

DANIEL STOLARSKI July 16-18, 20

Look for 1 jet (quark or gluon) + missing energy.

Model agnostic search for many dark matter models.

arXiv:1008.1783. arXiv:1109.4398.

Can take all searches and use them to constrain specific models.

COMPARE TO DIRECT DETECTION

(χ-nucleon) [cm²]

σ_{SI}

- How does this compare to dark matter direct detections (lectures by Diamond, Hong, Wenz)?
- Very different energy regime!

Collider better at low energy, DD wins at high energy.

COMPARE TO DIRECT DETECTION

Very model dependant!

Two methods are complementary.

 10^{-37} σ_{SD} (χ-proton) [cm²] 10⁻³⁸ • 10⁻³⁹ ⊧ 10⁻⁴⁰, 10⁻⁴¹

 10^{-42}

 10^{-43}

 10^{-44}

 10^{-46}

PROFESSOR DARK MATTER

TODAY

THOUGHT EXPERIMENT

Dark Energy 71.4%

They ask, where is the missing 5%?

Most theorists will posit a single "dark matter" particle.

h/t Neal Weiner

TODAY

THUGHT EXPERIMENT

Dark Energy 71.4%

They ask, where is the missing 5%?

Most theorists will posit a single "dark matter" particle.

h/t Neal Weiner

h/t Neal Weiner

DANIEL STOLARSKI July 16-18, 2024 TRISEP 9

THOUGHT EXPERIMENT

$$\begin{split} & \mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a} - g_{\mu}^{a} d^{a} \partial_{\nu} g_{\mu}^{b} g_{\nu}^{c} - \frac{1}{4} g_{\mu}^{a} f^{abc} f^{adc} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{a} g_{\mu}^{c} - \partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - \\ & W_{\nu}^{+} W_{\mu}^{-} - Z_{\nu}^{0} (W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}) + Z_{\mu}^{0} (W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}) - \\ & W_{\nu}^{+} W_{\mu}^{-} - W_{\nu}^{+} W_{\mu}^{-} - W_{\nu}^{+} W_{\mu}^{-} - W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}) + Z_{\mu}^{0} (W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}) \\ & - W_{\nu}^{+} \partial_{\nu} W_{\mu}^{+} W_{\nu}^{-} + g_{2}^{+} Z_{\mu}^{0} W_{\mu}^{+} W_{\nu}^{-} W_{\mu}^{-} Z_{\mu}^{0} Z_{\mu}^{0} W_{\mu}^{+} W_{\nu}^{-} + g_{2}^{-} Z_{\mu}^{0} Z_{\mu}^{0} W_{\mu}^{+} W_{\nu}^{-} - \\ & Z_{\mu}^{+} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-} + g_{2}^{+} Z_{\mu}^{0} H_{\mu}^{+} + 2 M^{2} + \partial_{\mu} \partial_{\mu} H^{-} 2 - \partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-} - \frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \partial_{\mu} \phi^{0} \\ & - \\ & \mathcal{H}_{\nu}^{-} W_{\nu}^{+} W_{\mu}^{-} + g_{2}^{+} Z_{\mu}^{0} H_{\mu}^{+} + 2 M^{2} + \partial_{\mu} \phi^{0} + 2 \partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-} - \frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \partial_{\mu} \phi^{0} \\ & - \\ & \mathcal{H}_{\mu}^{0} W_{\mu}^{0} - \partial_{\mu} \partial_{\mu}^{0} + \mathcal{H}_{\mu}^{0} \partial_{\mu} \phi^{0} + 2 \partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-} + 2 (\phi^{0})^{2} H^{2} \\ & - \\ & g_{\mu} \partial_{\mu} W_{\mu}^{0} W_{\mu}^{-} H_{\mu}^{-} + \frac{1}{2} g_{\mu}^{2} Z_{\mu}^{0} Z_{\mu}^{0} H^{0} + 2 \partial_{\mu} \partial_{\mu} \partial_{\mu} + \\ & - \\ & g_{\mu} \partial_{\mu} \partial_{\mu} \partial_{\mu}^{0} + W_{\mu}^{0} \partial_{\mu} \partial_{\mu}^{0} - \phi^{-} \partial_{\mu} \partial_{\mu} + - \\ & - \\ & g_{\mu} \partial_{\mu} \partial_{\mu} \partial_{\mu}^{0} + W_{\mu}^{0} \partial_{\mu} \partial_{\mu}^{0} + \partial_{\mu} \partial_{\mu}^{0} + \partial_{\mu} \partial_{\mu}^{0} + \partial_{\mu} \partial_{\mu}^{0} + - \\ & \\ & \frac{1}{2} g_{\mu}^{2} W_{\mu}^{0} (W_{\mu}^{+} \phi^{-} + W_{\mu}^{-} \partial_{\mu} \phi^{+}) - \\ & \frac{1}{2} g_{\mu}^{2} W_{\mu}^{0} (W_{\mu}^{+} \phi^{-} + W_{\mu}^{-} \partial_{\mu} \partial_{\mu}^{0} +) \\ & - \\ & W_{\mu}^{-} \phi^{+}) + \frac{1}{2} g_{\mu}^{2} Z_{\mu}^{0} (\partial_{\mu} \partial_{\mu}^{0} - \partial_{\mu}^{-} \partial_{\mu}^{0} + \\ & \\ & \\ & \\ & \frac{1}{2} g_{\mu}^{2} W_{\mu}^{0} (W_{\mu}^{+} \phi^{-} + W_{\mu}^{-} \partial_{\mu}^{0} -) \\ & \frac{1}{2} g_{\mu}^{2} W_{\mu}^{0} (W_{\mu}^{+} \phi^{-} - W_{\mu}^{-} \phi^{+}) \\ & + \\ & \frac{1}{2} g_{\mu}^{2} W_{\mu}^{0} (W_{\mu}^{+} \phi^{-} + W_{\mu}^{0} \partial_{\mu}^{0} - \\ & - \\ & \\ & \frac{1}$$

THOUGHT EXPERIMENT

Dark Energy 71.4%

Dark matter could be part of a complicated sector with interesting dynamics! (see lectures by Shandera)

h/t Neal Weiner

DANIEL STOLARSKI July 16-18, 2024 TRISEP 11

 $\Omega_{DM} \simeq 5\Omega_B$

$\Omega_{DM} = m_{DM} n_{DM}$

DANIEL STOLARSKI July 16-18, 2024 TRISEP 11

$\Omega_{DM} \simeq 5\Omega_B$

 $\Omega_B = m_p n_B$

 $\Omega_{DM} \simeq 5\Omega_B$

$\Omega_{DM} = m_{DM} n_{DM}$

11 DANIEL STOLARSKI July 16-18, 2024 TRISEP

Controlled by complicated (known) QCD dynamics $\Omega_B = m_p n_B$

 $\Omega_{DM} \simeq 5\Omega_B$

$\Omega_{DM} = m_{DM} n_{DM}$

11 DANIEL STOLARSKI July 16-18, 2024 TRISEP

Controlled by complicated (known) QCD dynamics

Unknown dynamics of baryogenesis

 $\Omega_B = m_p n_B$

 $\Omega_{DM} \simeq 5\Omega_B$

$\Omega_{DM} = m_{DM} n_{DM}$

11 DANIEL STOLARSKI July 16-18, 2024 TRISEP

Controlled by complicated (known) QCD dynamics $\Omega_B = m_p n_B$? Unknown dynamics of baryogenesis

ASYMMETRIC DARK VALLER

$\Omega_B = m_p n_B$ $\Omega_{DM} = m_{DM} n_{DM}$ Unknown dynamics of baryogenesis

DANIEL STOLARSKI July 16-18, 2024 TRISEP 12

$\Omega_{DM} \simeq 5\Omega_B$

Can get $n_{DM} \sim n_B$, usually have to assume $m_{DM} \sim m_B$.

ASYMMETRIC DARK VALLER

$\Omega_B = m_p n_B$ $\Omega_{DM} = m_{DM} n_{DM}$ Unknown dynamics of baryogenesis

Can we get both?

DANIEL STOLARSKI July 16-18, 2024 **TRISEP** 12

$\Omega_{DM} \simeq 5\Omega_B$

Can get $n_{DM} \sim n_B$, usually have to assume $m_{DM} \sim m_B$.

GETING THE MASS $\Omega_{DM} \simeq 5\Omega_B$

$\Omega_{DM} = m_{DM} n_{DM}$

13 DANIEL STOLARSKI July 16-18, 2024 TRISEP

Controlled by complicated (known) QCD dynamics

Unknown dynamics of baryogenesis

 $\Omega_B = m_p n_B$

GETTING THE MASS $\Omega_{DM} \simeq 5\Omega_B$

QCD like ? ? $\Omega_{DM} = m_{DM} n_{DM}$

13 DANIEL STOLARSKI July 16-18, 2024 TRISEP

Controlled by complicated (known) QCD dynamics

Unknown dynamics of baryogenesis

 $\Omega_B = n_p n_B$

Propose new $SU(N_d)$ "dark QCD," dark quarks. Bai, Schwaller, 1306.4676.

Dark matter is dark sector baryons with $\sim \Lambda_{dQCD}$.

Massive bifundamental fields decouple at mass $M \gg \Lambda_{dQCD}$.

Search for model with perturbative fixed point.

mass
$$\frac{dg}{dt} = \beta(g) = 0$$
 for $g = g^*_{g^*}$

 $\beta(g)$ $\beta(g)$ g^* g

ASYMMETRY SHARING

Can co-generate DM and baryon asymmetry.

QXd_i

Asymmetries for baryons and dark matter are (roughly) equal.

ASYMPTRY SHARING

Can co-generate DM and baryon asymmetry.

 $QXd_i \rightarrow SM quark$ $\downarrow \qquad bifundamental scalar$ → dark quark

Asymmetries for baryons and dark matter are (roughly) equal.

GENERAL PICTURE

$\bar{Q}Xd_i$ \overline{q} .

DANIEL STOLARSKI July 16-18, 2024 TRISEP 18

PON DECAY

Operator used to generate asymmetry mediates decay:

 \overline{q}

$\bar{Q}Xd_i$

Integrate out X.

DANIEL STOLARSKI July 16-18, 2024 TRISEP 18

PON DECAY

Operator used to generate asymmetry mediates decay:

 \boldsymbol{q}

Operator used to generate asymmetry mediates decay: QXd_i

Integrate out X.

DANIEL STOLARSKI July 16-18, 2024 TRISEP 18

PON DECAY

 π_d

Dark pion decays to quarks

Can use (dark) chiral Lagrangian to estimate:

 $\Gamma(\pi_d \to \bar{d}d) \approx \frac{f_{\pi_d}^2 m_d^2}{32\pi M_{X_d}^4} m_{\pi_d}$

 $c\tau_0 \approx 10 \,\mathrm{cm} \times \left(\frac{2 \,\,\mathrm{GeV}}{f_{\pi_d}}\right)^2 \left(\frac{100 \,\,\mathrm{MeV}}{m_{\mathrm{down}}}\right)^2 \left(\frac{2 \,\,\mathrm{GeV}}{m_{\pi_d}}\right) \left(\frac{M_{X_d}}{1 \,\,\mathrm{TeV}}\right)^4 \,.$

 $\pi_d \qquad \frac{1}{M_{\mathbf{v}}^2} \overline{Q} \gamma_\mu Q \, \bar{d}_R \gamma^\mu d_R$

James Beacham, ATLAS Dark Sector Workshop, Cosenza, Italy, Feb 10, 2016.

Final state is • 2 QCD jets • 2 emerging jets

July 16-18, 2024 DANIEL STOLARSKI TRISEP 22

Cross section is calculable $\sigma(M_{\Phi} = 1 \,\mathrm{TeV}) \approx 10 \,\mathrm{fb}$

@ LHC14

Schwaller, DS, Weiler, arXiv:1502.0409.

DEDICATED CVS SEARCHES

Journal of High Energy Physics February 2019, 2019:179 | <u>Cite as</u>

Search for new particles decaying to a jet and an emerging jet

CMS Collaboration

High Energy Physics – Experiment

Search for new physics with emerging jets in protonproton collisions at $\sqrt{s} = 13$ TeV

24 DANIEL STOLARSKI July 16-18, 2024 TRISEP

Model A. 14 TeV. 3000 fb^{-1}

25 DANIEL STOLARSKI July 16-18, 2024 TRISEP

• π^{\pm}	1-(0-)	 <i>ρ</i>₃(1690) 	$1^+(3^{})$
• \sigma^0	1-(0-+)	• $ ho(1700)$	$1^+(1^{})$
		• $a_2(1700)$	$1^{-}(2^{++})$
• η	0+(0-+)	$a_0(1710)$	$1^{-}(0^{++})$
• $f_0(500)$	0+(0++)		
aka σ ; was $f_0(600), f_0(400-1200)$		• $f_0(1710)$	0+(0++)
• $ ho(770)$	1+(1)	X(1750)	$?^{-}(1^{})$
• $\omega(782)$	0-(1)	$\eta(1760)$	0+(0^+)
• $\eta'(958)$	0+(0-+)	$f_0(1770)$	0+(0++)
• $f_0(980)$	0+(0++)	• $\pi(1800)$	1-(0-+)
• $a_0(980)$	1-(0++)	$f_2(1810)$	$0^+(2^{++})$
• $\phi(1020)$	0-(1)	<i>X</i> (1835)	0+(0^+)
• $h_1(1170)$	0-(1+-)	• $\phi_3(1850)$	0-(3)
• $b_1(1235)$	$1^+(1^{+-})$	$\eta_1(1855)$	$0^+(1^{-+})$
• $a_1(1260)$	$1^{-}(1^{++})$	• $\eta_2(1870)$	$0^+(2^{-+})$
• $f_2(1270)$	$0^+(2^{++})$	• $\pi_2(1880)$	$1^{-}(2^{-+})$
• $f_1(1285)$	$0^+(1^{++})$	ho(1900)	$1^+(1^{})$
• $\eta(1295)$	0+(0-+)	$f_2(1910)$	$0^+(2^{++})$
• $\pi(1300)$	$1^{-}(0^{-+})$	$a_0(1950)$	$1^{-}(0^{++})$
• $a_2(1320)$	$1^{-}(2^{++})$	• $f_2(1950)$	$0^+(2^{++})$
• $f_0(1370)$	0+(0++)	• $a_4(1970)$	$1^{-}(4^{++})$

ACD RESONANCES

$\pi_1(1400)$	$1^{-}(1^{-+})$	$ ho_3(1990)$	$1^+(3^{})$
• $\eta(1405)$	0+(0-+)	$\pi_2(2005)$	$1^{-}(2^{-+})$
• $h_1(1415)$	0-(1+-)	• $f_2(2010)$	$0^+(2^{++})$
• $f_1(1420)$	$0^+(1^{++})$	• $f_0(2020)$	0+(0++)
• $\omega(1420)$	0-(1)	• $f_4(2050)$	$0^+(4^{++})$
$f_2(1430)$	$0^+(2^{++})$	$\pi_2(2100)$	$1^{-}(2^{-+})$
• $a_0(1450)$	$1^{-}(0^{++})$	$f_0(2100)$	0+(0++)
• $ ho(1450)$	$1^+(1^{})$	$f_2(2150)$	$0^+(2^{++})$
• $\eta(1475)$	$0^+(0^{-+})$	ho(2150)	$1^+(1^{})$
• $f_0(1500)$	0+(0++)	• $\phi(2170)$	0-(1)
$f_1(1510)$	$0^+(1^{++})$	$f_0(2200)$	0+(0++)
• $f_2'(1525)$	$0^+(2^{++})$	$f_J(2220)$	0+(2++
• $f_2(1565)$	$0^+(2^{++})$		or 4 ⁺⁺)
ho(1570)	1+(1)	$\omega(2220)$	0-(1)
<i>b</i> ₁ (1595)	0-(1+-)	$\eta(2225)$	0+(0^+)
 <i>π</i>₁(1600) 	1-(1-+)	$ ho_3(2250)$	$1^+(3^{})$
	- (-)	• $f_2(2300)$	$0^+(2^{++})$
• <i>a</i> ₁ (1040)		$f_4(2300)$	0+(4++)
$f_2(1640)$	$0^+(2^{++})$	$f_0(2330)$	$0^+(0^{++})$
• $\eta_2(1645)$	$0^+(2^{-+})$	• $f_2(2340)$	$0^+(2^{++})$
• $\omega(1650)$	0-(1)	o (2250)	1+(5)
• $\omega_3(1670)$	$0^{-}(3^{})$	$\rho_5(2350)$	1.(2)
		X(2370)	??(???)

PDG

REFERENCES (HYPERLINKS)

Unitarity in the SM at high energy: Lee, Quigg, Thacker, '77

Interference in VV -> VH: <u>Theory</u>, <u>ATLAS</u>, <u>CMS</u>

Standard Model up to infinite energy

<u>Supersymmetry Primer</u>

27 DANIEL STOLARSKI July 16-18, 2024 TRISEP

Composite Higgs Review

Extra Dimensions and AdS/CFT

<u>NNaturalness</u>

<u>Weakless Universe</u>

Prediction of cosmological constant