

Low backgrounds for low energy rare event searches

Daniel Wenz [\(dwenz@uni-muenster.de](mailto:dwenz@uni-muenster.de)) TRISEP Summer School 2024

wissen.leben

Institute for nuclear physics University of Muenster

Recap: Low energy rare event searches

- Sensitivity of background free experiments scale with exposure T
- Background dominated experiments with \sqrt{T}
- Search for the needle in the haystack
	- **Current experiment expect rates** of \sim 20 $\frac{1}{\text{tonne}}$ tonne x year
	- **Problem, we live in a radioactive world:**

$$
\sim 10^{12}\frac{1}{\text{human tonne x year}}
$$

Underground laboratories

- Typical muon rate at sea level about $1 \mu/min/cm^2$
- Typical muon energies in the order of ~10 GeV
- Muons produce neutrons and activate detector materials!
- Underground environment effective to reduce Muon induced backgrounds
	- **Typical suppression by 5-7 order of magnitudes**

- Passive shielding layers such as Pb and Cu help to shield from environmental gammas
- Plastics and water help to shield neutrons from the laboratory cavern
- Active vetos such as water Cherenkov detectors help to also reduce μ -induced backgrounds further.

- Detector materials itself are a source of backgrounds:
	- **U, Th, K, Co,…**
- Careful material screening is required to reduce backgrounds:
	- **HPGe, ICP-MS, NAA,…**
- Cleaning and working in clean environments is required to reduce surface contaminations

What else can we do to reduce the impact on detector material background?

The detector is built, but what else can we do? Be smart about your signal! Exploit signal topologies.

What else can we do to reduce the impact on detector material background?

- Material backgrounds can be further mitigated by adding additional active anti-coincidence vetos.
- Example XENONnT uses an additional water Cherenkov detector to veto neutron background

- Material backgrounds can be further mitigated by adding additional active anti-coincidence vetos.
- Example XENONnT uses an additional water Cherenkov detector to veto neutron background
- Neutron tagging via Cherenkov light of neutron capture on hydrogen

- Material backgrounds can be further mitigated by adding additional active anti-coincidence vetos.
- Example XENONnT uses an additional water Cherenkov detector to veto neutron background
- Neutron tagging via Cherenkov light of neutron capture on hydrogen
- Loading water with Gd_2SO_4
	- **Will increase deposited energy to 8 MeV**
	- **Reduce capture time due to large cross section**
	- **Will increase resulting tagging efficiency from about 50 % to about 90 %**

(XENON Collaboration), **[JCAP 11 \(2020\) 031](https://doi.org/10.1088/1475-7516/2020/11/031)**

- Calibration of active veto efficiency via an AmBe alpha-neutron source
	- **Advantage emits in about 50 % of all cases an addition 4.4 MeV gamma-ray**

- Calibration of active veto efficiency via an AmBe alpha-neutron source
	- **Advantage emits in about 50 % of all cases an addition 4.4 MeV gamma-ray**
- Neutron tagging via Cherenkov light of n-H capture
	- **Tagging efficiency:** $(53 \pm 3)\%$ (250 µs window)
	- Detection efficiency: $(82 \pm 1)\%$ (600 µs window)

Highest neutron detection efficiency ever measured in a water Cherenkov detector!

Neutron veto calibration using tagged neutrons from an AmBe neutron source

- Other experiments use other active anticoincidence vetos
	- **E.g. liquid scintillator by LZ, or LAr in Legend or DarkSide**
	- **Idea is the same: If seen by both detector, it is a background signal**

- Other experiments use other active anticoincidence vetos
	- **E.g. liquid scintillator by LZ, or LAr in Legend or DarkSide**
		- **In LEGEND light is collected by wavelength shifting fibers onto silicon photomultipliers (light sensors)**
	- **Idea is the same: If seen by both detector, it is a background signal**

- Other experiments use other active anticoincidence vetos
	- **E.g. liquid scintillator by LZ, or LAr in Legend or DarkSide**
		- **In LEGEND light is collected by wavelength shifting fibers onto silicon photomultipliers (light sensors)**
	- **Idea is the same: If seen by both detector, it is a background signal**
	- **However, LAr itself has intrinsic radioactive isotopes (³⁹Ar, ⁴²Ar) which contribute to the detector background! Both ³⁹Ar and ⁴²Ar are produced from cosmogenic activation**

- Active veto systems can help to further mitigate background signals via an **anti-coincidence** with the main detector
- The design of the veto detector varies depending on the application.

Now we mitigated many different source of backgrounds ranging from cosmogenic introduced background to materials. However, what is about our detector medium itself?

- Our detector media can also contain different isotopes producing background signals
	- **In Argon: ³⁷Ar t1/2~35 d, ³⁹Ar t1/2~ 268 y, ⁴²Ar t1/2~33 y**
	- **In Xenon: ¹³⁷Xe (cosmogenic t1/2~36 d), only ⁸⁵Kr and ²²²Rn, as well as long-lived xenon isotopes**
	- In Germanium: ⁶⁸Ge (cosmogenic t_{1/2}~270 d)
	- **…**

be removed ones.

Daniel Wenz Low backgrounds for rare event searches **22** • **Challenge: needs to be constantly monitored.**

- Steps to measure krypton concentration in xenon gas:
	- **Krypton + xenon mixture is taken from the detector using a clean pipe with multiple volumes separated by valves**
	- **The mixture is flushed with helium as carrier gas into an absorption trap to separate krypton and xenon using Van der Waals force.**
	- **nat.Kr concertation is measured by mass spectroscopy using a residual gas analyzer (RGA)**

• Rare event particle physicists hate this isotope.

- Rare event particle physicists hate this isotope.
- Daughters of ²²²Rn lead to multiple issues.
- Defined requirements in
	- **XENONnT: ~1 µBq/kg**
	- **DARWIN/XLZD: ~0.1 µBq/kg**
- ²²²Rn emanates constantly from material surfaces.
- Reduce contamination through material **selection, mitigation** and **removal**.

Figure kindly provided by Florian Jörg, Giovanni Volta and Hardy Simgen

Daniel Wenz Low backgrounds for rare event searches **26**

How many atoms does

this correspond to in 1

mol xenon?

- Rare event particle physicists hate this isotope.
- Daughters of ²²²Rn lead to multiple issues.
- Defined requirements in
	- **XENONnT: ~1 µBq/kg**
	- **DARWIN/XLZD: ~0.1 µBq/kg**
- ²²²Rn emanates constantly from material surfaces.
- Reduce contamination through material **selection, mitigation** and **removal**.

Figure kindly provided by Florian Jörg, Giovanni Volta and Hardy Simgen

Daniel Wenz Low backgrounds for rare event searches **27**

➔ **1 atom in 16 mol xenon**

water in the Atlantic)

- Steps required to measure the radon emanation in a mounted experiment:
	- **In XENONnT radon was sampled from different parts of the experiment after mounting.**
	- **To sample radon a certain section is first pumped before it is flushed with nitrogen as carrier gas**
	- **Afterwards the nitrogen + radon mixture is extracted through a cold trap to trap the radon in an adsorbent.**
	- **In the last step the radon daughter ion ²¹⁸Po is carried using a different carrier gas into a PIN-diode to count the daughters of the ²¹⁸Po decay.** detection

- How to reduce ²²²Rn in liquid noble gas detectors?
	- **Increase mass (volume-to-surface ratio)**

Detector medium What is the typical recoil

energy of the 222Ra atom?

- How to reduce ²²²Rn in liquid noble gas detectors?
	- **Increase mass (volume-to-surface ratio)**
	- **Coat surfaces or build hermetically sealed TPC.**
		- **Coat surface for example with a copper layer**
		- **Prevents emanation of Radon from recoil of ²²⁶Ra decay**
		- **Downside: Not all surfaces in a detector can be easily coated**

Residual

 212 Po Rate (Hz)

- Cryogenic distillation exploits vapor pressure difference of gases for a given temperature
	- **Krypton** has a higher volatility ($\alpha = 10.5$ (\varnothing -**100 °C) and thus accumulates more in the gas phase**

- Cryogenic distillation exploits vapor pressure difference of gases for a given temperature
	- Krypton has a higher volatility ($\alpha = 10.5$ (\varnothing -**100 °C) and thus accumulates more in the gas phase**
	- **By repeating we can gradually deplete krypton in the liquid and accumulate it in the gas phase.**
	- **The liquid goes back to the detector the gas needs to be extracted as an off-gas**

- Virtual number of stages can be computed using the McCabe-Thiele method
	- **Method based on a set of coupled equations which are described by the difference in vapor pressure of the used gaseous and mass flux conservation**
	- **The number of virtual stages can be read from the graph directly**

- Cryogenic distillation exploits vapor pressure difference of gases for a given temperature
	- **Radon** has a lower volatility ($\alpha = 0.1$ (\varnothing -100 **°C)) as xenon and thus accumulates in the liquid phase.**
	- **Drop ²²²Rn in the reboiler of the column and let it decay** ($T_{1/2} = 3.8$ d).
	- **Extract radon deplete gas from the top of the column and reliquefy it.**

What is the big difference between krypton and radon distillation?

What does this mean for the xenon circulation speed?

reboiler
- Cryogenic distillation exploits vapor pressure difference of gases for a given temperature
	- **Radon** has a lower volatility ($\alpha = 0.1$ (\varnothing -100 **°C)) as xenon and thus accumulates in the liquid phase.**
	- **Drop ²²²Rn in the reboiler of the column and let it decay** ($T_{1/2} = 3.8$ d).
	- **Extract radon deplete gas from the top of the column and reliquefy it.**
	- **Need to extract the radon before it can decay inside our detector!**
	- **Requires high fluxes!**

What is the big difference between krypton and radon distillation?

What does this mean for the xenon circulation speed?

- "Online" Rn distillation due to constant outgassing
	- **No offgas, but requires high LXe circulation (~3 kW cooling and heating power required)**
	- **XENONnT uses Clausius-Rankine cycle to reduce power requirement**
	- **Requires radon free compressor and**

heat exchanger

- "Online" Rn distillation due to constant outgassing
	- ²²²Rn decay within column $(T_{1/2} = 3.8 d)$
	- **No offgas, but requires high LXe circulation (~3 kW cooling and heating power required)**
	- **GXe (gaseous xenon) only extraction: 25 slpm (9 kg/h)**
	- **GXe + LXe (liquid xenon) extraction: 25 slpm + 200 slpm (81 kg/h -> entire 8.5 t xenon volume in about 4 days)**
	- LXe ²²²Rn reduction factor given by $r_{LXe} \cong \frac{\lambda_{Rn222} + F_{LXe}/m_{LXe}}{\lambda_{Rn222}}$ λ_{Rn222}

• Due to a strict material selection, cleaning procedure and cryogenic radon distillation XENONnT improved its background significantly compared to XENON1T

- Due to a strict material selection, cleaning procedure and cryogenic radon distillation XENONnT improved its background significantly compared to XENON1T
- Electronic recoil spectrum dominated by second order weak processes!
	- **Double electron capture (EC) on ¹²⁴Xe** $T_{1/2}^{2 \nu ECEC} = \left(1.15 \pm 0.13_{stat} \pm 0.14_{sys} \right) \cdot 10^{22}~yr$ (longest half-life ever measured)
	- 2 neutrinos double beta decay $(2\nu\beta\beta)$ of 136 Xe
	- **Goal of next generation experiments:**
		- **Factor 10 lower ²²²Rn rate than solar neutrino background**

- ERC LowRad project at Münster aims to develop the distillation systems for the next generation liquid xenon dark matter experiment
- Current ⁸⁵Kr distillation column already sufficient for next generation
- Add ⁸⁵Kr concentrator to reduce off gas to allow for online distillation

• Current offers 1 %
$$
\sim
$$
 4 $\frac{\text{kg}}{\text{d}}$ \approx 8 $\frac{\text{tonne}}{\text{5 year}}$

- **Goal:** $4\frac{g}{d}$ $\mathbf d$ $\approx 8 \frac{\text{kg}}{\text{m} \cdot \text{kg}}$ 5 year
- Krypton concentrator is currently being build in Münster

- Next generation dark matter experiment requires a x10 reduction in ²²²Rn
- This requires a x10 increase in LXe flux to 750 kg/h
- This will require about 30 kW of cooling and heating power!
- Build full and hermetically decoupled cryogenic heat-pump concept using LXe as working medium.
- First small few kg prototype is currently being build in Münster

Recap

- Detector media intrinsic radioactive isotopes lead to additional background signals
- Especially ²²²Rn and its daughters are harmful for most of the rare event experiments.
- Radon and krypton can be effectively removed from xenon employing cryogenic distillation
- Current radon background is on level of 1 Rn Atom in 10 mol of xenon

Overview

The detector is built, but what else can we do? Be smart about your signal! Exploit signal topologies.

- Depending on the detector type, ratios of different signal carriers can be used to identify signal from background.
	- **LXe detector can use charge-to-light ratio**
		- **Only search for WIMPs below NR median**
		- **Typical ER reduction 99.X %**

- Depending on the detector type, ratios of different signal carriers can be used to identify signal from background.
	- **LXe detector can use charge-to-light ratio**
		- **Only search for WIMPs below NR median**
		- **Typical ER reduction 99.X %**
	- **Cryogenic-bolometers can exploit phonoto-charge or phonon-to-light ratios**

- Depending on the detector type, ratios of different signal carriers can be used to identify signal from background.
	- **LXe detector can use charge-to-light ratio**
		- **Only search for WIMPs below NR median**
		- **Typical ER reduction 99.X %**
	- **Cryogenic-bolometers can exploit phonoto-charge or phonon-to-light ratios**
	- **Liquid scintillator and liquid Argon use pulse shape discrimination**

Daniel Wenz **Low backgrounds for rare event searches**

Z

 \triangle 0 cm

X

• Multi-scatter rejection of either Compton scatters or neutrons

LEGEND multi-scatter rejection

- Fake signals from detector sensors are one of the most challenging backgrounds.
	- **Experiments using time projection chambers(TPCs, like XENONnT, LZ, DarkSide,…) suffer from accidental coincidences**

- Fake signals from detector sensors are one of the most challenging backgrounds.
	- **Experiments using time projection chambers(TPCs, like XENONnT, LZ, DarkSide,…) suffer from accidental coincidences**
	- **Lone S1 signal made from false sensor signals from thermal emission**

- Fake signals from detector sensors are one of the most challenging backgrounds.
	- **Experiments using time projection chambers(TPCs, like XENONnT, LZ, DarkSide,…) suffer from accidental coincidences**
	- **Lone S1 signal made from false sensor signals from thermal emission**
	- **Lone S2 from ionization due to scintillation light, delayed extraction of electrons…**
	- **Discriminate signals via shape and pattern properties use machine learning techniques**

What other sensor or experiment specific artificial backgrounds do you know?

• After reducing all backgrounds all artificial signals as much as possible, build detector and background model.

> **There is one last source of bias which needs to be mitigated. What could it be?**

• After reducing all backgrounds all artificial signals as much as possible, build detector and background model.

> **There is one last source of bias which needs to be mitigated. What could it be?**

- Always, **blind, salt, or scramble** your analysis! Never trust yourself!
- Use calibration and side band data to confirm your models

• After reducing all backgrounds all artificial signals as much as possible, build detector and background model.

> **There is one last source of bias which needs to be mitigated. What could it be?**

- Always, **blind, salt, or scramble** your analysis! Never trust yourself!
- Use calibration and side band data to confirm your models
- Only unblind your data once your model and selections are fixed.

Recap

- After building a detector we can reduce backgrounds further by being smart about our detector signals
	- **Signal ratio**
	- **Pulse shape discrimination**
	- **Fiducilization**
	- **Signal topology e.g. multiscatter rejection**
	- **Machine learning**
	- **…**
- Avoid human bias! Blind, salt or scramble your data!

The ultimate background

After mitigating every other background, the only background (signal) which remains are neutrinos!

- today's direct detection DM experiment
	- **Interaction through coherent elastic neutrino nucleus scattering (CEvNS)**
	- **Lower spectrum dominated by solar neutrinos, upper spectrum by atmospheric neutrinos**

A

boson

10º

section [pb]

WIMP-nucleoncross

5

- Neutrino fog represents ultimate challenge for today's direct detection DM experiment
	- **Interaction through coherent elastic neutrino nucleus scattering (CEvNS)**
	- **Lower spectrum dominated by solar neutrinos, upper spectrum by atmospheric neutrinos**

First measurement of solar neutrinos through CEvNS in XENONnT @2.73 (see also [talk by Fei Gao at IDM,](https://agenda.infn.it/event/39713/timetable/#20240710.detailed) paper under preparation)

First observation of nuclear recoils through weak force.

- AC background dominant background
	- **Used sideband unblinding to confirm background model.**
	- **Import define tests and procedure before unblinding!**
	- **Raised threshold at cost of signal acceptance since model could not handle too small S2s**
	- **Remaining discrepancy added as a systematic uncertainty**

After verifying background and signal models, unblind data and perform fit in 4 analysis dimensions

Recap: Low energy rare event searches

- Sensitivity of background free experiments scale with exposure T
- Background dominated experiments with \sqrt{T}
- Search for the needle in the haystack
	- **Current experiment expect rates** of \sim 20 $\frac{1}{\text{tonne}}$ tonne x year
	- **Problem, we live in a radioactive world:**

$$
\sim 10^{12}\frac{1}{\text{human tonne x year}}
$$

Underground laboratories

- Typical muon rate at sea level about $1 \mu/min/cm^2$
- Typical muon energies in the order of 1 GeV
- Muons produce neutrons and activate detector materials!
- Underground environment effective to reduce Muon induced backgrounds
	- **Typical suppression by 5-7 order of magnitudes**

Overview

- Passive shielding layers such as Pb and Cu help to shield from environmental gammas
- Plastics and water help to shield neutrons from the laboratory cavern
- Active vetos such as water Cherenkov detectors help to also reduce μ -induced backgrounds further.

Overview

- Detector materials itself are a source of backgrounds:
	- **U, Th, K, Co,…**
- Careful material screening is required to reduce backgrounds:
	- **HPGe, ICP-MS**
- Cleaning and working in clean environments is required to reduce surface contaminations
- Active veto systems can help to further mitigate backgrounds via **anticoincidences**

Recap

- Detector media intrinsic radioactive isotopes lead to additional background signals
- Especially ²²²Rn and its daughters are harmful for most of the rare event experiments.
- Radon and krypton can be effectively removed from xenon employing cryogenic distillation
- Current radon background is on level of 1 Rn Atom in 10 mol of xenon

Recap

- After building a detector we can reduce backgrounds further by being smart about our detector signals
	- **Signal ratio**
	- **Pulse shape discrimination**
	- **Fiducilization**
	- **Signal topology e.g. multiscatter rejection**
	- **Machine learning**
	- **…**
- Avoid human bias! Blind, salt or scramble your data!

Searching for rare events is awesome and it is all about knowing your backgrounds!

