

Low backgrounds for low energy rare event searches

Daniel Wenz [\(dwenz@uni-muenster.de](mailto:dwenz@uni-muenster.de)) TRISEP Summer School 2024

wissen.leben

Institute for nuclear physics University of Muenster

About me:

- Studies and PhD in Mainz in group of Prof. Oberlack
	- **Working on LXe applications**
	- **XENONnT**
	- **Finished PhD October 2023 XENON**
- Currently working in Münster in group of Prof. Weinheimer
	- **LowRad project**

• **XENONnT analysis coordinator since November 2023**

.......

.

- WIMP dark matter cross section on the order of the weak scale.
	- $R_{\chi,N} \propto N_N \cdot \Phi_{\chi} \cdot \sigma_{\chi,N} \propto M_T$
	- **High detector mass increases number of targets**

- WIMP dark matter cross section on the order of the weak scale.
	- $R_{\chi,N} \propto N_N \cdot \Phi_{\chi} \cdot \sigma_{\chi,N} \propto M_T$
	- **High detector mass increases number of targets**
- Recoils spectrum approximately exponential
	- **Energy range from sub-keV to a few 10 keV**
	- **Assume elastic scattering of WIMP on target**

•
$$
E_R = \left(\frac{m_\chi m_N}{m_\chi + m_N}\right)^2 \frac{v^2}{m_N} (1 - \cos(\theta))
$$

- WIMP dark matter cross section on the order of the weak scale.
	- $R_{\chi,N} \propto N_N \cdot \Phi_{\chi} \cdot \sigma_{\chi,N} \propto M_T$
	- **High detector mass increases number of targets**
- Recoils spectrum approximately exponential
	- **Energy range from sub-keV to a few 10 keV**
	- **Assume elastic scattering of WIMP on target**

•
$$
E_R = \left(\frac{m_\chi m_N}{m_\chi + m_N}\right)^2 \frac{v^2}{m_N} (1 - \cos(\theta))
$$

Expected number of events: \sim 20 $\frac{1}{\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}$ $\mathbf{1}$ tonne x year

Daniel Wenz Low backgrounds for rare event searches **6** $({\sigma}{\sim}10^{-46}~{\rm cm}^2$, $m_\chi=100$ GeV, in LXe, using the <u>wimprates</u> package, **no efficiencies)**

 $10⁰$ -10^{-38} $\frac{1}{2}$
 10^{-2} $\frac{2}{9}$ **DAMIC (2020)** CDMSlite (2018) 10^{-4} **CRESST (2019)** $\begin{array}{c}\n 10^{-10}\n \text{N} \\
10^{-8}\n \text{S} \\
10^{-10}\n \text{S} \\
10^{-12}\n \text{S} \\
10^{-12}\n \text{S} \\
\end{array}$ DarkSide-50 (2023 SuperCDMS (2017) **XENON1T (2020)** DEAP-3600 (2019) 10^{-44} $\begin{array}{l}\n 10^{-44} \\
\hline\n 10^{-46} \\
\hline\n 10^{-46} \\
\hline\n 10^{-48}\n \end{array}$ PandaX-4T (202 XENONnT (2023) LZ (2023) Neutrino coherent scattering **S. Navas** *et al.* **[\(Particle Data Group\),](https://pdg.lbl.gov/2024/html/authors_2024.html) [to be published \(2024\)](https://doi.org/10.1103/PhysRevD.110.030001)** $\frac{1}{10^3}$ 10⁻¹⁴ 10^{-50} $10⁰$ 10^{1} $10²$ WIMP Mass [GeV/c²] $E_{R,max} \approx 30$ keV $log|R_{\chi,N}|$ $(m_{\chi} = m_N = 100 \text{ GeV})$ **V=220 km/s)Recoil energy on target Nucleus**

section

- Neutrinoless double beta decay leads to a mono-energetic $R_{2/0\nu\beta\beta}$ line at the end of a continues spectrum
- Depending on the used isotope the energy of the $0\nu\beta\beta$ decay is expected to be on the order of 2000 keV
	- **Energy threshold can be higher, but resolution is important!**

- Neutrinoless double beta decay leads to a mono-energetic $R_{2/0\nu\beta\beta}$ line at the end of a continues spectrum
- Depending on the used isotope the energy of the $0\nu\beta\beta$ decay is expected to be on the order of 2000 keV
	- **Energy threshold can be higher, but resolution is important!**
- Upper limits exists for different isotopes measured by different experiments. **How many events do I**
	- Let us assume $T_{1/2}^{0\nu\beta\beta}\geq 10^{26}$ years
	- **Given 1 tonne of e.g. ¹³⁶Xe:**

$$
R^{0\nu\beta\beta} \propto \frac{m_{Xe136}}{M_{Xe136} \cdot T_{1/2}^{0\nu\beta\beta}} \approx
$$

expect per tonne material and year of measurement?

Daniel Wenz **EXECUTE:** Low backgrounds for rare event searches **8** 10.1007/s40766-023-00049-2

Juan José Gómez-Cadenas et al, 10.1007/s40766-023-00049-2

- Neutrinoless double beta decay leads to a mono-energetic $R_{2/0\nu\beta\beta}$ line at the end of a continues spectrum
- Depending on the used isotope the energy of the $0\nu\beta\beta$ decay is expected to be on the order of 2000 keV
	- **Energy threshold can be higher, but resolution is important!**
- Upper limits exists for different isotopes measured by different experiments.
	- Let us assume $T_{1/2}^{0\nu\beta\beta}\geq 10^{26}$ years
	- **Given 1 tonne of e.g. ¹³⁶Xe:**

 $R^{0\nu\beta\beta} \propto \frac{m_{Xe136}}{m_{Xe136}}$ $M_{Xe136} \cdot T_{1/2}^{opp}$ $\frac{6}{0\nu\beta\beta} \approx 20 \frac{1}{\text{tonne x year}}$ (nat. **Xe only contains and the set of the s 8.9 % of 136Xe)**

Daniel Wenz **Low backgrounds for rare event searches 10.1007/s40766-023-00049-2**

Juan José Gómez-Cadenas et al, 10.1007/s40766-023-00049-2

- "Extreme counting experiments"
	- **Independent of DM search or** $0\nu\beta\beta$ **search, looking for signal over background**
	- Excluded signal rate R \propto σ_{WIMP} , or $\frac{1}{T_A}$ T_{1} $\overline{2}$

- "Extreme counting experiments"
	- Independent of DM search or $0\nu\beta\beta$ **search, looking for signal over background**
	- Excluded signal rate R \propto σ_{WIMP} , or $\frac{1}{T_A}$ T_{1} $\overline{2}$
	- **Background free experiment scales with exposure** *T (mass x time)*
	- Background dominated scales with \sqrt{T}
	- **Scaling can be understood intuitively from Poisson statistics:**

$$
\propto \frac{\sqrt{N_{Bkg.}}}{N_{Bkg.}} \propto \frac{\sqrt{R_{Bkg.} \cdot T}}{R_{Bkg.} \cdot T} \propto \frac{1}{\sqrt{T}}
$$

The problem: We live in a radioactive world:

https://en.m.wikipedia.org/wiki/File: Radiation_Dose_Chart_by_Xkcd.png

The problem: We live in a radioactive world:

Unless it's a bananaphone

- **Two main problems:**
- **Cosmic radiation**
- **Natural abundant isotopes**

How many ⁴⁰K decays per tonne humans per year do you expect?

The problem: We live in a radioactive world:

Recap: Low energy rare event searches

- Sensitivity of background free experiments scale with exposure T
- Background dominated experiments with \sqrt{T}
- Search for the needle in the haystack
	- **Current experiment expect rates** of \sim 20 $\frac{1}{\text{tonne}}$ tonne x year
	- **Problem, we live in a radioactive world:**

$$
\sim 10^{12}\frac{1}{\text{human tonne x year}}
$$

- High energy protons hit nat.N and nat.O in upper atmosphere
	- **Spallation leads to production of neutron, proton, pions Kaons**
	- K's and π 's decay further into muons via weak force e.g.

 $\pi^+\rightarrow \mu^+ + \nu_\mu$, $\pi^-\rightarrow \mu^- + \overline{\nu_\mu}$

• Rate at sea level is about $R_{\mu} \approx 0.01 s^{-1} cm^{-2} sr^{-1}$

 $*(\text{sr}^{\text{th}})$ = steradian, unit of solid angle, full sphere is 4 pi)

• Typical energy scale of Muon's GeV

- Solution go into underground laboratories to shield $\mu's$
	- **Reduced muon flux by about 5-7 orders of magnitudes!**
	- **Use "standard rock" (A = 22, Z = 11, ρ = 2.65 g cm[−]³) to convert to physical depth: 1000 m.w.e = 380 m of standard rock**

Why do laboratories in mountains not follow the same model as laboratories with flat overburden?

- Solution go into underground laboratories to shield $\mu's$
	- **Reduced muon flux by about 5-7 orders of magnitudes!**
	- **Use "standard rock" (A = 22, Z = 11, ρ = 2.65 g cm[−]³) to convert to physical depth: 1000 m.w.e = 380 m of standard rock**

Why do laboratories in mountains not follow the same model as laboratories with flat overburden?

Why do we need to go deep underground? Muons should produce large signals?

- Why are muons so important to shield?
	- **The average** μ **energy of about 4 GeV at sea level shifts to higher energies for the** remaining μ s when going underground
	- **Binding energy nucleons ~8 MeV per nucleon**

induced spallation and hadronic shower

- Why are muons so important to shield?
	- **The average** μ **energy of about 4 GeV at sea level shifts to higher energies for the remaining** μ **s when going underground**
	- **Binding energy nucleons ~8 MeV per nucleon**

 induced spallation and hadronic shower lead to neutrons and material activation!

Image of nudat database nuclide chart https://www.nndc.bnl.gov/nudat3/

Which isotopes due to you expect to be harmful in case of copper? Do you know any of these isotopes from your lab courses?

- Why are muons so important to shield?
	- **The average** μ **energy of about 4 GeV at sea level shifts to higher energies for the** remaining μ s when going underground
	- **Binding energy nucleons ~8 MeV per nucleon**

 induced spallation and hadronic shower lead to neutrons and material activation!

- **Activation of detector materials lead to a whole range of different isotopes:**
	- \bullet **³H, ³⁹Ar, ⁴²Ar, ⁶⁰Co, ⁶⁸Ge, ¹²⁷Xe, PTFE (C² F4)** $($ ¹⁹**F** -> ¹⁷**N** -> ¹⁷**O** + β -> ¹⁶**O** + **n**)

sample after 345 days in 3470 m height.

- Typical muon rate at sea level about $1 \mu/min/cm^2$
- Typical muon energies in the order of 1 GeV
- Muons produce neutrons and activate detector materials!
- Underground environment effective to reduce Muon induced backgrounds
	- **Typical suppression by 5-7 order of magnitudes**

However, surrounding rock creates new background in form of gammas and neutrons.

- Underground environment introduces new backgrounds in from of gammas and neutrons
- Main contribution from primordial isotopes with a long half-life:

Which isotopes do you think play a role, and how much Bq per kg soil do we typically have?

- Underground environment introduces new backgrounds in from of gammas and neutrons
- Main contribution from primordial isotopes with a long half-life:
	- **²³⁸U,²³⁵U (16-110 Bq/kg)***
	- **²³²Th (17-60 Bq/kg)***

*Matthias Laubenstein and Ian Lawson, [10.3389/fphy.2020.57](https://doi.org/10.3389/fphy.2020.577734)

 \bullet **⁴⁰K (100-1000 Bq/kg)*** [7734](https://doi.org/10.3389/fphy.2020.577734) **Side note: You can "feel" the abundance of these elements when going deep into mines. They contribute to the geothermal energy budget with about 50 %*.**

***(number is still under debate and should be taken with a grain of salt).**

• Other isotopes also play a role, but depend more on the detector type and application (see later)

properties and is used in many DM experiments?

- Neutrons are emitted from
	- **Spontaneous fission (mostly ²³⁸U)**
	- (alpha, n) reactions on light nuclei $(\alpha + A \rightarrow B^* + n)$
		- **(heavy nuclei are suppressed due to Coulomb barrier)**
		- **(higher alpha energy -> higher probability to produce neutrons)**
- Neutrons can activate or scatter in detector and target material
- Need to know chemical composition of the surrounding rock for detailed simulations
- Different detector materials have different neutron yields from (alpha, n) reactions

- Neutrons are emitted from
	- **Spontaneous fission (mostly ²³⁸U)**
	- (alpha, n) reactions on light nuclei $(\alpha + A \rightarrow B^* + n)$
		- **(heavy nuclei are suppressed due to Coulomb barrier)**
		- **(higher alpha energy -> higher probability to produce neutrons)**
- Neutrons can activate or scatter in detector and target material
- Need to know chemical composition of the surrounding rock for detailed simulations
- Different detector materials have different neutron yields from (alpha, n) reactions.
	- Daniel Wenz Low backgrounds for rare event searches **35** • **Cu better than stainless steel (less low A material)**

Build passive shielding layers to reduce environmental influence, from α **-decays and fission**

- Photons interact with matter through
	- **Photo effect, Compton scattering and pair production**
	- **High Z material is favorable as photo effect** scales with $\approx Z^5$
- Use as passive shield for example lead
	- **Use ancient or low background lead to reduce intrinsic background of ²¹⁰Pb. Why does ancient lead not contain much 210Pb?**

- Photons interact with matter through
	- **Photo effect, Compton scattering and pair production**
	- **High Z material is favorable as photo effect** scales with $\approx Z^5$
- Use as passive shield for example lead
	- **Use ancient or low background lead to reduce intrinsic background of ²¹⁰Pb. Why does ancient lead not contain much 210Pb?**

- Photons interact with matter through
	- **Photo effect, Compton scattering and pair production**
	- **High Z material is favorable as photo effect** scales with $\approx Z^5$
- Use as passive shield for example lead
	- **Use ancient or low background lead to reduce intrinsic background of ²¹⁰Pb. Lead often contains also Uranium, ancient lead**

Lead works for gammas, but how do we shield best neutrons? decayed.

- Neutrons are only shielded through collisions on nuclei
	- **Reminder recoil energy:**

$$
E_R = \left(\frac{m_\chi m_N}{m_\chi + m_N}\right)^2 \frac{v^2}{m_N} (1 - \cos(\theta))
$$

- **Use materials which contains a lot of hydrogen like water (H₂O) or plastics (C_NH_M)**
- **Neutrons elastically scatter until being captured.**
- **Enhance neutron absorption through isotopes with high neutron capture cross section, e.g. Boron (¹⁰B), or Gadolinium (¹⁵⁵Gd, ¹⁵⁷Gd)**

- Use multilayer shielding to absorb both neutrons and gammas
- Example superCDMS at SNOLAB
	- **Water and PE layer to moderate and absorb neutrons (low Z)**
	- **Low activity Pb to shield gammas (high Z)**
	- **Thin dry-nitrogen layer to reduce ²²²Rn contamination from surrounding rock**
	- **Polyethylene to moderate and absorb again neutrons (low Z)**
	- **Cupper housing reduces further gamma background and bremsstrahlung**

- Deionized water is used as a passive shield by many experiments which are not as deep as SNOLAB
	- **XENON, LZ, COSINUS, GERDA,…**

- Deionized water is used as a passive shield by many experiments which are not as deep as SNOLAB
	- **XENON, LZ, COSINUS, GERDA,…**
- Already 3-4 meter are enough to shield environmental neutrons and gammas
- Only high energy neutrons from µ's can penetrate most shields!
	- **Reminder this is an issue for neutron activation! What is the advantage of using water as a shielding material?**

using GEANT4 simulations.

- Active veto idea is always the same:
	- **Build detector around experiment**
	- **Fill outer detector with a medium which produces light when a background particle interacts**
	- **Add light sensors to measure the emitted light**
	- **Veto all signals in the main detector which are in coincidence with the outer detector**

- Water Cherenkov detector to suppress remaining muon background.
	- **Cherenkov spectrum is continuous peaking in the ultraviolet**
	- **Emitted number of photons given by**

 $*(for 300 nm < \lambda < 500 nm)$

$$
\frac{dN}{d\lambda dx} = \frac{2 \pi z^2 \alpha}{\lambda^2} \cdot \left(1 - \frac{1}{\beta^2 n(\lambda)^2} \right) \approx \frac{dN}{dx} \big|_* \approx 250 \frac{\text{ph}}{\text{cm}}
$$

- XENON1T/nT µ-veto detection efficiency from GEANT4 simulations
	- **Direct µ-crossing: ~100 %**
	- **Indirect µ shower: ~70 %**
	- Lifetime loss ~1% (try to also veto decays with short T_{1/2})

- Passive shielding layers such as Pb and Cu help to shield from environmental gammas
- Plastics and water help to shield neutrons from the laboratory cavern
- Active vetos such as water Cherenkov detectors help to also reduce μ -induced backgrounds further.

New problem: Our detector is also made from something

- Reminder Uranium, Thorium and Potassium are everywhere:
	- **²³⁸U,²³⁵U (16-110 Bq/kg), ²³²Th (17-60 Bq/kg), ⁴⁰K (100-1000 Bq/kg)**
- Some materials are purer than others:
	- **Oxygen-free, high conductivity copper has a purity of 99.99%**
	- **Stainless steel is an alloy containing besides Fe and others also Ni which can contain ⁶⁰Co**
		- **Other issue recycling of activated stainless steel containing ⁶⁰Co (German law: 100 Bq/kg)**
		- \bullet **⁶⁰Co is also used as a tracer in blast furnaces** Matthias Laubenstein and Ian Lawson, [10.3389/fphy.2020.577734](https://doi.org/10.3389/fphy.2020.577734)
	- **Must screen every piece of metal, plastic, cable, bolt and nut which enters the detector!**
	- **If possible, screen raw materials and work together with vendors**

Tao Zhang et al., https://arxiv.org/pdf/1609.07515

- Inductively coupled mass spectroscopy (ICP-MS)
	- **Dissolve small samples in a liquid**
	- **Convert spray of liquid into ionized plasma**
	- **Measure atoms or polyatomic ions based on their charge-to-mass ratio**
	- **No direct measurement of the radioactive decay**
	- **Calibration with reference samples for absolute concentration**
	- **Highly sensitive ~nBq/kg**

Matthias Laubenstein and Ian Lawson, [10.3389/fphy.2020.577734](https://doi.org/10.3389/fphy.2020.577734)

- **Only small samples are required, and measurement times are short**
- **Sample will be destroyed in the process**
- **Measures only ²³⁸U and ²³²Th concentration**

Careful, decay chain might not be in secular equilibrium!

- Gamma-ray spectroscopy using high purity Germanium detectors
	- **Low background experiment in itself!**
	- **Direct measurement of radioactive isotopes**
	- **Requires large amount of material and long counting periods.** Matthias
	- **Sensitivity 10-100 µBg/kg**
	- **Requires large amounts of materials and long measurement times. How long does it take to get to a 10 % uncertainty for a 100 µBq rate?**

Laubenstein and Ian Lawson,

[.577734](https://doi.org/10.3389/fphy.2020.577734)

[10.3389/fphy.2020](https://doi.org/10.3389/fphy.2020.577734)

- **Samples are not destroyed in the process**
- **Measures gamma spectrum of the full U- and Th-chain directly.**

Airlock and glove box with

- Gamma-ray spectroscopy using high purity Germanium detectors
	- **Low background experiment in itself!**
	- **Direct measurement of radioactive isotopes**
	- **Requires large amount of material and long counting periods.** Matthias
	- **Sensitivity 10-100 µBg/kg**
	- **Requires large amounts of materials and long measurement times. (For 100 µBg and a 1 kg sample ~11 days are needed to get a 10 % uncertainty)**

Laubenstein and Ian Lawson,

[.577734](https://doi.org/10.3389/fphy.2020.577734)

[10.3389/fphy.2020](https://doi.org/10.3389/fphy.2020.577734)

- **Samples are not destroyed in the process**
- **Measures full decay U- and Th-chain directly.**

Airlock and glove box with

E. Aprile et al., arXiv:2112.05629v2

Daniel Wenz arxiv:2112.05629v2 Low backgrounds for rare event searches **54**

Recap: Low energy rare event searches

- Sensitivity of background free experiments scale with exposure T
- Background dominated experiments with \sqrt{T}
- Search for the needle in the haystack
	- **Current experiment expect rates** of \sim 20 $\frac{1}{\text{tonne}}$ tonne x year
	- **Problem, we live in a radioactive world:**

$$
\sim 10^{12}\frac{1}{\text{human tonne x year}}
$$

- Typical muon rate at sea level about $1 \mu/min/cm^2$
- Typical muon energies in the order of ~10 GeV
- Muons produce neutrons and activate detector materials!
- Underground environment effective to reduce Muon induced backgrounds
	- **Typical suppression by 5-7 order of magnitudes**

- Passive shielding layers such as Pb and Cu help to shield from environmental gammas
- Plastics and water help to shield neutrons from the laboratory cavern
- Active vetos such as water Cherenkov detectors help to also reduce μ -induced backgrounds further.

- Detector materials itself are a source of backgrounds:
	- **U, Th, K, Co,…**
- Careful material screening is required to reduce backgrounds:
	- **HPGe, ICP-MS, NAA,…**
- Cleaning and working in clean environments is required to reduce surface contaminations

What else can we do to reduce the impact on detector material background?

The detector is built, but what else can we do? Be smart about your signal! Exploit signal topologies.

What else can we do to reduce the impact on detector material background?

