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What is an error bar?
Someone hands you a 

plot like this.  What do 
the error bars indicate?

Answer: you can never 
be sure, unless it's 
specified!

Most common: vertical 
error bars indicate 
“±1” uncertainties.

Horizontal error bars can 
indicate uncertainty on 
X coordinate, or can 
indicate binning.

Correlations unknown!
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Relation of an error bar to PDF shape
The error bar on a plot is 
most often meant to 
represent the ±1 
uncertainty on a data point.  
Bayesians and frequentists 
will disagree on what that 
means.  

If data is distributed normally 
around “true value”, it's clear 
what is intended: 
        
        exp[-(x-)2/22].

But for asymmetric 
distributions, different things 
are sometimes meant ...
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An error bar is a shorthand approximation to a 
PDF!

In an ideal Bayesian universe, error bars don't exist.  
Instead, everyone will use the full prior PDF and the 
data to calculate the posterior PDF, and then report 
the shape of that PDF (preferably as a graph or 
table).

An error bar is really a shorthand way to parametrize a 
PDF.  Most often this means pretending the PDF is 
Gaussian and reporting its mean and RMS.

Many sins with error bars come from assuming 
Gaussian distributions when there aren't any.
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The error propagation equation
Let f(x,y) be a function of two variables, and assume that the 
uncertainties on x and y are known and “small”.  Then:

The assumptions underlying the error propagation equation are:

 covariances are known
 f is an approximately linear function of x and y over the span of  

x±dx or y±dy.

The most common mistake in the world: ignoring the third term.  
Intro courses ignore its existence entirely!
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Example: interpolating a straight line fit

Straight line fit y=mx+b

Reported values from a 
standard fitting 
package:

m =  0.658 ± 0.056
b  =    6.81 ± 2.57

Estimate the value and 
uncertainty of y when 
x=45.5:

y=0.658*45.5+6.81=36.75

UGH!  NONSENSE!
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Example: straight line fit, done correctly

Here's the correct way to estimate y at x=45.5.  First, I find a better 
fitter, which reports the actual covariance matrix of the fit:

m = 0.0658 + .056
      b = 6.81 + 2.57
       = -0.9981

(Since the uncertainty on each individual data point was 0.5, and 
the fitting procedure effectively averages out their fluctuations, then 
we expect that we could predict the value of y in the meat of the 
distribution to better than 0.5.)

Food for thought: if the correlations matter so much, why don't 
most fitting programs report them routinely???
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Generalizing the error propagation equation

If we have N functions of M variables, we can calculate their 
covariance by:

We can write this compactly in matrix form as:
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Averaging correlated measurements: example
Consider the following example, adapted from Glen Cowan's book*:

We measure an object's length with two rulers.  Both are calibrated to be 
accurate at T=T

0
, but otherwise have a temperature dependency: true length y is 

related to measured length by:

We assume that we know the c
i
 and the uncertainties, which are Gaussian.  We 

measure L
1
, L

2
, and T, and so calculate the object's true length y.

We wish to combine the measurements from the two rulers to get our best estimate of 
the true length of the object.

* “Statistical Data Analysis”, by Glen Cowan (Oxford, 1998)
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Averaging correlated measurements: example
We start by forming the covariance matrix of the two measurements:

We use the method previously described to calculate the weighted average for the 
following parameters:

c
1
 = 0.1 L

1
=2.0 ± 0.1 y

1
=1.80 ± 0.22 T

0
=25

c
2
 = 0.2 L

2
=2.3 ± 0.1 y

2
=1.90 ± 0.41 T = 23 ± 2

Using the error propagation equations, we get for the weighted average:

y
true

 = 1.75 ± 0.19

WEIRD: the weighted average is smaller than either measurement!  What's going 
on??
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A case where the data constrained a systematic

c
1
 = 0.1    c

2
 = 0.2

L
1
=2.0 ± 0.1 L

2
=2.3 ± 0.1

y
1
=1.80 ± 0.22 y

2
=1.90±0.41

T
0
=25 T = 23 ± 2

The intersection of the 
two lines in this example 
from earlier provides a 
better estimate of the true 
temperature than that 
provided from the 
external calibration of 23 
± 2.
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Constraint terms in the likelihood
Working in Bayesian language, the posterior PDF is given by

We saw previously that the ML estimator is same thing as the mode of the 
Bayesian posterior PDF assuming a flat prior on .  In that case we 
maximized ln L()=ln P(D|,I), and use the shape of ln L to determine the 
confidence interval on .

This easily generalizes to include systematics by considering the 
nuisance parameters  to simply be more parameters we're trying to 
estimate:

The first term is the regular log likelihood---a function of , with  
considered to be a fixed parameter.  The second term is what we call the 
constraint term---basically it's the prior on .
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Application of constraint terms in likelihood
Remember the problem in which we measured an object using two rulers 
with different temperature dependencies?

c
1
 = 0.1 L

1
=2.0 ± 0.1 y

1
=1.80 ± 0.22 T

0
=25

c
2
 = 0.2 L

2
=2.3 ± 0.1 y

2
=1.90 ± 0.41 T = 23 ± 2

The first term of the likelihood is the usual likelihood containing 
“statistical errors” on the L

i
, with T considered fixed.  The 

second is the constraint term (think: “prior on T”).  The joint 
likelihood is a function of the two unknowns y and T.

Procedure: minimize over T to get shape of likelihood as 
function of y.
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Constraint terms in likelihood: results

TT

Top plot is shape of 
likelihood as function of y, 
after marginalizing over T:

Red: T fixed (stat error only)
Black: after minimizing -ln(L) 
as function of T at each y
1 range: same as 
covariance matrix approach

Blue: “a priori” constraint on 
T (23±2).
Magenta: shape of likelihood 
as a function of T, after 
marginalizing over y.
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A simple recipe that usually will work
1) Build a quantitative model of how your likelihood function depends on 
the nuisance parameters.

2) Form a joint negative log likelihood that includes both terms for the 
data vs. model and for the prior on the nuisance parameter.

3) Treat the joint likelihood as a multidimensional function of both physics 
parameters and nuisance parameters, treating these equally.

4) Minimize the likelihood with respect to all parameters to get the best-
fit.

5) The error matrix for all parameters is given by inverting the matrix of 
partial derivatives with respect to all parameters:
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Bayesian credible region

Bayesians generally prefer to 
report the full PDF for the 
posterior distribution of a 
quantity.

If desired to report a range 
for the parameter, an 
obvious solution is to 
integrate the PDF .

The red area contains 90% 
of the probability content---
the Bayesian credible 
region is (0.32,2.45)
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These are also Bayesian credible regions

The top plot might be 
appropriate if you were 
asked to quote an upper 
limit on the parameter:

(0,2.15)

The red region on the bottom 
also contains 90% of the 
probability content.  You 
might quote the 
disconnected credible 
region (0,1.09) & (1.26,∞) if 
you were on crack.
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Exact Neyman confidence intervals

A frequentist confidence interval is a different beast.  While a 
Bayesian credible region is based on the probability that the 
true parameter lies in the specified, the frequentist interval 
really refers to the probability of getting the observed data.

The Neyman construction is a procedure for building classical 
frequentist confidence intervals:

1) Given a true value a for the parameter, calculate the PDF for 
your estimator â of that parameter:  P(â|a).

2) Using some procedure, define the interval in â that has a 
specified probability (say, 90%) of occurring.

3) Do this for all possible true values of a, and build a 
confidence belt of these intervals.



 19

A two-sided confidence interval

Frequentist techniques don't directly answer the question of what the 
probability is for a parameter to have a particular value.  All you can 
calculate is the probability of observing your data given a value of 
the parameter. The confidence interval construction is a dodge to get 
around this.

Starting point is the 
PDF for the estimator, 
for a fixed value of 
the parameter.

The estimator has 
probability  to 
fall in the white 
region.

For the obvious 
choice we call 
this region a central 
confidence interval.
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Confidence interval construction
The confidence band is 
constructed so that the 
average probability of 

true
 lying 

in the confidence interval is 
1-.

This should not be interpreted 
to mean that there is, for 
example, a 90% chance that 
the true value of  is in the 
interval (a,b) on any given trial. 

Rather, it means that if you ran 
the experiment 1000 times, 
and produced 1000 confidence 
intervals, then in 90% of these 
hypothetical experiments (a,b) 
would contain the true value.  

Obviously a very roundabout 
way of speaking ...
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Confidence interval construction

The confidence band is 
constructed so that the 
average probability of 

true
 lying 

in the confidence interval is 
1-.

Consider any true value of the 
parameter, such as 

true
. The 

probability that the measured 
value of the estimator lies on 
the vertical segment is 1-. 

The interval (a,b) will cover 
true

 
if 

obs 
intersects this vertical line 

segment, and not otherwise.

By construction, the probability of the confidence interval from this 
method containing the true value of the parameter is 1-.  This 
sounds like a statement about the true value of , but it's really a 
statement about how (a,b) is generated.
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Arbitrariness of confidence interval 
construction: one-sided vs. two-sided
There is no single way to build the confidence interval.  You 

can make one-sided, two-sided, or even more complicated 
confidence belts depending on what parts of the PDF you 
include inside the belt.

As an example, let's build a one-sided confidence belt for a 
parameter >0 whose estimator has a Gaussian distribution.  
Suppose that:

For any fixed , 90% of the probability is contained within 

Again, there is a 90% probability of the measured value falling in 
this range.
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One sided confidence belt

The shaded region 
is the confidence 
belt.  Read this as 
saying that for any 
given true value of 
m, there's a 90% 
that the measured 
value will lie above 
the line in shaded 
region.

This in turn 
generates a 
confidence region 
for any observed 
value.
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One sided confidence belt

For example, if we measure 
=4, the confidence belt 
says that the true value of  
lies between 0 and 5.28.  
We'd say our 90% C.L. 
upper limit on was 5.28.

If we had measured =-1.27, 
then our region would be 
(0,0.01)---pretty small.

But what if we had 
measured =-2?  You might 
expect the region 
(-∞, -0.72).  But remember: 
we stipulated had to be 
positive. (Maybe is a 
mass.)  The confidence 
interval is an empty set.



 25

Interpretation of the one-sided confidence belt

Suppose we measured -1.27, and generated the confidence 
interval (0,0.01).  This sounds really strange---we measured a 
negative, non-physical value for , and as a result we get an 
extremely tight confidence interval for the true value.  

Does this really mean that if we measure =-1.27 then there is a 
90% chance that the true value of is between 0 and 0.01?
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Interpretation of the one-sided confidence belt

Suppose we measured -1.27, and generated the confidence 
interval (0,0.01).  This sounds really strange---we measured a 
negative, non-physical value for , and as a result we get an 
extremely tight confidence interval for the true value.  

Does this really mean that if we measure =-1.27 then there is a 
90% chance that the true value of is between 0 and 0.01?

No.  The confidence belt is constructed so that in 90% of experiments it 
will contain the true value of the parameter.  In this case, getting a 
value so close to the physical limit can only mean that this particular 
experimental outcome is likely to be one of the 10% which doesn't 
contain the true value.

If we had measured to be even smaller, the confidence region would 
be the empty set.  This doesn't mean that all values of are ruled 
out---it means that we're definitely in the 10% of experiments which fail 
to contain the true value.
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Be very careful with the interpretation of 
frequentist confidence intervals

Most of us are psychologically inclined to think of confidence 
intervals as Bayesian creatures.  That is, if someone says their 
90% C.L. for is (2.5,2.9), then we tend to think that means 
there's a 90% chance that the true value of the parameter lies 
between 2.5 and 2.9.

But that's not right---frequentist confidence intervals are designed 
to give proper coverage only for a hypothetical ensemble of many 
experiments.  It means that if you did the experiment 100 times, 
then on average 90 of the generated confidence intervals would 
contain the true value.  

It is not necessarily the case that for your particular data set, the 
probability that your confidence interval will contain the true value 
is 90%.  Depending on your data, the probability could be less.  In 
fact, you might even KNOW that the confidence interval doesn't 
contain the true value---for example, if the confidence interval is 
in the unphysical region.
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Is there an alternative?

The classical confidence intervals shown previously have some 
regrettable properties:

 at least some fraction of the time the confidence interval can be 
an empty set

 they do not elegantly handle unphysical regions
 they do not continuously vary between giving upper limits vs. 

giving upper and lower limits, but instead change 
discontinuously depending on which you choose.

In a paper by Feldman & Cousins (arXiV:physics/9711021 v2) 
these issues are explored in some detail, and a solution is 
proposed. The result is what is known as a Feldman-Cousins 
confidence interval, which we'll now examine.
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Ordering principle

The Neyman confidence interval construction does not specify 
how you should draw, at fixed , the interval over the measured 
value that contains 90% of the probability content. 

There are various different prescriptions:
 1) add all parameter values greater than or less than a 

given value (upper limit or lower limit)
 2) draw a central region with equal probability of the 

measurement falling above the region as below
 3) starting with the parameter value which has maximum 

probability, keep adding points from more probable to less 
probable until the region contains 90% of the probability

 4) The Feldman-Cousins prescription (next slide!)
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Feldman-Cousins confidence intervals

Feldman-Cousins introduces a new ordering principle based on the 
likelihood ratio:

Here x is the measured value,  is the true value, and 
best

is the best-
fit (maximum likelihood) value of the parameter given the data and 
the physically allowed region for .

The order procedure for fixed  is to add values of x to the interval 
from highest R to lower R until you reach the total probability content 
you desire.

Taking a ratio “renormalizes” the probability when the measured value 
is unlikely for any value of .  The Feldman-Cousins confidence 
interval is therefore never empty.
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Application of Feldman-Cousins to Gaussian 
with physical limit
Feldman-Cousins introduces a new ordering principle based on the 

likelihood ratio:

For our example with a Gaussian measurement with unit RMS, we 
have 

best
=x if x>0 or 

best
=0 if x≤0.  So the ratio R is given by
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Application of Feldman-Cousins to Gaussian 
with physical limit

90% of area
between 
these lines

Region of
highest R(x)

Example for
=1
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Application of Feldman-Cousins to Gaussian 
with physical limit

To the left is the 
Feldman-Cousins 
confidence belt.  Some 
nice features:

1) Confidence region is 
never empty, no matter 
what you measure.
2) It smoothly transitions 
between an upper limit 
(lower limit=0 at physical 
boundary), and a two-
sided limit!  It gives 
correct coverage and 
decides for you when to 
quote one-sided vs. two-
sided limit!
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Application of Feldman-Cousins to Poisson 
signals
The most common use of Feldman-Cousins is for quoting limits on the 

size of a signal given a known background.  For example, you are 
looking for dark matter particles.  The expected background is b=4 
events, and you observe N=6 events.  What is the confidence 
interval on the signal rate s?

Traditional methods can sometimes give negative values for s when 
N<b, which is silly.  Feldman-Cousins addresses this.

Feldman & Cousins'  paper contains lookup tables to help you with 
this.
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Feldman-Cousins lookup table for Poisson 
signals and backgrounds
To the right is a Feldman-Cousins 

lookup table at the 90% C.L. for a 
Poisson signal and background when 
the expected number of background 
events is 4.

We have to observe at least 8 events 
before the lower limit is non-zero.  
We'd then say that we exclude s=0 at 
the 90% C.L.

The 99% C.L. table shows that we get 
a non-zero lower limit when N is 10 
or more.

N Limit (b=4)
0 0.00,1.01
1 0.00,1.39
2 0.00,2.33
3 0.00,3.53
4 0.00,4.60
5 0.00,5.99
6 0.00,7.47
7 0.00,8.53
8 0.66,9.99
9 1.33,11.30

10 1.94,12.50
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Limitations of Feldman-Cousins

Feldman-Cousins is probably the best recipe for producing 
Neyman confidence intervals.  It deals with physical 
boundaries on parameters, never gives an empty confidence 
interval, and avoids the flip-flop problem.

Nonetheless, there are some serious difficulties with Feldman-
Cousins:

1) Constructing the confidence intervals is complicated, and 
usually has to be done numerically, or even with Monte Carlo.

2) Systematics are not easily incorporated into the procedure---
you basically have to marginalize by Monte Carlo.  A literature 
exists on how to handle this.

3) The confidence intervals, while no longer empty, still wind up 
being misleadingly small in the case of statistical fluctuations.  
In cases where limit is much better than sensitivity, the limit 
should not be trusted, by Feldman & Cousins’ own admission.
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2D Feldman-Cousins contours

This all works in multiple 
dimensions as well. For 
example, here's a 2D 
confidence region from 
Feldman and Cousins for 
a neutrino oscillation 
experiment.

Notice how they include 
the sensitivity curve to 
demonstrate that their 
limit is in accord with what 
they expected to get.
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The ln(L) rule It is not trivial to construct proper 
frequentist confidence intervals.  
Most often an approximation is 
used: the confidence interval for a 
single parameter is defined as the 
range in which ln(L

max
)-ln(L)<0.5

This is only an approximation, and 
does not give exactly the right 
coverage when N is small.

More generally, if you have d free 
parameters, then the quantity
“2” = 2[ln(L

max
)-ln(L)] 

approximates a 2 with d degrees 
of freedom.

For experts: there do exist 
corrections to the ln(L) rule that 
more accurately approximate 
coverage---see “Bartlett's 
correction”.  Often MC is better 
way to go.
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Don't forget that the value of 
 ln L you use to draw the 
contour depends on the 
dimension of the plot.

Red ellipse: contour with 
 ln L= -1/2 (.  Gives 
correct 1D limits on a single 
parameter.

Blue ellipse: contour contains 
68% of probability content in 
2D.   ln L= -1.15 
(

The contour value is based 
on the probability content of a 
with d degrees of freedom 
(see Num Rec Sec 15.6)

Multi-dimensional confidence intervals



 40

Problem to work in groups:

A neutrinoless double-beta decay experiment counts the number of
events in a signal region.  The expected background is 2 events.  For

an effective neutrino mass of mββ = 50 meV the experiment

expects 4 signal events.  The experiment is done, and no events are
seen in the signal region.  
 What is the Feldman-Cousins upper limit on mββ?
 Assuming a flat prior, what is the Bayesian upper limit on mββ?
 Suppose a second experiment has the same expected signal rate   
but an expected background of 5.  It also observes zero events.   
What Feldman-Cousins limit do you get now?  Compare to your 
result from Part A.  Do these results make sense?
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Backups
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How to report systematics
In reality there is no deep fundamental distinction between statistical and 
systematic errors.  (Bayesians will say that both equally reflect our 
uncertainty about the universe.)  Nonetheless, it is traditional, and useful, 
to separately quote the errors, such as X = 5.2 ± 2.4(stat) ± 1.5(sys).

There is a common tendency to assume that statistical and systematic 
uncertainties will be uncorrelated.  This is often the case, but not always.  
(For example, if the data itself is providing a meaningful constraint on the 
nuisance parameter, there will likely be a correlation.)  If such a 
correlation exists, report it explicitly (maybe as contour plots of X vs. the 
nuisance parameters).  Otherwise you can be sure that someone is going 
to take your data, add the errors in quadrature, and report

Consider making the full form of the joint likelihood (or the priors and 
posterior PDFs if it's a Bayesian analysis) publicly available---on the web, 
if it won't fit in the paper itself.
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Averaging correlated measurements II
The obvious generalization for correlated uncertainties is to form 
the including the covariance matrix:

We find the best value of  by minimizing this  and can then 
find the 1 uncertainties on  by finding the values of  for which 

   = 2
min

 + 1.

This is really parameter estimation with one variable.

The best-fit value is easy enough to find:
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Error-weighted averages
Suppose you have N independent measurements of a quantity.  
You average them.  The proper error-weighted average is:

If all of the uncertainties are equal, then this reduces to the 
simple arithmetic mean, with V(<x>) = V(x)/N.
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Bayesian derivation of error-weighted 
averages

Suppose you have N independent measurements of a quantity, 
distributed around the true value  with Gaussian distributions.  
For flat prior on  we get: 

It's easy to see that this has the form of a Gaussian.  To find its 
peak, set derivative with respect to  equal to zero.

Calculating the coefficient of 2 in the exponent yields:
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Averaging correlated measurements
We already saw how to average N independent measurement.
What if there are correlations among measurements?

For the case of uncorrelated Gaussianly distributed 
measurements, finding the best fit value was equivalent to 
minimizing the chi-squared:

In Bayesian language, this comes about because the PDF for  is 
exp(-2/2).  Because we know that this PDF must be Gaussian:

then an easy way to find the 1 uncertainties on  is to find the 
values of  for which  = 2

min
 + 1.
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Averaging correlated measurements III
Recognizing that the 2 really just is the argument of an 
exponential defining a Gaussian PDF for  ...

we can in fact read off the coefficient of 2, which will be 1/V():

In general this can only be computed by inverting the matrix as 
far as I know. 
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Averaging correlated measurements IV
Suppose that we have N 
correlated measurements.  Each 
has some independent error 
=1 and a common error b that 
raises or lowers them all 
together.  (You would simulate 
by first picking a random value 
for b, then for each 
measurement picking a new 
random value c with RMS  and 
writing out b+c. 

Each curve shows how the error 
on the average changes with N, 
for different values of b.

b=1
b=0.5
b=0.25
b=0
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Avoid inflating systematics
There is a regrettable tendency to overestimate systematics in the name 
of CYA or to save effort.  For example, perhaps you've concluded that the 
energy scale of your detector is at worst off by 1%.  So you write 

E
=0.01, 

and proceed to treat this as the RMS of your nuisance parameter.

Black: typical Gaussian PDF 
implied by =0.01.  Long tails far 
beyond “worst case” range.

Red:  functions---only PDF with 
=0.01 that is fully contained 
within “worst case” range

Blue: uniform distribution 
consistent with “worst case 
range.  =0.02/√12=0.0058

Which should you use?
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What is a systematic uncertainty?
There are many meanings of the term “systematic uncertainty”.  (I 
prefer this term to “systematic error”, which means more or less the 
same thing.)

The most common definition is “any error that's not a statistical 
error”.  

To avoid this definition becoming circular, we'd better be more 
precise.

Perhaps this works: “A systematic uncertainty is a possible 
unknown variation in a measurement, or in a quantity derived from 
a set of measurements, that does not randomly vary from data 
point to data point.”

Usually you see it listed broken out as: 5.0 ± 1.2 (stat) ± 0.8 (sys)
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Examples of systematic uncertainties
“Like sands through an hourglass, so are the systematics of our lives ...”

You measure the length of an object, but worry that the ruler might have 
contracted slightly due to it being a cold day.
You try to infer the brightness of a distant supernova, but worry that 
intervening dust might make it seem dimmer than you expect.
Your thermometer is miscalibrated.
You measure g-2, the anomalous magnetic moment of the muon, and 
ask whether it agrees with the Standard Model expectation.  A theorist 
tells you that there are higher order corrections to the theory prediction 
that are too complicated for her to calculate, but she helpfully quotes an 
uncertainty based on how large she believes these are likely to be.
You are trying to fit an energy spectrum to an expected shape plus a 
background component to determine the size of a signal.  There are two 
experimental measurements of the expected shape.  They disagree by an 
amount much larger than their error bars.
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Why are systematics problematic for 
frequentists?
The whole frequentist program is based upon treating the outcomes of 
experiments as “random variables”, and predicting the probabilities of 
observing various outcomes.  For quantities that fluctuate, this makes 
sense.

But often we conceive of systematic uncertainties that aren't 
fluctuations.  Maybe your thermometer really IS off by 0.2K, and every 
time you repeat the measurement you'll have the same systematic 
bias.

There's both a conceptual problem and a practical problem here.  
Conceptually, we resort to the dodge of imagining “identical” 
hypothetical experiments, except that certain features of the setup are 
allowed to vary.  Practically, we usually can't measure the size of a 
systematic by repeating the measurement 100 times and looking at 
the distribution.  We're almost forced to be pseudo-Bayesian about the 
whole thing.
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Bayesian approach to systematics
Bayesians lose no sleep over systematics.  Suppose you want to measure 
some quantity .  You have a prior P(), you observed some data D, and 
you need to calculate a likelihood P(D|,I).  Let's suppose that the 
likelihood depends on some systematic parameter  (which could for 
example be the calibration of the energy scale).  We handle the 
systematic uncertainty by simply treating both  and  as unknown 
parameters, assign a prior to each, and write down Bayes theorem:

In the end we get a distribution for , whose value we care about, and for 
, which may be uninteresting.  We marginalize by integrating over to 
get   P(|I).

The prior P() presents our prior knowledge of and is often the result of 
a calibration measurement.

Note that since the likelihood P(D|I) depends on as well, it can 
provide additional information on 
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Distinction between statistical and systematic 
uncertainties

A common set of definitions:

A “statistical uncertainty” represents the scatter in a parameter 
estimation caused by fluctuations in the values of random variables. 
 Typically this decreases in proportion to 1/√N.

A “systematic uncertainty” represents a constant (not random) but 
unknown error whose size is independent of N.

DO NOT TAKE THESE DEFINITIONS TOO SERIOUSLY.  Not all 
statistical uncertainties decrease like 1/√N.  And more commonly, 
taking more data can decrease a systematic uncertainty as well, 
especially when the systematic affects different parts of the data in 
different ways, as in the example on the previous page.
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Need to have a systematics model 
The most important step in dealing with any systematic is to have a 
quantitative model of how it affects the measurement.  This 
includes:

A.  How does the systematic affect the measured data points
      themselves?
B.  How does the systematic appear quantitatively in the
     calculations applied to the data?

It is essential to have some model, however simplified, in order to 
quantify the systematic uncertainty.



 56

Systematic error model #1: an offset
Suppose we take N measurements from a distribution, and wish to 
estimate the true mean of the underlying distribution.

Our measuring apparatus might have an offset s from 0.  We 
attempt to calibrate this.  Our systematic error model consists of:

1) There is some additive offset s whose value is unknown.
2) It affects each measurement identically by x

i
 → x

i
+s.

3) The true mean is estimated by:

4) Our calibration is s = 2 ± 0.4
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Systematic error model #2: two incompatible 
models

In order to determine the 
rate of some process, we 
fit the data to a two-
component model 
consisting of a signal 
shape and a background 
shape.

But there are two 
different and mutually 
exclusive background 
models, which we'll 
denote as A and B.
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Systematic error model #2: two incompatible 
models If the error ranges on the 

background models are 
negligible, one possibility 
is to just do the analysis 
twice, reporting the result 
with each model, and 
hope that future 
information will 
determine which model is 
right.

But in this case the 
shape of the data 
actually will tell us 
something about the two 
models---data will 
constrain the systematic 
(the shape of the 
background).
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Systematic error model #2: two incompatible 
models One approach is to make a 

parameterized background 
model that interpolates 
between the two:

m(x) = fm
A
(x)+ (1-f)m

B
(x)

Here 0≤f≤1.  You can 
define whatever Bayesian 
prior you like for f (even 
Dirac delta functions at f=0 
and f=1).  Your fit to the 
data will favour some 
values of f and not others, 
but the most important 
thing is you've quantified 
the problem through 
nuisance parameter f.
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How do you measure a systematic?
So you've quantified the effects of the systematic through some nuisance 
parameter.  How do you determine the value of that nuisance parameter 
itself?  Various approaches:

1) Calibration measurements, taken separately from your main data
2) A priori estimate based on known parameters of the apparatus
3) If data provides useful data about nuisance parameter, fit it from
    the main data itself.
4) “Theory”: some systematic uncertainties will be what we call
    “theoretical uncertainties”.  There are various
     causes/interpretations:
     A. Measurement uncertainties in theory parameters
     B. Theorists' estimates of errors due to approximations made
     C. Spread between different theory estimates (careful here!)
5) Data vs. Monte Carlo comparisons: use calibration data to
     estimate how well Monte Carlo reproduces data, then use
     spread as an estimate of how well Monte Carlo predicts other
     quantities
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How do you measure a systematic?
This is a black art.  I'd argue that 90% of experimental physics is 
thinking of clever ways to reduce or at least measure systematics.

Severus Snape, dabbler in the black 
arts

Unfortunately, there is no 
real magic, merely hard 
work.

A strong dose of paranoia 
helps as well.
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Why you should avoid inflating systematics...
What's wrong with inflating systematics to cover all bases?  Isn't this the 
“conservative” thing to do?

1) This tends to paper over model inaccuracies, and imply greater support 
for your model than is warranted.  (Think Bayesian-wise: since Bayesian 
analyses always choose between competing hypotheses, being 
“conservative” with one hypothesis is equivalent to selectively favouring 
another.

2)  Your inflated error might hide a serious problem with your data, or 
worst of all may miss an important discovery.

3) Tendency to bias: everyone recognizes that it's wrong to “fudge your 
data” to make your central value agree with expectations.  Fewer people 
recognize that it's equally wrong to inflate your errors to make sure the 
error bars overlap the expected value!
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Propagating systematics with Monte Carlo
So you've listed all of the systematics, mapped them all to nuisance 
parameters (or decided that they're negligible), and have assigned PDFs 
to each nuisance parameter.  What next?

“Propagating the systematics” means to determine how much uncertainty 
results in your final value from your systematics model.  Toy Monte Carlo 
is an excellent way to do evaluate this:

1) Randomly choose values for each nuisance parameter according to 
their respective PDFs.
2) Analyze the data as if those values of the nuisance parameters are the 
true values for the systematic parameters.
3) Repeat many times.
4) If you're trying to estimate the error on a fit parameter, plot the 
distribution of the fitted values of that parameter.  Take the RMS width as 
the systematic error.
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Propagating systematics with Monte Carlo 2
Advantages of the Monte Carlo method:
 few approximations made---no need to assume Gaussian errors
 considers the effects of all systematics jointly, including nonlinearities
 can easily accommodate correlations between systematics

Disadvantages of the Monte Carlo method:
 method does not allow the data itself to constrain the systematics 
 because all systematics are varied at once, the resulting distribution is 
the convolution of the effects of all nuisance parameters.  On the one 
hand this is a feature---in real life all systematics vary at once, and so 
Monte Carlo gives an “exact” way of modelling how various systematics 
interact.  On the other hand, if you want to understand the relative 
importance of each component, you have to either marginalize or project 
over each parameter, or rerun your Monte Carlos, this time varying just 
one systematic at a time.  (Actually, this is recommended practice in any 
case.)
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Covariance matrix approach
Monte Carlo is not always necessary, and not always the fastest way to 
propagate systematics.  In the “covariance matrix” approach, you treat the 
nuisance parameter s and the data values x

j
 as a set of correlated 

random variables.  You then calculate their full covariance matrix, and use 
error propagation to estimate the uncertainties.

Ex. taking the average of a set of measurements with a systematic 
additive offset:

(Implicitly assuming X
j
 is independent of s).

You can think of this as the sum of two covariance matrices:

     V
tot

 = V
stat

 + V
sys
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Covariance matrix approach 2

Now just include the new covariance matrix in your analysis 
wherever you previously had just the statistical error 
covariances---e.g.

Note: in this approach you often will consider the value of s to be 
fixed at its central value.  In other words, although the covariance 
matrix V will contain information on how much the uncertainties on 
the measured values y

i
 are increased by the systematic, the 

above formulation doesn't directly yield a refined estimate of s.  
We'll correct this shortly.
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Reducing correlations in the straight line fit

The strong correlation 
between m and b results 
from the long lever arm---
since you must extrapolate 
line to x=0 to determine b, a 
big error on m makes a big 
error on b.

You can avoid strong 
correlations by using more 
sensible parametrizations: 
for example, fit data to
y=b'+m(x-45.5):

b' = 36.77 ± 0.16
m = 0.658 ± 0.085
 = 0.43

dy at x=45.5 = 0.16
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Non-Gaussian errors
The error propagation can give the false impression that 
propagating errors is as simple as plugging in variances and 
covariances into the error propagation equation and then 
calculating an error on output.

However, a significant issue arises: although the error 
propagation equation is correct as far as it goes (small errors, 
linear approximations, etc), it is often not true that the resulting 
uncertainty has a Gaussian distribution!  Reporting the central 
value and an RMS may be misleading.
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Ratio of two Gaussians I
Consider the ratio R=x/y of two independent variables drawn 
from normal distributions.  By the error propagation equation

Let's suppose x = 1 ± 0.5 and y = 5 ± 1.  Then the calculated 
value of R = 0.200 ± .108.

What does the actual distribution for R look like?
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Ratio of two Gaussians II

x = 1 ± 0.5 and y = 5 ± 1.

Error propagation prediction:
R = 0.200 ± .108.

Mean and RMS of R:
0.208 ± 0.118

Gaussian fit to peak:
0.202 ± 0.107

Non-Gaussian tails evident, 
especially towards larger R, 
but not too terrible.
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Ratio of two Gaussians III

x = 5 ± 1 and y = 1 ± 0.5

Error propagation:
R = 5.00 ± 2.69.

Mean and RMS of R:
6.39 ± 5.67

Gaussian fit to peak:
4.83 ± 1.92

Completely non-Gaussian in 
all respects.  Occasionally 
we even divide by zero, or 
close to it!
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Ratio of two Gaussians IV
x = 5 ± 1 and y = 5 ± 1

Error propagation:
R = 1 ± 0.28

Mean and RMS of R:
1.05 ± 0.33

Gaussian fit to peak:
1.01 ± 0.25

More non-Gaussian than first case, 
much better than second.

Rule of thumb: ratio of two 
Gaussians will be approximately 
Gaussian if fractional uncertainty 
is dominated by numerator, and 
denominator cannot be small 
compared to numerator.
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Ratio of two Gaussians: testing an asymmetry

A word of caution: often scientists like to form asymmetries---for 
example, does the measurement from the left half of the 
apparatus agree with that from the right half?  Asymmetry ratios 
are the usual way to do this, since common errors will cancel in 
ratio:

Be extremely careful about using the error on the asymmetry as a 
measure of whether A is consistent with zero.  In other words, 
A=0.5 ± 0.25 is usually not a “2 sigma” result, probability-wise.

Instead, it's better to simply test whether the numerator is 
consistent with zero or not.
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Asymmetric errors
The error propagation equation works with covariances.  But the 
confidence interval interpretation of error bars often reports 
asymmetric errors.  We can't use the error propagation equation 
to combine asymmetric errors.  What do we do?

Quite honestly, the typical physicist doesn't have a clue.  The 
most common procedure is to separately add the negative error 
bars and the positive error bars in quadrature:

Source - Error + Error
Error A -0.025 +0.050
Error B -0.015 +0.010
Error C -0.040 +0.040
Combined -0.049 +0.065

Warning: in spite of how common 
this procedure is and what you 
may have heard, it has no 
statistical justification and often 
gives the wrong answer!
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How to handle asymmetric errors
Best case: you know the likelihood function (at least numerically).  
Report it, and include it in your fits.

More typical: all you know are a central value, with +/- errors.  Your only 
hope is to come up with some parametrization of the likelihood that 
works well.  This is a black art, and there is no generally satisfactory 
solution.

Roger Barlow recommends (in a paper on his web site):

You can verify that this expression evaluates to ½ when 

 or 



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Parametrizing the asymmetric likelihood 
function

Note that parametrization 
breaks down when 
denominator becomes 
negative.  It's like saying 
there is a hard limit on  at 
some point. Use this only 
over its appropriate range of 
validity.

Barlow recommends this 
form because it worked well 
for a variety of sample 
problems he tried---it's 
completely empirical.

See Barlow, “Asymmetric 
Statistical Errors”, 
arXiv:physics/0406120
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Application: adding two measurements with 
asymmetric errors.

Let C=A+B.  Rewrite likelihood to be a function of C and one 
of the other variables---eg.

To get the likelihood function for C alone, which is what we 
care about, minimize with respect to nuisance parameter A:
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Asymmetric error results


	Sleamhnán 1
	Sleamhnán 2
	Sleamhnán 3
	Sleamhnán 4
	Sleamhnán 5
	Sleamhnán 6
	Sleamhnán 7
	Sleamhnán 8
	Sleamhnán 9
	Sleamhnán 10
	Sleamhnán 11
	Sleamhnán 12
	Sleamhnán 13
	Sleamhnán 14
	Sleamhnán 15
	Sleamhnán 16
	Sleamhnán 17
	Sleamhnán 18
	Sleamhnán 19
	Sleamhnán 20
	Sleamhnán 21
	Sleamhnán 22
	Sleamhnán 23
	Sleamhnán 24
	Sleamhnán 25
	Sleamhnán 26
	Sleamhnán 27
	Sleamhnán 28
	Sleamhnán 29
	Sleamhnán 30
	Sleamhnán 31
	Sleamhnán 32
	Sleamhnán 33
	Sleamhnán 34
	Sleamhnán 35
	Sleamhnán 36
	Sleamhnán 37
	Sleamhnán 38
	Sleamhnán 39
	Sleamhnán 40
	Sleamhnán 41
	Sleamhnán 42
	Sleamhnán 43
	Sleamhnán 44
	Sleamhnán 45
	Sleamhnán 46
	Sleamhnán 47
	Sleamhnán 48
	Sleamhnán 49
	Sleamhnán 50
	Sleamhnán 51
	Sleamhnán 52
	Sleamhnán 53
	Sleamhnán 54
	Sleamhnán 55
	Sleamhnán 56
	Sleamhnán 57
	Sleamhnán 58
	Sleamhnán 59
	Sleamhnán 60
	Sleamhnán 61
	Sleamhnán 62
	Sleamhnán 63
	Sleamhnán 64
	Sleamhnán 65
	Sleamhnán 66
	Sleamhnán 67
	Sleamhnán 68
	Sleamhnán 69
	Sleamhnán 70
	Sleamhnán 71
	Sleamhnán 72
	Sleamhnán 73
	Sleamhnán 74
	Sleamhnán 75
	Sleamhnán 76
	Sleamhnán 77
	Sleamhnán 78

