledge or data 
about H
D = the data

P(H|I) = the “prior probability” 
for H

P(D|H,I) = the probability of 
measuring D, given H and I.  
Also called the “likelihood”

P(D|I) = a normalizing 
constant: the probability that D 
would have happened anyway, 
whether or not H is true.

Note: you can only calculate 
P(D|I) if you have a 
“hypothesis space” you're 
comparing to.  A hypothesis is 
only “true” relative to some set 
of alternatives.

This just follows from laws of 
conditional probability---even 
frequentists agree, but they give it a 
different interpretation.
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Example: Triple Screen Test

The incidence of Down's syndrome is 1 in 1000 births.  A triple screen 
test is a test performed on the mother's blood during pregnancy to 
diagnose Down's.  The manufacturer of the test claims an 85% detection 
rate and a 1% false positive rate.

You (or your partner) test positive.  What are the chances that your child 
actually has Down's?
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Discussion: Triple Screen Test

The incidence of Down's syndrome is 1 in 1000 births.  A triple screen 
test is a test performed on the mother's blood during pregnancy to 
diagnose Down's.  The manufacturer of the test claims an 85% detection 
rate and a 1% false positive rate.

You (or your partner) test positive.  What are the chances that your child 
actually has Down's?

Consider 100,000 mothers being tested.  Of these, 100,000/1000=100 
actually carry a Down's child, while 99,900 don't.  For these groups:

85 are correctly diagnosed with Down's.
15 are missed by the test
    999 are incorrectly diagnosed with Down's
98901 are correctly declared to be free of Down's

Fraction of fetuses testing positive who really have the disorder:
 85/(85+999) = 7.8%
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Bayes' Theorem applied
to Down's syndrome
screening

Hypothesis H: fetus has 
Down's syndrome

Data D = a positive test result

P(H|I) = the “prior probability” 
for H = 0.001 (rate in general 
population)

P(D|H,I) = the probability of 
measuring D, given H and I.  
Also called the “likelihood”.  
P(D|H,I)= 0.85 in this case

P(D|I) = a normalizing 
constant: the probability that D 
would have happened anyway, 
whether or not H is true.

= 0.001 x 0.85 + 0.999 x 0.01

= P(H) P(D|H) + P(~H) P(D|~H)
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Probability Distribution Functions

Discrete distribution:  

P(H) = probability of H being true

Ex. H=”rolling two dice gives a total of 7”

Continuous distribution:

P(x) dx = probability that x lies in the range (x, x+dx)

Ex. probability of mean of N measurements being between 5.00 
and 5.01

NORMALIZATION CONDITION:



14

Joint PDFs

Consider a multi-dimensional probability distribution:  P(x,y), 
where X and Y are two random variables.

These have the obvious interpretation that
P(x,y) dx dy = probability that X is the range x to x+dx while 
simultaneously Y is in the range y to y+dy.  This can trivially 
be extended to multiple variables, or to the case where one 
or more variables are discrete and not continuous.

Normalization condition still applies:
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Characterizing PDFs: Basic Descriptive 
Statistics

WHAT IS THIS 
DISTRIBUTION?

Often the probability 
distribution for a quantity 
is unknown.  You may be 
able to sample it with 
finite statistics, however. 

Basic descriptive 
statistics is the procedure 
of encoding various 
properties of the 
distribution in a few 
numbers.
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The Centre of the Data: Mean, Median, & Mode
 Mean of a data set:

Median:  the point with 
50% probability above 
& 50% below.  (If a tie, 
use an average of the 
tied values.)  Less 
sensitive to tails!

Mode: the most likely 
value

Mean of a PDF = 
expectation value 
of x
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Variance V & Standard Deviation (a.k.a. 
RMS)

Variance of a distribution:

Variance of a data sample (regrettably has same notation as 
variance of a distribution---be careful!):

One word of warning: the above formula underestimates the variance 
of the underlying distribution, since it uses the mean calculated from 
the data instead of the true mean  of the true distribution.  

Use this if you know the true mean of 
the underlying distribution.

This is unbiased if you must estimate
the mean from the data.
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Covariance & Correlation
The covariance between two variables is defined by:

This is the most useful thing they never tell you in most lab 
courses!  Note that cov(x,x)=V(x).

The correlation coefficient is a unitless version of the same 
thing:

If x and y are independent variables (P(x,y) = P(x)P(y)), then
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More on Covariance

Correlation 
coefficients for some 
simulated data sets.  

Note the bottom 
right---while 
independent 
variables must have 
zero correlation, the 
reverse is not true!  

Correlation is 
important because it 
is part of the error 
propagation 
equation, as we'll 
see.
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Gaussian Distributions
By far the most useful distribution is the Gaussian (normal) 

distribution:

P(x|μ,σ )=
1

√2 πσ 2
e
−

1
2 ( x−μ

σ )
2

68.27% of area within 1
95.45% of area within 2
99.73% of area within3

Mean = , Variance=2

Note that width scales with .

Area out on tails is important---use 
lookup tables or cumulative 
distribution function.

In plot to left, red area (>2) is 
2.3%.

90% of area within 1.645
95% of area within 1.960
99% of area within2.576
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Why are Gaussian distributions so critical?
• They occur very commonly---the reason is that the average 

of several independent random variables often approaches 
a Gaussian distribution in the limit of large N.

• Nice mathematical properties---infinitely differentiable, 
symmetric.  Sum or difference of two Gaussian variables is 
always itself Gaussian in its distribution.

• Gaussian distribution is often used as a shorthand for 
discussing probabilities.  A “5 sigma result” means a result 
with a chance probability that is the same as the tail area of 
a unit Gaussian:

This way of speaking is used even for non-Gaussian 
distributions!
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The Central Limit Theorem

If X is the sum of N independent random variables x
i
, each taken 

from a distribution with mean 
i
 and variance 

i
2, then the 

distribution for X approaches a Gaussian distribution in the limit of 
large N.  The mean and variance of this Gaussian are given by:



23

The Central Limit Theorem: the caveats
• I said N independent variables!
• Obviously the variables must individually have finite 

variances.
• I've said nothing about how fast the distribution approaches a 

Gaussian as N goes to infinity.  But it can be fast!
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The General Multidimensional Gaussian ...

Parametrized by vector of means  and covariance matrix V.
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Probability content inside a contour ellipse

For a 1D Gaussian exp(-x2/22), the ±1 limits occur when the 
argument of the exponent equals –1/2.  For a Gaussian there's a 
68% chance of the measurement falling within around the mean.

But for a 2D Gaussian this is not the case.  Easiest to see this for 
the simple case of 

x
=

y
=1:

Evaluating this integral and solving gives r
0

2=2.3.  So 68% of
  

 probability content is contained within a radius of √2.3.

We call this the 2D contour.  Note that it's bigger than the 1D 
version---if you pick points inside the 68% contour and plot their 
x coordinates, they'll span a wider range than those picked from 
the 68% contour of the 1D marginalized PDF!

oser
Stamp

oser
Line

oser
Stamp
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
x
=2


y
=1

=0.8

Red ellipse: 
contour with 
argument of 
exponential 
set to equal 
–1/2

Blue ellipse: 
contour 
containing 
68% of 
probability 
content.
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Binomial Distributions
Many outcomes are binary---yes/no, heads/tails, etc.

Example: you flip N unbalanced coins.  Each coin has probability 
p of landing heads.  What is the probability that you get m heads 
(and N-m tails)?

The binomial distribution:

First term: probability of m coins all getting heads

Second term: probability of N-m coins all getting tails

Third term: number of different ways to pick m different coins
from a collection of N total be to heads.
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Binomial distributions

 

Mean = Np

Variance = Np(1-p)

Notice that the mean and 
variance both scale 
linearly with N.  This is 
understandable---flipping 
N coins is the sum of N 
independent binomial 
variables.

When N gets big, the 
distribution looks 
increasingly Gaussian!
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Poisson Distribution

Events happening independently at rate R for time T … 
RT is the mean number of events expected in interval T.  The 
probability of observing k events is then:

P(k|) is called the Poisson distribution.  It is the probability 
of seeing k events that happen randomly at constant rate R 
within a time interval of length T.  
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Properties of the Poisson distribution

Mean = 

Variance = 

Approaches Gaussian 
distribution when  gets 
large.

Note that in this case, 
the standard deviation is 
in fact equal to sqrt(N).
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The 2 distribution
Suppose that you generate N random numbers from a 

Gaussian (normal) distribution with =0, =1:  Z
1
 ... Z

N
.

Let X be the sum of the squared variables:

The variable X follows a 2 distribution with N degrees of 
freedom:

Recall that (N) = (N-1)! if N is an integer.
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Properties of the 2 distribution

A 2 distribution has 
mean=N, and 
variance=2N.
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Properties of the 2 distribution

Since 2 is a sum of N 
independent and 
identical random 
variables, it is true that 
it tends to be 
Gaussian in the limit of 
large N (central limit 
theorem) ...

But the quantity 
sqrt(22) is actually 
much more Gaussian, 
as the plots to the left 
show!  It has mean of 
sqrt(2N-1) and unit 
variance.
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Uses of the 2 distribution

The dominant use of the 2 statistics is for least squares 
fitting.

The “best fit” values of the parameters  are those that 
minimize the 2.  

If there are m free parameters, and the deviation of the 
measured points from the model follows Gaussian 
distributions, then this statistic often should be a 2 with 
N-m degrees of freedom. 

2 is also used to test the goodness of the fit—Pearson's test.
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Limitations of the 2 distribution

The 2 distribution is 
based on the 
assumption of 
Gaussian errors.

Beware of using it in 
cases where this 
doesn't apply.

To the left, the black 
line is the fit while the 
red is the true parent 
distribution.
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Marginalization: reducing the dimensionality of 
a PDF

Often we will want to determine the PDF for just one variable 
without regards to the value of the other variables.  The 
process of eliminating unwanted parameters from the PDF is 
called marginalization.

If P(x,y) is properly normalized, then so is P(x).

Marginalization should very careful be distinguished from 
projection, in which you calculate the distribution of x for fixed 
y:
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PDFs for functions of random variables

Marginalization is related to calculating the PDF of some 
function of random variables whose distributions are known.

Suppose you know the PDFs for two variables X and Y, and 
you then want to calculate the PDF for some function 
Z=f(X,Y).

Basic idea: for all values of Z, 
determine the region for which    
Z < f < Z+dZ.  Then integrate the 
probability over this region to get 
the probability for Z < f < Z+dZ:
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Change of variables: 1D

Suppose we have the probability distribution P(x).  We want 
to instead parametrize the problem by some other 
parameter y, where y=f(x).  How do we get P(y)?

P(x) dx = probability that X is in range x to x+dx

This range of X maps to some range of Y: y to y+dy.  
Assume for now a 1-to-1 mapping.  Probability of X being in 
the specified range must equal the probability of Y being in 
the mapped range.
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Let’s Make a Deal!
https://www.mathwarehouse.com/monty-hall-simulation-online/

https://www.mathwarehouse.com/monty-hall-simulation-online/
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Work this problem in small groups

Suppose that galactic supernovae obey 
Poissonian statistics. The mean number of 
supernovae per century is 3. What is the most 
likely date for the next supernova? What is the 
probability distribution for the length of the interval 
between now and the next galactic supernova?
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EXTRA SLIDES
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Change of variables: 1D example

We are told that the magnitude distribution for a group of 
stars follows P(m) = B exp(m/A) over the range 0<m<10. 
Magnitude relates to luminosity by

What is P(L)?
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Change of variables: 1D example

We are told that the magnitude distribution for a group of 
stars follows P(m) = B exp(m/A) over the range 0<m<10. 
Magnitude relates to luminosity by

What is P(L)?

Start by solving  for L(m) = 10-0.4m.  This will be a lot easier if we 
convert this to L=exp(-0.4*ln(10)*m).  Equivalently:

Now need to equate P(m) dm = P(L) dL, and figure out the 
relation between dm and dL.  So we really need to calculate 
dm/dL. 
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Change of variables: 1D example

Top: P(m), simulated and 
theory
Bottom: P(L), simulated and 
theory

For discussion: when you 
assign probabilities, how do 
you choose the 
parametrization you use?
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Variance and Covariance of Linear 
Combinations of Variables

Suppose we have two random variable X and Y (not necessarily 
independent), and that we know cov(X,Y).

Consider the linear combinations W=aX+bY and Z=cX+dY.  It can 
be shown that

cov(W,Z)=cov(aX+bY,cX+dY) 
              = cov(aX,cX) + cov(aX,dY) + cov(bY,cX) + cov(bY,dY)

 = ac cov(X,X) + (ad + bc) cov(X,Y) + bd cov(Y,Y)
 = ac V(X) + bd V(Y) + (ad+bc) cov(X,Y)

Special case is V(X+Y):
 

V(X+Y) = cov(X+Y,X+Y) = V(X) + V(Y) + 2cov(X,Y)

Very special case: variance of the sum of independent random 
variables is the sum of their individual variances!
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A “bad” distribution: the Cauchy distribution
Consider the Cauchy, or Breit-Wigner, distribution.  Also called a 

“Lorentzian”.  It is characterized by its centroid M and its 
FWHM .

A Cauchy distribution has infinite 
variance and higher moments!

Unfortunately the Cauchy 
distribution actually describes the 
mass peak of a particle, or the 
width of a spectral line, so this 
distribution actually occurs!

Advice: estimate its width with a 
fit, not with an RMS

Cauchy (black) vs. Gaussian (red)
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The sum of two Poisson variables is Poisson
Here we will consider the sum of two independent Poisson 

variables X and Y.  If the mean number of expected 
events of each type are A and B, we naturally would 
expect that the sum will be a Poisson with mean A+B.

Let Z=X+Y.  Consider P(X,Y):

To find P(Z), sum P(X,Y) over all (X,Y) satisfying X+Y=Z
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Poisson vs. Gaussian distribution
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A slightly non-trivial example
Two measurements (X & Y) are drawn from two separate normal 

distributions.  The first distribution has mean=5 & RMS=2.  
The second has mean=3 & RMS=1.  The correlation 
coefficient of the two distributions is = –0.5.  What is the 
distribution of the sum Z=X+Y?
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A slightly non-trivial example
Two measurements (X & Y) are drawn from two separate normal 

distributions.  The first distribution has mean=5 & RMS=2.  
The second has mean=3 & RMS=1.  The correlation 
coefficient of the two distributions is = –0.5.  What is the 
distribution of the sum Z=X+Y?

First, recognize that the sum of two Gaussians is itself 
Gaussian … Gaussians are nice that way!
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A slightly non-trivial example
Two measurements (X & Y) are drawn from two separate normal 

distributions.  The first distribution has mean=5 & RMS=2.  
The second has mean=3 & RMS=1.  The correlation 
coefficient of the two distributions is = –0.5.  What is the 
distribution of the sum Z=X+Y?

Now, recognizing that Z is Gaussian, all we need to figure 
out are its mean and RMS.  First the mean:

This is just equal to 5+3 = 8.
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A slightly non-trivial example
Two measurements (X & Y) are drawn from two separate normal 

distributions.  The first distribution has mean=5 & RMS=2.  
The second has mean=3 & RMS=1.  The correlation 
coefficient of the two distributions is =–0.5.  What is the 
distribution of the sum Z=X+Y?

Now for the RMS.  Use V(Z)=cov(Z,Z)=cov(X+Y,X+Y)

V(Z) = cov(X,X) + 2 cov(X,Y) + cov(Y,Y)
        = 

x
2 + 2

x


y
 + 

y
2

              = (2)(2) + 2(2)(1)(– 0.5) + (1)(1) = 3

So Z is a Gaussian with mean=8 and RMS of =sqrt(3)
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Approximating the peak of a PDF with a 
multidimensional Gaussian

Suppose we have 
some 
complicated-
looking PDF in 
2D that has a 
well-defined 
peak. 

How might we 
approximate the 
shape of this PDF 
around its 
maximum?
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Taylor Series expansion
Consider a Taylor series expansion of the logarithm of the 

PDF around its maximum at (x
0
,y

0
): 

Since we are expanding around the peak, then the first 
derivatives must equal zero, so A=B=0.  The remaining 
terms can be written in matrix form:

In order for (x
0
,y

0
) to be a maximum of the PDF (and not a 

minimum or saddle point), the above matrix must be 
positive definite, and therefore invertible.
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Taylor Series expansion

Let me now suggestively denote the inverse of the above 
matrix by V

ij
.  It's a positive definite matrix with three 

parameters. In fact, it is the covariance matrix!

Exponentiating, we see that around its peak the PDF can 
be approximated by a multidimensional Gaussian.  The 
full formula, including normalization, is

This is a good approximation as long as higher order terms in 
Taylor series are small.
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Why you should be very careful with 
Gaussians ..

The major danger of Gaussians is that they are overused.  
Although many distributions are approximately 
Gaussian, they often have long non-Gaussian tails.  

While 99% of the time a Gaussian distribution will correctly 
model your data, many foul-ups result from that other 
1%.

It's usually good practice to simulate your data to see if the 
distributions of quantities you think are Gaussian really 
follow a Gaussian distribution.

Common example: the ratio of two numbers with Gaussian 
distributions is itself often not very Gaussian (although in 
certain limits it may be).
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CLT: How much is enough?

How many independent variables do you need to add in order to get a 
very good normal distribution?  Difficult question---depends on 
what the component distributions look like.  

Best solution: simulate it.

Possibly useful convergence theorems for identically distributed 
variables:

• convergence is monotonic with N---as N increases the entropy of 
the distribution monotonically increases to approach a normal 
distribution's entropy (remember maximum entropy principles)

• if third central moment is finite, then speed of convergence (as 
measured by the difference between the true cumulative 
distribution and the normal cumulative distribution at a fixed point) 
is at least as fast as 1/sqrt(N).
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More on the binomial distribution
In the limit of large Np, Gaussian approximation is decent so 

long as P(m=0) ≈ P(m=N) ≈ 0, provided you don't care 
much about tails. 

Beware a common error: =sqrt(Np(1-p)), not 
   =sqrt(m)=sqrt(Np).  The latter is only true if p≪1.
The error is not always just the simple square root of the 

number of entries!

Use a binomial distribution to model most processes with 
two outcomes:

• Detection efficiency (either we detect or we don't)
• Cut rejection
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A binomial distribution isn't a Gaussian!

 

Gaussian 
approximation fails 
out on the tails ...
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Negative binomial distribution
In a regular binomial distribution, you decide ahead of time how 

many times you'll flip the coin, and calculate the probability of 
getting k heads.

In the negative binomial distribution, you decide how many heads 
you want to get, then calculate the probability that you have 
to flip the coin N times before getting that many heads.  This 
gives you a probability distribution for N:
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 Calculating a 2 tail probability

You're sitting in a talk, and someone shows a dubious-
looking fit, and claims that the 2  for the fit is 70 for 50 
degrees of freedom.  Can you work out in your head 
how likely it is to get that large of a 2 by chance?

2 = 70/50 dof
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 Calculating a 2 tail probability

You're sitting in a talk, and someone shows a dubious-
looking fit, and claims that the 2  for the fit is 70 for 50 
degrees of freedom.  Can you work out in your head 
how likely it is to get that large of a 2 by chance?

Estimate 1: Mean should be 50, and RMS is 
sqrt(2N)=sqrt(100)=10, so this is a 2 fluctuation.  For a 
normal distribution, the probability content above +2is 
2.3%

More accurate estimate: sqrt(22) = sqrt(140)=11.83.  Mean 
should be sqrt(2N-1)=9.95.  This is really more like a 
1.88 fluctuation. 

It is good practice to always report the P value, whether 
good or bad.
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Multinomial distribution
We can generalize a binomial distribution to the case where there 

are more than two possible outcomes.  Suppose there are k 
possible outcomes, and we do N trials.  Let n

i
 be the number 

of times that the ith outcome comes up, and let p
i  
be the 

probability of getting outcome i in one trial. The probability of 
getting a certain distribution of n

i 
 is then:

Note that there are important constraints on the parameters:
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An aside on dealing with binned data
Very often you're going to deal with binned data.  Maybe 

there are too many individual data points to handle 
efficiently. Maybe you binned it to make a pretty plot, 
then want to fit a function to the plot.  Some gotchas:

• Nothing in the laws of statistics demands equal binning.  
Consider binning with equal statistics per bin.

• Beware bins with few data points.  Many statistical tests 
implicitly assume Gaussian errors, which won't hold for 
small numbers.  General rule of thumb: rebin until every 
bin has >5 events.

• Always remember that binning throws away information.  
Don't do it unless you must.  Try to make bin size 
smaller than any relevant feature in the data.  If statistics 
don't permit this, then you shouldn't be binning, at least 
for that part of the distribution.
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Poisson Distribution

Suppose that some event happens at random times with a 
constant rate R (probability per unit time).  (For example, 
Higgs being produced inside your detector!)

If we wait a time interval dt, then the probability of the event 
occurring is R dt.  If dt is very small, then there is negligible 
probability of the event occuring twice in any given time 
interval.

We can therefore divide any time interval of length T into N=T/dt 
subintervals.  In each subinterval an event either occurs or 
doesn't occur.  The total number of events occurring therefore 
follows a binomial distribution:
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Things you might model with a Poisson 
• Number of supernovas occurring per century
• Number of Higgs particles produced in a detector during a 

collision
• As an approximation for a binomial distribution where N is 

large and Np is small.
• What about the number of people dying in traffic accidents 

each day in Vancouver?

WARNING: the number of events in a histogram bin often 
follows a Poisson distribution.  When that number is small, 
a Gaussian distribution is a poor approximation to the 
Poisson.  Beware of statistical tools that assume Gaussian 
errors  when the number of events in a bin is small (e.g. a  
2  fit to a histogram)!
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Recommended reading
Primary texts (I will mostly draw on these for lectures): 
• Statistics: A Guide to the Use of Statistical Methods in the 

Physical Sciences, by R.J. Barlow.  Strong frequentist 
introduction.

• Bayesian Logical Data Analysis for the Physical Sciences, by 
Phil Gregory.  One of the best in-depth treatments of 
Bayesian techniques available.

Other texts we will draw upon:
• Numerical Recipes, by William H. Press et al.  Any serious 

scientist should own this book.  Text freely available online.
• Statistical Data Analysis, by Glen Cowan. A model of 

conciseness and clarity.
• Practical Statistics for Astronomers, by J.V. Wall and C.R. 

Jenkins.  Many astro-specific examples.
• Probability and Statistics, by Morris H. DeGroot.  For the 

mathematically inclined.
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Random Variables
Consider the outcome of a coin flip.

Use the symbol “b” to represent the observed outcome of the coin flip.  Either 
b=1 (“heads”) or b=0 (“tails”).  Note that b has a known value---it is not 
considered to be random.

Let B represent the possible outcome of the next coin flip.  B is unknown, and is 
called a “random variable”.

Random variables are used to represent data  NOT YET OBSERVED.

Although we don't know what the value of B will be, there is other information 
about B that we may know, such as the probability that B will equal 1.

In frequentist language:
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FWHM & Quartiles/Percentiles
FWHM = Full Width Half Max.  It means what it sounds like---

measure across the width of a distribution at the point where 
P(x)=(1/2)(P

max
).  For Gaussian distributions, FWHM=2.35

Quartiles, percentiles, and even the median are “rank 
statistics”.  Sort the data from lowest to highest.  The 
median is the point where 50% of data are above and 
50% are below.  The quartile points are those at which 
25%, 50%, and 75% of the data are below that point. 
You can also extend this to “percentile rank”, just like on 
a GRE exam.

FWHM or some other width parameter, such as “75% 
percentile data point – 25% data point”, are often robust 
in cases where the RMS is more sensitive to events on 
tails.
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Higher Moments
Of course you can calculate the rth moment of a distribution if you 

really want to.  For example, the third central moment is 
called the skew, and is sensitive to the asymmetry of the 
distribution (exact definition may vary---here's a unitless 
definition):

Kurtosis (or curtosis) is the fourth central moment, with varying 
choices of normalizations.  For fun you are welcome to look up 
the words “leptokurtotic” and “platykurtotic”, but since I speak 
Greek I don't have to.

Warning: Not every distribution has well-defined moments.  
The integral or sum will sometimes not converge!
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An exponential distribution
Consider for example the distribution of measured lifetimes 

for a decaying particle:

HW question: Is the sum of two random variables that 
follow exponential distributions itself exponential?
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Change of variables: multi-dimensional

To generalize to multi-dimensional PDFs, just apply a little 
calculus:

This gives us a rule relating multi-dim PDFs after a change 
of variables:

Recall that the last term is the Jacobian:
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Change of variables: multi-dim example

Consider a 2D uniform distribution inside a square -1<x<1,-1<y<1.

Let u=x2 and v=xy.  Calculate the joint pdf g(u,v).
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Change of variables: multi-dim example

Consider a 2D uniform distribution inside a square -1<x<1,-1<y<1.

Let u=x2 and v=xy.  Calculate the joint pdf g(u,v).

First, note that f(x,y) = 1/4.  Now calculate the Jacobian:

But what is the region of validity for this pdf?
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Change of variables: multi-dim example

The square region in the X,Y plane 
maps to the parabolic region in the U,V 
plane.

for any u,v in the 
shaded region.

Note that a lot of 
the complexity of 
the PDF is in the 
shape of the 
boundary region---
for example, 
marginalized PDF 
G(u) is not simply 
proportional to 1/u.

But is this PDF properly normalized?
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Change of variables: multi-dim normalization

Normalization is wrong!  Why?  Mapping is not 1-to-1.

For any given value of u, there are two possible values of x 
that map to that.  This doubles the PDF.

In reality we need to keep track of how many different 
regions map to the same part of parameter space.
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