Neutrinoless Double Beta Decay $0\nu\beta\beta$ – part 2

Prof Jeanne Wilson

TRISEP 2024, Sudbury

Outline

Lecture 1

- What is double beta decay?
 - SEMF splitting
 - Known isotopes
- 2 neutrino double beta decay
- Neutrinoless double beta decay
 - Theory
 - Dirac and Majorana neutrinos
 - See-saw mechanism

Lecture 2

- Half-life / rate
 - Phase space
 - Matrix elements
- Experimental considerations
 - Challenges
 - Backgrounds
- Experiment examples

Lecture 3

- Neutrino mass
- Lobster plots
- Limits vs Discovery
- Alternative mechanisms and probing new physics
- $\beta^+\beta^+$ decays
- Future prospects

$0\nu\beta\beta$ Rate

$$\left(t_{0\nu}^{1/2}\right)^{-1} = G^{0\nu}g_A^4 \left|M^{0\nu}\right|^2 \langle m_{\beta\beta} \rangle^2$$

• $G^{0\nu}$ phase space factor

- Dependent on nucleus (Z and Q-value)
- Directly calculable
- g_A^4 = axial coupling constant
 - Free nucleon value $g_A = 1.27$
 - Quenching due to multinucleon effects

typical values $G^{0\nu} \sim 10^{-14} y^{-1}$

$0\nu\beta\beta$ Rate

$$\left(t_{0
u}^{1/2}
ight)^{-1} = G^{0
u}g_A^4 \left|M^{0
u}\right|^2 \langle m_{etaeta}
ight
angle^2$$

• $|M^{0\nu}|^2$ = nuclear matrix element

- Depends on nuclear structure of parent, daughter and intermediate nuclei
- Very computationally intensive to calculate – requires model approximations
- Factor 4 variation between models $\rightarrow 2$ order mag variation in predicted half-life for given $\langle m_{\beta\beta} \rangle^2$

Agostini et al, Rev Mod Phys 95 025002 (2023) https://arxiv.org/abs/2202.01787

Nuclear Matrix Element Calculations

- Initial state consists of $\mathcal{O}(100)$ nuclei
- Final state consists of $\mathcal{O}(100)$ nuclei + electrons
- Via large number of potential intermediate states
- Short range correlations? Quenching?
- Computationally infeasible without model assumptions
- Some aspects of models can be tested with $2\nu\beta\beta$ measurements (but not all)

$0\nu\beta\beta$ Rate

$$\left(t_{0\nu}^{1/2}\right)^{-1} = G^{0\nu}g_A^4 \left|M^{0\nu}\right|^2 \langle m_{\beta\beta}\rangle^2$$

$$\langle m_{etaeta}
angle = \left|\sum_i U_{ei}^2 m_i
ight|$$

Square of the effective Majorana mass See lecture 3

$0\nu\beta\beta$ Rate

- Looking at half-lives $T_{1/2} > 10^{25}$ years and longer
- Very rare decays:
 - Need a lot of candidate isotopes
 - Need to measure for a long time

Isotopic abundance

• Measure number of $0\nu\beta\beta'$ decays, $N_{\beta\beta}$ in a given time t

•
$$N_t = N_{iso} - N_{\beta\beta} = N_0 e^{-(t/\tau)}$$

 N_t = number of isotopes after time t N_o = initial number of isotopes N_d = number of decays t = measuring time τ = time it takes to reduce to 1/e

TRISEP 2024 $0\nu\beta\beta$ Jeanne Wilson

 $\rightarrow T_{1/2}^{\beta\beta}$

Experimental Considerations

- Signature of $0\nu\beta\beta$ is a peak at the endpoint of the $2e^-$ spectrum
 - Need to detect the electrons efficiently and measure their energy very accurately
 - Need to minimize the chance of any other events mimicking your signal

Background Free

Choose your Isotope

High Q value:

- Generally better phase space
- Above many low energy backgrounds

00 December of	Isotopic Abundance	Q-value
pp Decay Reaction	[atomic $\%$]	$[\mathrm{keV}]$
$^{48}\text{Ca}{ ightarrow}^{48}\text{Ti}$	0.2	4274
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	7.6	2039
$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	8.7	2996
$^{96}\text{Zr} \rightarrow ^{96}\text{Mo}$	2.8	3348
$^{100}Mo \rightarrow ^{100}Ru$	9.6	3034
$^{116}Cd \rightarrow ^{116}Sn$	7.5	2814
$^{124}\text{Sn} \rightarrow ^{124}\text{Te}$	5.8	2288
$^{128}\text{Te}{\rightarrow}^{128}\text{Xe}$	31.8	866
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	34.2	2528
136 Xe \rightarrow 136 Ba	8.9	2458
$^{150}\mathrm{Nd}{\rightarrow}^{150}\mathrm{Sm}$	5.6	3368

- High Isotopic Abundance:
- More isotope per \$\$£
- Isotopic enrichment is challenging (money time and politics!)

Isotope Enrichment

- If abundance is low, enrich in your desired isotope.
- Method depends on element.
 - Can you make it gaseous? Soluble in liquid?
- Centrifugal force:
 - gas centrifuge Xenon, GeF₄ or GeH₄, SeF₆, MoF₆
 - Liquid solution centrifuge
- Atomic vapor laser isotope separation (AVLIS):
 - Inject laser energy at the precise frequency to ionize only the specific isotope
 - Separate ions from atoms with EM field

Choose your Isotope

$\beta\beta$ Decay Reaction	Isotopic Abundance	Q-value
	[atomic %]	$[\mathrm{keV}]$
$^{48}\text{Ca}{ ightarrow}^{48}\text{Ti}$	0.2	4274
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	7.6	2039
$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	8.7	2996
$^{96}\text{Zr} \rightarrow ^{96}\text{Mo}$	2.8	3348
$^{100}\mathrm{Mo}{ ightarrow}^{100}\mathrm{Ru}$	9.6	3034
$^{116}Cd \rightarrow ^{116}Sn$	7.5	2814
$^{124}\text{Sn} \rightarrow ^{124}\text{Te}$	5.8	2288
$^{128}\text{Te}{\rightarrow}^{128}\text{Xe}$	31.8	866
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	34.2	2528
136 Xe \rightarrow 136 Ba	8.9	2458
$^{150}\mathrm{Nd}{ ightarrow}^{150}\mathrm{Sm}$	5.6	3368

Correlation between Q-value and Phase Space Factor (not exact – other factors at play)

Choose your Isotope

Source = Detector

- $\sim MeV \beta$ s don't travel far so restricted to thin films if detectors separate from source
- Need to 'see' the $\beta\beta$ and accurately record their energy
 - Detection Efficiency
 - Energy Resolution

• Even better

- Can you be sure it was a $\beta\beta$ event? \rightarrow Tracking would be nice
- Can you be sure it was a decay of your isotope? → Tagging of the decay product would be very nice

Backgrounds

• $2\nu\beta\beta$ decays ΔE , b

 $T_{1/2} \propto \frac{M.\epsilon.\sqrt{t}}{\sqrt{(b.M+c)\Delta E}}$

- Internal radiological backgrounds b
- Surface backgrounds ~b
- External radiological backgrounds *c*
- Cosmogenic *b*, *c*
- Neutrinos and Neutrino-genic *b,c*

²³⁸U chain

Remember ²³⁸U is a $\beta\beta$ decay candidate

Naturally occurring (few ppm in rock, soil, water), long lived $T_{1/2} = 4.5 \times 10^6$ years

- α-decays
- β -decays
- Accompanying γ s
- Very short decay steps can be used for 'tagging': 214 Po $T_{1/2} = 164 \mu s$

BiPos

19

²³⁸U chain

Naturally occurring (few ppm in rock, soil, water), long lived $T_{1/2} = 4.5 \times 10^6$ years

- α-decays
- β -decays
- Accompanying γ s
- Very short decay steps can be used for 'tagging'
- Radon gaseous and short lived $^{222}\mathrm{Rn}\,T_{1/2}=3.82$ days

Radon

- ²²²Rn $T_{1/2} = 3.82$ days
- Produced in the ²³⁸U decay chain, can then emanate out of solid detector components into a liquid or gaseous region
- Or radon in air can dissolve into a liquid
- Both can break 'equilibrium'
 - Different activity in the top and bottom part of the chain
- Radon decays in air, can implant daughters into solid materials
 - Those radioactive daughters can later leach out into liquids

²³²Th chain

- Also naturally occurring
- Highest 'naturally occurring' gamma
 - ²⁰⁸Tl E = 2.615MeV

• ²¹²Po $T_{1/2} = 0.3 \mu s$

 Can also be BiPo 'tagged' but more challenging as shorter half-life that ²¹⁴BiPos

Radioactive Isotopes

• Most 'dangerous' depends on detector and Q-value e.g. $^{60}\text{Co} \rightarrow 2.5 \text{MeV}$ visible gammas

CUORE spectrum ¹³⁰Te Q-value = 2.528MeV

Signal region

Backgrounds

• $2\nu\beta\beta$ decays ΔE

- Internal radiological backgrounds b
- External radiological backgrounds *c*

- Cosmogenic *b*, *c*
- Neutrinos and Neutrino-genic *b*, *c*

Cosmic Muons

- Muons produced in the atmosphere from cosmic ray interactions
- Deeper underground, lower muon flux
- Muons are generally easily vetoed
 - Characteristic high energy deposits
 - Veto detectors

• However...

Muon flux = 70 muons/day Class-2000 clean room lab

TRISEP 2024 $0\nu\beta\beta$ Jeanne Wilson

Cosmogenic Backgrounds

- Muons can interact with material in the detector producing n,p, radioactive isotopes
- Materials above ground experience higher activation rates
 - Source material
 - During construction
 - In transit

Isotopes produced with short (<1year) half-lives can be mitigated by allowing materials to 'cool' underground

- In-situ cosmogenic production
 - Can veto short-lived isotopes with time-cut after muon

Experiment Examples

- Not a complete list
- Use these examples to illustrate the different backgrounds and challenges

Experiment Examples

- Not a complete list
- Use these examples to illustrate the different backgrounds and challenges

SNO+

- 2km underground (~6000 mwe)
- Observe events through scintillation light with ~9300 PMTs
 - e[±],γ,α,μ
- ¹³⁰Te 34% nat abundance
- Highly scalable, cost effective (no enrichment required)
- Load natural Te into the scintillator (chemistry!)
 - 'Source out' measurements first
 - Initially add 0.5% by mass (3.9tonnes)
 - \rightarrow 1%, 1.5%, 2.5% ...

Te loading

- ~8 tons of telluric acid (TeA) "cooling" underground
- Target purification for Te cocktail:

~ 10⁻¹⁵ g/g U ~ 10⁻¹⁶ g/g Th

Event Reconstruction

- 'Events' \rightarrow scintillation light \rightarrow photons \rightarrow PMT hits
- > 10,0000 γ /MeV \rightarrow ~300 hits/MeV

 Reconstruct position and energy of event from time and number of PMT hits

$$t_{res} = t_{hit} - t_{event} - d/d$$

• Some sensitivity to event type through timing distribution

SNO+0.5% loading

ROI: 2.42 - 2.56 MeV [-0.5σ - 1.5σ] Counts/Year: 9.47

KamLAND-Zen

- 1000-ton pure liquid scintillator $U, Th < 10^{-17} g/g$
- ~745kg of ¹³⁶Xe (91% enrichment) loaded into inner balloon
- ~8000 photons/MeV from Liquid scintillator

KamLAND-Zen backgrounds 1

Slide from I Shimizu, Neutrino 2024

Mitigating backgrounds from the balloon

KamLAND-Zen backgrounds 2

2700 m.w.e. over-burden

KamLand-Zen latest results

1131 days of data Best fit = 0 events , 90% CL < 10 events $T_{1/2}^{0\nu} > 3.8 \times 10^{26} years$

Experiment Examples

- Not a complete list
- Use these examples to illustrate the different backgrounds and challenges

LEGEND

- High Purity Germanium detectors enriched in ⁷⁶Ge
- Solid state semi-conductors with outstanding energy resolution
- Very pure low backgrounds
- HPGe commonly used for very low background screening
- Long-standing history for $0\nu\beta\beta$ searches

LEGEND

Background suppression

Single site $\beta\beta$ event

Multi-detector γ event Multiple interactions γ event and α , β surface events Pulse shape pulse shape discrimination

 γ event, vetoed by activity in LAr

External veto

Thtps://legendrexp.org/soience/neutrinoless-bb-decay/legend-detectors

Background suppression

TRISEP 2024 $0\nu\beta\beta$ Jeanne Wilson

Experiment Examples

- Not a complete list
- Use these examples to illustrate the different backgrounds and challenges

Xe TPCs

Charged particles produce light through scintillation and ionized track

Drift electrons to anodes – charge collection at wire grids

Simultaneous measurement of light and charge for better energy resolution and PID

Xe Liquid or Gas

0νββ

- high pressure better as more isotope
- Requires cryogenics $\rightarrow \sim -95^{\circ}$ C
- Enrichment of ¹³⁶Xe

TRISEP 2024

Jeanne Wilson

EXO-200

200kg Liquid Xe TPC (80% enrichment) Central photo-cathode Phys. Rev. Lett. 123, 161802 $T_{1/2} > 3.5 \times 10^{25}$ y (90% C.L.)

44

https://nexo.llnl.gov/nexo-overview

High pressure Xe gas TPC with electroluminescence

Topological signal/background separation

¹³⁶Xe daughter tagging

The Ba⁺⁺ ion is only produced from $\beta\beta$ decay If this can be tagged, distinguish $\beta\beta$ from all other radioactive events

Active R&D:

- Drift ++ ion to cathode
- Trap Ba eg. cryogenic probe
- chemical sensors/ fluorescence

Eg https://www.nature.com/articles/s41586-019-1169-4

Experiment Examples

- Not a complete list
- Use these examples to illustrate the different backgrounds and challenges

CUORE

- Closely packed array of 988 TeO₂ crystals (750g each) working as cryogenic calorimeters
- Absorbed energy converted into temperature variation of crystal, measured by thermistor
 - Energy resolution ~0.3% FWHM
- Challenges:
- operating temperature $\sim 10mK!$
- Surface backgrounds
- Sensitive to vibrations and seismic activity
 - Correlation between storms and low f noise
 - Sea waves!

CUPID

CUORE Upgrade with Particle IDentification

- Li_2MoO_4 crystals enrich to 95% ¹⁰⁰Mo
- Higher $Q_{\beta\beta}$ for reduced γ/β backgrounds
- Both temperature and light detection for PID rejection of surface α s

Experiment Examples

- Not a complete list
- Use these examples to illustrate the different backgrounds and challenges

SuperNEMO

• An isotope agnostic technique to distinguish individual particles, and probe $0\nu\beta\beta$ mechanisms and nuclear effects

SuperNEMO shielding

- Source ≠detector
- Great care with incoming backgrounds
 - U & Th in lab rock walls → shielding
 - Radon in lab air → anti-radon system

Modane Underground laboratory

Experiments

- There are many experimental contenders
- Different strengths and weaknesses / challenges
- Require significant investment and international collaboration
- Complementarity important for discovery:
 - Different isotopes
 - Different techniques / locations

Top Trumps

- SNO+
- KamLAND-Zen
- LEGEND
- nEXO
- NEXT-HD
- NEXt-BOLD
- CUORE
- CUPID
- SuperNEMO

https://tinyurl.com/BBTopTrumps

- AMORE
- PANDA-X
- Selena
- EXO-200
- Gerda
- Majorana demonstrator
- NEMO-3

Name: Isotope: Method: Main challenges:

Q-value / Phase Space: Mass of Isotope: Background Index: Discovery Sensitivity: Start of Data Taking: Special Features:

https://tinyurl.com/BBTopTrumps

Summary – lecture 2

- How the rate of $0\nu\beta\beta$ relates to neutrino mass
 - Matrix element uncertainties
- How the rate of $0\nu\beta\beta$ relates to experiment design
 - Choice of isotope, mass
- Experimental challenges
 - Backgrounds! Backgrounds! Backgrounds !
- Experiment Examples
 - Liquid scintillator: isotope loading, reconstruction, background rejection
 - HPGe: PSD and energy resolution, readout
 - Xe TPCs: Track information, daughter tagging
 - Bolometers: cryogenics, surface backgrounds
 - Separate source, tracking + calorimetry: shielding and radon suppression