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Bayes' Theorem adapted
for parameter estimation

P (H|D,I )=
P (H|I ) P (D|H,I )

P ( D|I )

H = a hypothesis (e.g. “the 
Higgs mass is 127 GeV”)
I = prior knowledge or data 
about H
D = the data

P(H|I) = the “prior probability” 
for H

P(D|H,I) = the probability of 
measuring D, given H and I.  
Also called the “likelihood”

P(D|I) = a normalizing 
constant: the probability that 
we would have measured D 
anyway, averaged over values 
of H.

End result: a posterior probability distribution for the 
parameter(s).
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An example with parameter estimation: coin 
flip

Someone hands you a coin and asks you to estimate the p value 
for the coin (probability of getting heads on any given flip).

You flip the coin 20 times and get 15 heads.  

What do you conclude?
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Bayesian coin flipping

Someone hands you a coin and asks you to estimate the p value 
for the coin (probability of getting heads on any given flip).

You flip the coin 20 times and get 15 heads.  

What do you conclude?

Here H is the hypothesis that p has some particular value.  To 
proceed we must evaluate each term.

P (H|D,I )=
P (H|I ) P (D|H,I )

P ( D|I )
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Evaluating the terms in the Bayesian coin flip

First, some notation.  Let me use p in place of H.

Prior: let's assume a uniform prior for p.  So P(H|I) = P(p) = 1.

Likelihood factor: P(D|p).  This is the probability of observing our 
data, given p.  We model this as a binomial distribution:

P (H|D,I )=
P (H|I ) P (D|H,I )

P ( D|I )

P (D|p )=
N!

m! (N−m )!
pm (1− p )

N−m

Finally P(D|I).  This is the probability of observing the data, 
summed over all hypotheses (here, all possible values of p).

P (D|I )=∫
0

1

dp P ( p )
N!

m! (N−m ) !
pm (1−p )

N−m
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Solution for P(p|D,I): uniform prior

P ( p|D )∝P ( p ) P (D|p )=
N!

m! (N−m )!
pm (1− p )

N−m
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Bayesian coin flip: alternate prior

If a friend hands you a coin in the lunchroom, is it really reasonable 
to assume a uniform prior for p?  Unbalanced coins must be really 
rare!

Consider a more plausible prior:

1) You're 99.9% sure this is a normal coin.  A normal coin has 
p=0.5.  But even normal coins might be a little off-kilter, so model 
its distribution as a Gaussian with mean 0.5 and width =0.01.
2) There's a 0.1% chance this is a trick coin.  If so, you have no 
idea what its true p value would be, so use a uniform distribution.

P ( p )=0. 999× 1

√2 π σ
e
−

( p−0.5 )2

2 σ2
+0 .001×1
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Solution for P(p|D,I): more realistic prior

Prob in peak at 0.5 = 0.999

Prob in peak at 0.5 = 0.997

Prob in peak at 0.5 = 0.030
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Dependence on choice of prior

Clearly you get a different answer depending on which prior you 
choose!  This is a big point of controversy for critics.

A Bayesian's reply: “Tough.”

In Bayesian analysis, dependence on choice of priors is a feature, 
not a bug.  The prior is a quantitative means of incorporating 
external information about the quantities being measured.  If the 
answer depends strongly on the choice of prior, this just means 
that the data is not very constraining.

In contrast, classical frequentist analysis doesn't require you to 
spell out assumptions so clearly---what are you implicitly assuming 
or ignoring?

Good habits for Bayesian analysis:
 be explicit about your choice of prior, and justify it
 try out different priors, and show how result changes 
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Contrast with frequentist approach

A frequentist would use the data to directly estimate p from the 
data, without invoking prior.  Best estimate is p=15/20=0.75.

Frequentist would probably try to assign an “error bar” to this 
value.  Perhaps noting that variance of binomial is Np(1-p), we 
could calculate Var=20(0.75)(0.25)=3.75, or =sqrt(Var)=1.94.  So 
the error on p might be 1.94/20 = 0.097, so p=0.75 ± 0.10.  (What 
would a frequentist do if she observed 20/20 heads?)

But interpretation is very different.  Frequentist would not speak of 
the probability of various p values being true.  Instead we talk 
about whether the data is more likely or less likely given any 
specific p value.  Very roundabout way of speaking!

Note that the p value estimation did not:
 yield a probability distribution for p
 did not incorporate any background information (eg. the fact that   
     almost any coin you regularly encounter will be a fair coin)
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Practical advantages of a Bayesian approach
Using Bayes theorem has a number of practical advantages:

1)  It's conceptually simple.  Every problem amounts to:
       A. list all of the possible hypotheses
       B. assign a prior to each hypothesis based upon what you
           already know
       C. calculate the likelihood of observing the data for each
            hypothesis, and then use Bayes' theorem
2)  It gives an actual probability estimate for each hypothesis
3)  It makes it easy to combine different measurements and to include
     background information
4)  It's guaranteed to be self-consistent and in accord with 
      “common sense” 
5)  It makes handling systematic errors very easy

But the whole thing fails if you don't know how to do A or B.  In that case, 
you probably fall back on frequentist alternatives.  These use only C, but 
at a cost: they cannot directly tell you the relative probabilities of different 
hypotheses.
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Nuisance parameters

A “nuisance parameter” is a parameter model that affects the 
probability distributions but which we don't care about for its own 
sake.  An example would be a calibration constant of an 
apparatus---not the sort of thing you report in the abstract, but 
important nonetheless.

Bayesian analysis gives a simple procedure for handling these: 
assign priors to all parameters, calculate the joint posterior PDF 
for all parameters, then marginalize over the unwanted 
parameters.

If  is an interesting parameter, while  is a calibration constant, 
we write:

P (θ|D,I )=∫dα P (θ,α|D,I )=∫dα [ P (α|I ) P (θ|I ) P (D|θ,α,I )

P ( D|I ) ]
(I've assumed independent priors on  and , but this is not necessary.)
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Systematic uncertainties

Nuisance parameters provide an obvious way to include 
systematic uncertainties.  Introduce a parameter characterizing 
the systematic, specify a prior for the true values of that 
systematic, then integrate over the nuisance parameter to get 
the PDF for the quantity you do care about.

The frequentist version is much nastier---without the language of 
a “prior”, the marginalization procedure, and the philosophy of 
treating the data as generating a PDF for the parameters, it's 
much harder to handle systematics.  

P (θ|D,I )=∫dα P (θ,α|D,I )=∫dα [ P (α|I ) P (θ|I ) P (D|θ,α,I )

P ( D l|I ) ]
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Justifying priors: the principle of Ignorance
In the absence of any reason to distinguish one outcome from 
another, assign them equal probabilities.

Example: you roll a 6-sided die.  You have no reason to believe 
that the die is loaded.  It's intuitive that you should assume that 
all 6 outcomes are equally likely (p=1/6) until you discover a 
reason to think otherwise.

Example: a primordial black hole passing through our galaxy 
hits Earth.  We have no reason to believe it's more likely to 
come from one direction than any other.  So we assume that the 
impact point is uniformly distributed over the Earth's surface.

Parametrization note: this is not the same as assuming that all 
latitudes are equally likely!
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Uniform Prior
Suppose an unknown parameter refers to the location of 
something (e.g. a peak in a histogram).  All positions seem 
equally likely.

Imagine shifting everything by x'=x+c.  We demand that
p(X|I) dX = P(X'|I) dX' = P(X'|I) dX.  This is only true for all c if 
P(X) is a constant.

Really obvious, perhaps ... if you are completely ignorant 
about the location of something, use a uniform prior for your 
initial guess of that location.

Note: although a properly normalized uniform prior has a finite 
range, you can often get away with using a uniform prior from 
-∞ to +∞ as long as the product of the prior and the likelihood 
is finite.
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Uniform Prior on Log
Suppose an unknown parameter measures the size of 
something, and that we have no good idea how big the thing 
will be (1mm? 1m? 1km?).  We are ignorant about the scale.  
Put another way, our prior should have the same form no 
matter what units we use to measure the parameter with.  If 
T'=T, then

P (T|I )dT=P (T'|I )dT'=p (T'|I ) βdT

P (T|I )=βP (βT|I ) , which is only true for all β  if

P (T|I )=
constant

T

Properly normalized from T
min

 to T
max 

this is:

P (T|I )=
1

T ln (Tmax /Tmin )



Given enough data, priors don't matter

The more constraining 
your data becomes, the 
less the prior matters.

When posterior 
distribution is your much 
narrower than prior, the 
prior won't vary much 
over the region of 
interest.  Most priors 
approximate to flat in 
this case.

Consider the case of 
estimating p for a 
binomial distribution 
after observing 20 or 
100 coin flips.
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Frequentist estimators

Frequentists have a harder time of it ... they say 
that the parameters of the parent distribution 
have some fixed albeit unknown values.  “It 
doesn't make sense to talk about the probability 
of a fixed parameter having some other value---
all we can talk about is how likely or unlikely was 
it that we would observe the data we did given 
some value of the parameter.  Let's try to come 
up with estimators (functions of the data) that 
are as close as possible to the true value of the 
parameter.”



Desired properties of estimators
What makes a good estimator? Consider some

1) Consistent: a consistent estimator will tend to the true value as 
the amount of data approaches infinity:

2) Unbiased: the expectation value of the estimator is equal to its 
true value, so its bias b is zero. 

3) Efficient: the variance of the estimator is as small as possible 
(as we'll see, there are limitations on how small it can be)

It's not always possible to satisfy all three of these requirements.

â=â ( x1 ,x2 , . . . xn )

b= ⟨â ⟩−a=∫ dx1. . . dxn P ( x1 . . . x n|a ) â (x1 . . . xn )−a= 0

V ( â )=∫dx1 . . .dxn P (x1 . . . xn|a ) ( â ( x1. . . xn )−⟨â ⟩ )
2

(Mean square error )2=⟨ ( â−a )2⟩=b2 +V ( â )
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Likelihood function and the minimum variance bound

Likelihood function: probability of data given the parameters

L (x1 . . . xn|a )=∏ P ( x i|a )

(The likelihood is actually one of the factors in the numerator of 
Bayes theorem.)

A remarkable result---for any unbiased estimator for a, the 
variance of the estimator satisfies:

V ( â )≥
−1

⟨ d 2 ln L

da2 ⟩

V ( â )≥

−(1+ db
da )

2

⟨ d 2 ln L
da2 ⟩

If estimator is biased with bias b, then this becomes
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Maximum likelihood estimators
By far the most useful estimator is the maximum likelihood 
method.  Given your data set x

1
 ... x

N 
and a set of unknown 

parameters , calculate the likelihood function

It's more common (and easier) to calculate -ln L instead:

The maximum likelihood estimator is that value of which 
maximizes L as a function of .  It can be found by 
minimizing -ln L over the unknown parameters.

oser
Stamp
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Simple example of an ML estimator
Suppose that our data sample is drawn from two different 
distributions.  We know the shapes of the two distributions, but not 
what fraction of our population comes from distribution A vs. B.  We 
have 20 random measurements of X from the population.

PA ( x )=
2

1−e−2
e−2 x PB ( x )=3 x2

Ptot (x )=f P A (x )+ (1−f ) PB ( x )
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Form for the log likelihood and the ML 
estimator
Suppose that our data sample is drawn from two different 
distributions.  We know the shapes of the two distributions, but not 
what fraction of our population comes from distribution A vs. B.  We 
have 20 random measurements of X from the population.

Ptot (x )=f P A (x )+ (1−f ) PB ( x )

Form the negative log likelihood:

Minimize -ln(L) with respect to f.  Sometimes you can solve this 
analytically by setting the derivative equal to zero.  More often you 
have to do it numerically.

Notice: binning is not necessary!

−ln L ( f )=−∑
i=1

N

ln (Ptot ( x i|f ) )
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Graph of the log likelihood
The graph to the left 
shows the shape of the 
negative log likelihood 
function vs. the unknown 
parameter f.

The minimum is f=0.415.  
This is the ML estimate.

As we'll see, the “1” 
error range is defined by 
 ln(L)=0.5 above the 
minimum.

The data set was actually 
drawn from a distribution 
with a true value of f=0.3
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Properties of ML estimators
Besides its intrinsic intuitiveness, the ML method has some 
nice (and some not-so-nice) properties:

1) ML estimator is usually consistent.

2) ML estimators are usually biased, although if also 
consistent then the bias approaches zero as N goes to 
infinity.

3) Estimators are invariant under parameter transformations:

f (a )=f ( â )

4) In the asymptotic limit, the estimator is efficient.  The 
Central Limit Theorem kicks on in the sum of the terms in the 
log likelihood, making it Gaussian:

σ â
2=

−1

⟨ d 2 ln L

da2 |
a0

⟩



Errors on ML estimators
In the limit of large N, the 
log likelihood becomes 
parabolic (by CLT).  
Comparing to ln(L) for a 
simple Gaussian:

it is natural to identify the 
1 range on the parameter 
by the points as which 
 ln(L)=½.

2 range:  ln(L)=½(2)2=2
3 range:  ln(L)=½(3)2=4.5

This is done even when the 
likelihood isn't parabolic 
(although at some peril).

−ln L=L0+
1
2 (

f−⟨ f ⟩
σ f )

2
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Parabolicity of the log likelihood
In general the log likelihood 
becomes more parabolic 
as N gets larger.  The 
graphs at the right show 
the negative log likelihoods 
for our example problem 
for N=20 and N=500.  The 
red curves are parabolic 
fits around the minimum.

How large does N have to 
be before the parabolic 
approximation is good?  
That depends on the 
problem---try graphing 
-ln(L) vs your parameter to 
see how parabolic it is.
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Asymmetric errors from ML estimators
Even when the log likelihood is 
not Gaussian, it's nearly 
universal to define the 1 
range by  ln(L)=½. This can 
result in asymmetric error 
bars, such as:

The justification often given for 
this is that one could always 
reparametrize the estimated 
quantity into one which does 
have a parabolic likelihood.  
Since ML estimators are 
supposed to be invariant under 
reparametrizations, you could 
then transform back to get 
asymmetric errors.

Does this procedure actually 
work?

0 .41−0. 15
+0. 17
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Relation to Bayesian approach
There is a close relation between the ML method and the 
Bayesian approach.

The Bayesian posterior PDF for the parameter is the product of 
the likelihood function P(D|a,I) and the prior P(a|I).  

So the ML estimator is actually the peak location for the 
Bayesian posterior PDF assuming a flat prior  P(a|I)=1.

The log likelihood is related to the Bayesian PDF by:

        P(a|D,I) = exp[ ln(L(a)) ]

This way of viewing the log likelihood as the logarithm of a 
Bayesian PDF with uniform prior is an excellent way to intuitively 
understand many features of the ML method.
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Coverage of ML estimator errors

What do we really want 
the ML error bars to 
mean?  Ideally, the 1 
range would mean that the 
true value has 68% 
chance of being within that 
range.

How often
1range includes

true value





Distribution of ML estimators for two N values



Errors on ML estimators
Simulation is the best 
way to estimate the true 
error range on an ML 
estimator: assume a 
true value for the 
parameter, and simulate 
a few hundred 
experiments, then 
calculate ML estimates 
for each.

N=20:
Range from likelihood 
function:  -0.16 / +0.17
RMS of simulation: 0.16

N=500:
Range from likelihood 
function:  -0.030 / +0.035
RMS of simulation: 0.030
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Likelihood functions of multiple parameters
Often there is more than one free parameter.  To handle this, we 
simply minimize the negative log likelihood over all free 
parameters.

Errors determined by (in the Gaussian approximation):

∂ ln L ( x1 . . . x N|a1. . . am )

∂a j

=0

cov−1
(ai ,a j )=−

∂
2 ln L
∂ ai∂ a j

   evaluated at minimum
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Maximum Likelihood with Gaussian Errors
Suppose we want to fit a set of points (x

i
,y

i
) to some model 

y=f(x|), in order to determine the parameter(s) . Often the 
measurements will be scattered around the model with some 
Gaussian error.  Let's derive the ML estimator for 

The log likelihood is then

Maximizing this is equivalent to minimizing

L=∏
i=1

N
1

σ i√2 π
exp [− 1

2 (
y i−f (x i|α )

σ i
)

2

]
ln L=− 1

2∑i=1

N

(
y i− f (x i|α )

σ i
)
2

−∑
i=1

N

ln (σ i√2 π )

χ2=∑
i=1

N

(
yi− f (x i|α )

σ i
)
2
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Contours and marginalization

Best 
linear fit 
to the 
data

Best fit point

Black ellipse: 
2<+1 from 
best fit






2 vs b for
fixed value 
of m

2 vs b, 
minimizing 
2  w.r.t. m 
at each 
value of b

2 vs m for
fixed value 
of b

2 vs m, 
minimizing 
2  w.r.t. b at 
each value 
of m
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Errors on each individual parameter



To find 1 error on 
any parameter, scan 
over that parameter 
while minimizing the 
 as a function of all 
other free parameters.

The points at which 
the  (minimized with 
respect to all other 
free parameters) has 
increased by +1 from 
its global minimum 
give the 1 errors on 
the parameter.

Do NOT leave the 
other parameters 
fixed at their best-fit 
values while 
scanning!

If minimizing -ln L 
instead of , increase 
by +1/2 instead of +1.



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Error contours for multiple parameters
We can also find the errors 
on parameters by drawing 
contours on 
 ln L or .

1 range on a single 
parameter a: the smallest 
and largest values of a that 
give  ln L=½, minimizing ln 
L over all other parameters.

But to get joint error 
contours, must use different 
values of  ln L (see Num 
Rec Sec 15.6).  Multiply by 
2 if using 2.

m=1 m=2 m=3
68.00% 0.5 1.15 1.77
90.00% 1.36 2.31 3.13
95.40% 2 3.09 4.01
99.00% 3.32 4.61 5.65



37

Two marginalization procedures
Normal marginalization procedure: integrate over nuisance variables:

P ( x )=∫dy P ( x,y )

Alternate marginalization procedure: maximize the likelihood as a function of 
the nuisance variables, and return the result:

(It is not necessarily the case that the resulting PDF is normalized.)

I can prove for Gaussian distributions that these two marginalization 
procedures are equivalent, but cannot prove it for the general case (In fact 
they give different results).

Bayesians always follow the first prescription.  Frequentists most often use 
the second.  

Sometimes it will be computationally easier to apply one, sometimes the 
other, even for PDFs that are approximately Gaussian.

P(x )=max
y

P ( x,y )
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Extended maximum likelihood estimators
Sometimes the number of observed events is not fixed, but also 
contains information about the unknown parameters.  For 
example, maybe we want to fit for the rate.  For this purpose we 
can use the extended maximum likelihood method.

Normal ML method:

Extended ML method: 

∫P ( x|α⃗ )=1

∫Q ( x|α⃗ )=ν=predicted number of events



39

Extended maximum likelihood estimators

The argument of the logarithm is the number density of 
events predicted at x

i
.  The second term (outside the 

summation sign) is the total predicted number of events.
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Example of the extended maximum likelihood 
in action: SNO flux fits

P(E,R,) =
       CC P

CC
(E,R,)

    + ES P
ES

(E,R,)
    + NC P

NC
(E,R,)

Fit for the numbers of 
CC, ES, and NC 
events.

Careful: because 
every event must be 
either CC, ES, or NC, 
the three event totals 
are anti-correlated 
with each other.
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Work together in groups on this:

Measurements are drawn from a uniform 
distribution spanning the interval (0,m). The 
probability of getting a measurement outside of this 
range is zero. The endpoint m is not well-known, 
but a prior experiment yields a Gaussian prior of 
m = 3 ± 1. You take three measurements, getting 
values of 2.5, 3.1, and 2.9. Use Bayes' theorem to 
calculate and sketch the new probability distribution 
for m.
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Extra material
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An involved example: estimating a 
superconductor's critical temperature

Superconductor has sudden 
drop in resistivity below its 
critical temperature.  Model 
it as:

R = B (if T<T
c
)

R = B+A(T/T
c
)3 (if T>T

c
)

Here B is a calibration 
offset, T

c 
is the critical 

temperature, and A is an 
uninteresting material 
parameter.

Data at right drawn from 
true distribution shown in 
red.
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Superconductor: define the model
There are three parameters, only one of which we really 
care about.  Let's assume uniform priors for each:

P(B) = 1  (0<B<1)
P(A) = 1  (0<A<1)
P(T

c
)=1/20 (0<T

c
<20)

And now we define the model.  The model will be that the 
data are scattered around the theoretical curve

R = B (if T<T
c
)

R = B+A(T/T
c
)3 (if T>T

c
)

with Gaussian errors having =0.2 (we assume this is 
known from characterization of the apparatus).
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Superconductor: the form of the likelihood
Need to write down a form for P(D|A,B,T

c
,I)

where R(T
i
) is the piecewise-defined function given previously.  

All the dependence on model parameters is contained in R(T).

Bayes theorem now immediately defines a joint PDF for the 
parameters by

P ( A,B,T c|D,I )∝P (A,B,T c|I )P (D|A,B,T c ,I )

All there is left to do is to normalize the PDF, and marginalize 
over the unwanted variables to get the PDFs on any parameter 
you care about. 

P (D|A,B,T c ,I )=∏
i=1

N

exp[− 1

2 σ 2 (Di−R (T i ))
2]
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Superconductor: marginalized PDFs

Here I show the marginalized 
PDFs for T

c
, A, and B.  A is 

perhaps like you would have 
expected.  B is OK---low, but 
data was quite a bit low as 
well.

(True values: A=0.2, B=0.2, 
T

c
=10)

PDF for T
c 
puzzled me at 

first. It spikes near true value, 
but is not very smooth.  The 
reason is that the model 
being fitted is discontinuous, 
so you get discontinuities at 
the data points.
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Advantages of a Bayesian approach

If you start with some probability distribution for the value of a 
parameter, or an estimate of the likelihood of a hypothesis, and 
then you learn some new piece of information (“the data”), Bayes' 
theorem immediately tells you how to update your distribution.

The strongest benefit of Bayesian statistics is that it directly 
answers the question you're really asking: how likely is your 
hypothesis?  For example, you can calculate probabilities for things 
like: what is the probability that there's a new particle with a mass 
between 200-205 GeV?

You can ONLY directly calculate the odds of a hypothesis being 
true if you assume some prior, and if your interpretation of 
probability allows you to think of probability as a measure of 
credibility (rather than just frequency).
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The Normalization Term (aka the denominator)

The term P(D|I) is first of all a normalization term.  It's the 
probability of the data summed over all considered hypotheses.  
(Really it's the integral of the numerator over all values of H).

It's also a check on the validity of your assumptions.  If P(D|I) is 
very, very small, then either you got unlucky, or your prior was far 
off, or your hypothesis set (denoted by I) doesn't include the true 
hypothesis.

P (H|D,I )=
P (H|I ) P (D|H,I )

P ( D|I )
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Sherlock Holmes on hypotheses

“How often have I said to you that 
when you have eliminated the 
impossible, whatever remains, 
however improbable, must be the 
truth?”

Bayesian analysis enforces this, 
since the renormalization procedure 
demands that one of the hypothesis 
explicitly under consideration must 
be the correct one.

If your set of hypotheses is incorrect, 
your analysis is too.

Writing P(H|D,I) instead of just     
P(H|D) is one reminder that 
background assumptions are always 
being made.
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Odds Ratio

The odds ratio is useful because the normalization factors 
cancel.  It's the ratio of the prior probability estimates times the 
Bayes factor (ratio of the global likelihoods given the data D).

Odds ratios can be easily converted back into probabilities by 
restoring the normalization factors:

O12=
P (M 1|D,I )

P (M 2|D,I )
=

P (M 1|I )P (D|M 1 ,I )

P (M 2|I )P (D|M 2 ,I )

O12=
P (M 1|I )

P (M 2|I )

P (D|M 1 ,I )

P (D|M 2 ,I )
≡

P (M 1|I )

P (M 2|I )
B12

P (M i|D,I )=
Oi 1

∑
i=1

N

Oi 1
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Bayesian justification of Occam's Razor

“Plurality ought never be imposed 
without necessity.”---William of Ockham

“Of two equivalent theories or 
explanations, all other things being 
equal, the simpler one is to be 
preferred.”

“We are to admit no more causes of 
natural things than such are both true 
and sufficient to explain their 
appearances.”---Isaac Newton
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Consider these two hypotheses:

1) Model M
0
 is true.  It has no free parameters, but there is one 

parameter  whose value is fixed by theory to 

.

2) Model M
1
 is true.  It has a single free parameter .

Which of these models should we favour given the data?

At first glance, M
1
 is more powerful in a sense. After all, it includes  

=

 as one special case, so shouldn't it always be more likely 

than the more restricted hypothesis?

Intuitively this can't be right, because this would say we should 
always favour the more complicated hypothesis, even when the 
data are perfectly consistent with both.



 53

Odds ratio and the Occam factor

Let's calculate the Bayes factor for the two hypotheses.

1) For M
0
, P(D|M

0
,I)=P(D|

0
,M

1
,I)=ℒ(

0
).  Simple to evaluate.

2) For M
1
 we need to marginalize over all possible values of 

including the prior for .

P(D|M 1 ,I )=∫dθ P(θ|M 1 ,I )P(D|θ,M 1 ,I )

We can approximate this integral.  First, let's assume the data is 
actually pretty constraining compared to the prior, so that P(|M

1
,I) 

is approximately flat over the range for which P(D|,M
1
,I) is non-

zero.
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Odds ratio and the Occam factor
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Odds ratio and the Occam factor



 56

Summary of the Occam factor

Bayesian analysis automatically penalizes more complicated 
models in a quantitative way compared to simpler models.

This happens in the process of marginalizing over free 
parameters in the model.  The more free parameters you have 
to marginalize over, the larger the penalty.

It is still of course possible that a more complicated model fits 
the data better.  If the probability of the data under the simpler 
model is very small, but much larger under the more 
complicated model, then the complicated model will still be 
favoured in spite of penalty factor.

The penalty factor is perhaps intuitively obvious.  The more free 
parameters you have, the more likely it is that your model 
matched the data just by blind luck.  The model that makes 
more specific predictions (has fewer free parameters) will tend 
to be favoured, so long as it is consistent with data.
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Prior from a prior analysis
The best solution to any problem is to let someone else solve 
it for you.

If there exist prior measurements of the quantities you need to 
estimate, why not use them as your prior?  (Duh!)

Be careful, of course---if you have reason to believe that the 
previous measurement is actually a mistake (not just a 
statistical fluctuation) you wouldn't want to include it.

Even the most complicated statistical analysis does not 
eliminate the need to apply good scientific judgement and 
common sense.
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Dependence on parametrization
Two theorists set out to predict the mass of a new particle

Carla (writes down theory):

“There should be a new particle 
whose mass is greater than 0 but 
less than 1, in appropriate units.  
I have absolutely no other 
knowledge about the mass, so 
I'll assume it has equal chances 
of having any value between 
zero and 1---i.e. P(m) = 1.”

Heidi (writes down the exact 
same theory):

“There is a new particle 
described by a single free 
parameter y=m2 in the Klein-
Gordon equation.  I'm sure 
that the true value of y must 
lie between 0 and 1.  Since y 
is the quantity that appears in 
my theory, and I know 
nothing else about it, I'll 
assume a uniform prior on 
y---i.e. P(y) = 1.”

These are two valid statements of ignorance about the same theory, but with 
different parametrizations.
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An experiment reports: m=0.3±0.1
The experimental apparatus 
naturally measures m, so the 
experiment reports that 
(rather than y).  Our two 
theorists incorporate this new 
knowledge into their theory.  
Carla calculates a new 
probability distribution 
P(m|D,I) for m.  Heidi 
converts the measurement 
into a statement about the 
quantity y=m2, and calculates 
P(y|D,I).  They then get 
together to compare results.  
Heidi does a change of 
variables on her PDF so she 
can directly compare to 
Carla's result.
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The sad truth: choice of parametrization 
matters

It's quantitatively different to 
say that all values of m are 
equally likely versus all 
values of m2 are equally 
likely.  The latter will favour 
larger values of m (if it's 
50/50 that m2 is larger than 
0.5, then it's 50/50 than m is 
larger than 0.707).

Which is right?  Statistics 
alone cannot decide.  Only 
you can, based on physical 
insight, theoretical biases, 
etc.

If in doubt, try it both ways.
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Estimating the standard deviation

We can use s as our estimator for .  It will generally be 
biased---we don't worry a lot about this because we're more 
interested in having an unbiased estimate of s2.

For samples from a Gaussian distribution, the RMS on our 
estimate for  is given by

V ( x )=s2=
1

N−1∑i=1

N

( x i− x̄ )
2

σ s=
σ

√2 (N−1 )

The square root of an estimate of the variance is the obvious 
thing to use as an estimate of the standard deviation:

Think of this as the “error estimate on our error bar”.

We can use s as our estimator for .  It will generally be 
biased---we don't worry a lot about this because we're more 
interested in having an unbiased estimate of s2.

For samples from a Gaussian distribution, the RMS on our 
estimate for  is given by



A Gaussian is the least constraining 
assumption for the error distribution

A very useful and surprising result follows from this maximum 
entropy argument.  Suppose your data is scattered around your 
model with an unknown error distribution:

In this example each point 
is scattered around the 
model by an error 
uniformly distributed 
between -1 and +1.

But suppose I don't know 
how the errors are 
distributed.  What's the 
most conservative thing I 
can assume?

A Gaussian error distrib.
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Consider three possible error models

I don't know how the errors are distributed, but I happen to know 
the RMS of the data around the model by some means.  (Maybe 
Zeus told me.)  I consider three possible models for the error: 
uniform, Gaussian, and parabolic.
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Posterior probability distributions for the three 
error models

These are 
marginalized PDFs.

Caveat: although in 
this case the true error 
distribution gave the 
tightest parameter 
constraints, it's 
perfectly possible for 
an incorrect 
assumption about the 
error distribution to 
give inappropriately 
tight constraints!
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What if you don't know the RMS?

Imagine that the data is so sparse that you don't already know 
the scatter of the data around the model.

One possibility is to assume a Gaussian distribution for the 
errors a la the maximum entropy principle, but to leave 2 as a 
free parameter.  Assign it a physically plausible prior (possibly a 
Jeffreys prior over physically plausible range) and just treat it as 
a nuisance parameter.

This is more or less like “fitting” for the size of the error.



66

A prior gotcha

Maybe an obvious point ... if your prior ever 
equals zero at some value, then your posterior 
distribution must equal zero at that value as 
well, no matter what your data says.

Be cautious about choosing priors that are 
identically zero over any range of interest.
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What is an estimator?
Quite simple, really ... an estimator is a procedure you apply to a 
data set to estimate some property of the parent distribution from 
which the data is drawn.

This could be a recognizable parameter of a distribution (eg. the 
p value of a binomial distribution), or it could be a more general 
property of the distribution (eg. the mean of the parent 
distribution), or it could be a theoretical parameter like a mass.  

The procedure can be anything you do with the data to generate 
a numerical result.  Take an average, take the median value, 
multiply them all and divide by the GDP of Mongolia ... all of 
these are estimators.  You are free to make up any estimator you 
care to, and aren't restricted to standard choices.  (Whether an 
estimator you make yourself is a useful estimator or not is a 
completely separate question!)
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Bayesian estimators
You're already seen the Bayesian solution to parameter 
estimation ... if your data is distributed according to a PDF 
depending on some parameter a, then Bayes' theorem gives you 
a formula for the PDF of a:

P (a|D,I )=
P (a|I ) P (D|a,I )

∫ da P (a|I ) P (D|a,I )
=

P (a|I ) P (D|a,I )

P (D|I )

The PDF P(a|D,I) contains all the information there is to have 
about the true value of a.  You can report it any way you like---
preferably by publishing the PDF itself, or else if you want to 
report just a single number you can calculate the most likely 
value of a, or the mean of its distribution, or whatever you want.

There's no special magic: Bayesian analysis directly converts the 
observed data into a PDF for any free parameters.
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Common estimators
1) Mean of a distribution---obvious choice is to use the average:

 
Consistent and unbiased if measurements are independent.  Not 
necessarily the most efficient---its variance depends on the 
distribution under consideration, and is given by

There may be more efficient estimators, especially if the parent 
distribution has big tails.  But in many circumstances the sample 
mean is the most efficient.

V ( μ̂ )=
σ 2

N

μ̂= 1
N∑i=1

N

x i
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Estimating the variance

A biased estimator:

If you know the true mean  of a distribution, one useful 
estimator (consistent and unbiased) of the variance is 

V (x )=
1
N∑i=1

N

( xi−μ )
2

What if  is also unknown?

V ( x )=
1

N−1∑i=1

N

( xi− x̄ )
2

⟨V ( x )⟩=
N−1

N
V ( x )

An unbiased estimator:

V ( x )=
1
N∑i=1

N

( xi− x̄ )
2

But its square root is a biased 
estimator of !
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