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Recap: Low energy rare event searches

Detector

𝝌
𝝌

𝟎𝝂𝜷𝜷

• Sensitivity of background free 

experiments scale with exposure T

• Background dominated experiments 

with 𝑇

• Search for the needle in the haystack

• Current experiment expect rates 

of ~𝟐𝟎
𝟏

𝐭𝐨𝐧𝐧𝐞 𝐱 𝐲𝐞𝐚𝐫

• Problem, we live in a radioactive 

world:

~ 𝟏𝟎𝟏𝟐
𝟏

𝐡𝐮𝐦𝐚𝐧 𝐭𝐨𝐧𝐧𝐞 𝐱 𝐲𝐞𝐚𝐫 
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Underground laboratories

Detector

Underground lab

𝛍 𝛍

𝛍
• Typical muon rate at sea level about           

1 𝝁/min/cm2

• Typical muon energies in the order of 

~10 GeV

• Muons produce neutrons and activate 

detector materials!

• Underground environment effective to 

reduce Muon induced backgrounds

• Typical suppression by 5-7 order of 

magnitudes

n
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Overview

Detector

Passive Shielding

Underground lab

Active Vetos

𝛍 𝛍

𝛍

n

• Passive shielding layers such as Pb and 

Cu help to shield from environmental 

gammas

• Plastics and water help to shield 

neutrons from the laboratory cavern

• Active vetos such as water Cherenkov 

detectors help to also reduce µ-induced 

backgrounds further.

𝛄n

n

𝜶

𝜶

𝜶

𝜶

𝜶

f

f

f

𝜶

𝜶
f

𝛄
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Overview

Detector
materials

Passive Shielding

Active Vetos

Underground lab

𝛄

𝛄
n

n

𝜷

• Detector materials itself are a source 

of backgrounds: 

• U, Th, K, Co,…

• Careful material screening is required 

to reduce backgrounds:

• HPGe, ICP-MS, NAA,…

• Cleaning and working in clean 

environments is required to        

reduce surface contaminations
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Overview

Detector
materials

Passive Shielding

Active Vetos

Underground lab

𝛄

𝛄
n

n

𝜷

What else can we do to 
reduce the impact on 
detector material 
background?
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Overview

Passive Shielding

Active Vetos

Underground lab

Detector medium

Many small 
modules

“Monolithic” 
liquid

𝝌
𝝌

n

The detector is built, but what else 
can we do?
Be smart about your signal!
Exploit signal topologies.
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Overview

Detector
materials

Passive Shielding

Active Vetos

Underground lab

𝛄

𝛄
n

n

𝜷

What else can we do to 
reduce the impact on 
detector material 
background?
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• Material backgrounds can be further mitigated by 

adding additional active anti-coincidence vetos.

• Example XENONnT uses an additional water 

Cherenkov detector to veto neutron background

Detector materials
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• Material backgrounds can be further mitigated by 

adding additional active anti-coincidence vetos.

• Example XENONnT uses an additional water 

Cherenkov detector to veto neutron background

• Neutron tagging via Cherenkov light of neutron 

capture on hydrogen

Detector materials

n

H-n capture: Single 
2.2 MeV gamma
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• Material backgrounds can be further mitigated by 

adding additional active anti-coincidence vetos.

• Example XENONnT uses an additional water 

Cherenkov detector to veto neutron background

• Neutron tagging via Cherenkov light of neutron 

capture on hydrogen

• Loading water with Gd2S04

• Will increase deposited energy to 8 MeV

• Reduce capture time due to large cross section 

• Will increase resulting tagging efficiency from 

about 50 % to about 90 %

Detector materials

n

Gd-n capture: Multiple 
gammas with ~8 MeV 
total energyElena Aprile et al., 

(XENON Collaboration), 
JCAP 11 (2020) 031

https://doi.org/10.1088/1475-7516/2020/11/031


Daniel Wenz Low backgrounds for rare event searches 12

• Calibration of active veto efficiency via an AmBe

alpha-neutron source

• Advantage emits in about 50 % of all cases an 

addition 4.4 MeV gamma-ray

Detector materials

n
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• Calibration of active veto efficiency via an AmBe

alpha-neutron source

• Advantage emits in about 50 % of all cases an 

addition 4.4 MeV gamma-ray

• Neutron tagging via Cherenkov light of n-H capture

• Tagging efficiency: 53 ± 3 % (250 µs window)

• Detection efficiency: 82 ± 1 % (600 µs 

window)

Detector materials

Reference 
region

Capture 
region

4
.4

4
 M

eV
 g

am
m

a

Neutron veto calibration using tagged 
neutrons from an AmBe neutron source

Highest neutron detection 
efficiency ever measured in a 
water Cherenkov detector!
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• Other experiments use other active anti-

coincidence vetos

• E.g. liquid scintillator by LZ, or LAr in Legend or 

DarkSide

• Idea is the same: If seen by both detector, it is a 

background signal

Detector materials

Barbeau, P. Nature 544, 38–39 (2017)
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• Other experiments use other active anti-

coincidence vetos

• E.g. liquid scintillator by LZ, or LAr in Legend or 

DarkSide

• In LEGEND light is collected by wavelength 

shifting fibers onto silicon photomultipliers 

(light sensors)

• Idea is the same: If seen by both detector, it is a 

background signal

Detector materials

Taken from “LEGEND-1000 and the future of 
neutrinoless double beta decay search”
Stefan Schönert

Taken from 
Susanne Mertens

LEGEND 200



Daniel Wenz Low backgrounds for rare event searches 17

• Other experiments use other active anti-

coincidence vetos

• E.g. liquid scintillator by LZ, or LAr in Legend or 

DarkSide

• In LEGEND light is collected by wavelength 

shifting fibers onto silicon photomultipliers 

(light sensors)

• Idea is the same: If seen by both detector, it is a 

background signal

• However, LAr itself has intrinsic radioactive 

isotopes (39Ar, 42Ar ) which contribute to the 

detector background! 

Detector materials

Both 39Ar and 42Ar are 
produced from cosmogenic 
activation

40K

42K

Taken from LEGEND-1000 and the future of neutrinoless
double beta decay search
Stefan Schönert
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Overview

Detector
materials

Passive Shielding

Active Vetos

Underground lab

𝛄

𝛄
n

n

𝜷

• Active veto systems can help to 

further mitigate background signals 

via an anti-coincidence with the main 

detector

• The design of the veto detector varies 

depending on the application.
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Overview

Passive Shielding

Active Vetos

Underground lab

Detector medium

Many small 
modules

“Monolithic” 
liquid

Now we mitigated many different 
source of backgrounds ranging from 
cosmogenic introduced background 
to materials.
However, what is about our detector 
medium itself? 

𝜷

𝛄

𝜶
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• Our detector media can also contain different isotopes producing background signals

• In Argon: 37Ar t1/2~35 d, 39Ar t1/2~ 268 y, 42Ar t1/2~33 y

• In Xenon: 137Xe (cosmogenic t1/2~36 d), only 85Kr and 222Rn, as well as long-lived xenon isotopes

• In Germanium: 68Ge (cosmogenic t1/2~270 d)

• …

Detector medium
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• 85Kr, anthropogenically produced in nuclear fission

• Decays via 𝜷− emission

• Has a long half-life of about 10.8 years

• 2 × 10−11 85Kr in natKr

• Commercial Xe: natKr/Xe > 10−9 (ppb)

• Defined requirements in

• XENONnT: natKr/Xe  of 0.2 ppt (ppt=𝟏𝟎−𝟏𝟐 𝐦𝐨𝐥

𝐦𝐨𝐥
)

• DARWIN/XLZD: : natKr/Xe  of 0.05 ppt

Detector medium

How many atoms does this 
correspond to in 1 mol of xenon?



-

85Kr
0.43 %

99.57 %

𝑸𝜷 = 𝟔𝟖𝟕 keV

𝟓𝟏𝟒 keV

85Rb
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• 85Kr, anthropogenically produced in nuclear fission

• Decays via 𝜷− emission

• Has a long half-life of about 10.8 years

• 2 × 10−11 85Kr in natKr

• Commercial Xe: natKr/Xe > 10−9 (ppb)

• Defined requirements in

• XENONnT: natKr/Xe  of 0.2 ppt (ppt=𝟏𝟎−𝟏𝟐 𝐦𝐨𝐥

𝐦𝐨𝐥
)

• DARWIN/XLZD: : natKr/Xe  of 0.05 ppt

• Good thing: Can only enter through air leaks and thus only need to 

be removed ones. 

• Challenge: needs to be constantly monitored.

Detector medium



-

85Kr
0.43 %

99.57 %

𝑸𝜷 = 𝟔𝟖𝟕 keV

𝟓𝟏𝟒 keV

85Rb

𝟎. 𝟐 𝐩𝐩𝐭 ≈ 𝟐. 𝟒 85Kr atoms/mol

𝟎. 𝟎𝟓 𝐩𝐩𝐭 ≈ 𝟏 85Kr atom/10 mol xenon
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• Steps to measure krypton concentration in xenon gas: 

• Krypton + xenon mixture is taken from the detector 

using a clean pipe with multiple volumes separated by 

valves

• The mixture is flushed with helium as carrier gas into 

an absorption trap to separate krypton and xenon 

using Van der Waals force.

• nat.Kr concertation is measured by mass spectroscopy 

using a residual gas analyzer (RGA)

Detector medium

Pores material with large 
surface to volume ratio, 
e.g. charcoal.

Credit Robert Harmann, 
Matteo Guida, and 
Hardy Simgen MPIK 
Heidelberg
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• Rare event particle physicists hate this isotope.

Detector medium
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• Rare event particle physicists hate this isotope.

• Daughters of 222Rn lead to multiple issues. 

Detector medium

99.27 %

années = years
jous = days

238U daughter

Why are beta decays of 214Pb 
for DM experiments a concern, 
but not 214Bi and 210Bi?

Beta decays of 214Pb 
produces background in 
fiducial volume of liquid 
noble DM detectors

Gamma emission following 
the decay leads to 
background for 0𝝂𝜷𝜷
experiments using 136Xe

Plate out of 218Po on surfaces 
leads to background signals 
from 210Pb and daughters in 
nearly every experiment

Why does only 210Pb and  
its daughters play a role 
for plate out?
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• Rare event particle physicists hate this isotope.

• Daughters of 222Rn lead to multiple issues. 

• Defined requirements in

• XENONnT: ~1 µBq/kg 

• DARWIN/XLZD: ~0.1 µBq/kg

• 222Rn emanates constantly from material surfaces.

• Reduce contamination through material selection, 

mitigation and removal.

Detector medium

Figure kindly provided by Florian Jörg, 
Giovanni Volta and Hardy Simgen

How many atoms does 
this correspond to in 1 
mol xenon?
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• Rare event particle physicists hate this isotope.

• Daughters of 222Rn lead to multiple issues. 

• Defined requirements in

• XENONnT: ~1 µBq/kg 

• DARWIN/XLZD: ~0.1 µBq/kg

• 222Rn emanates constantly from material surfaces.

• Reduce contamination through material selection, 

mitigation and removal.

Detector medium

Figure kindly provided by Florian Jörg, 
Giovanni Volta and Hardy Simgen

➔ 1 atom in 16 mol xenon
(This corresponds to one drop of 
water in the Atlantic)
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• Steps required to measure the radon emanation in a 

mounted experiment:

• In XENONnT radon was sampled from different parts of 

the experiment after mounting. 

• To sample radon a certain section is first pumped 

before it is flushed with nitrogen as carrier gas

• Afterwards the nitrogen + radon mixture is extracted 

through a cold trap to trap the radon in an adsorbent.

• In the last step the radon daughter ion 218Po is carried 

using a different carrier gas into a PIN-diode to count 

the daughters of the 218Po decay.

Detector medium

Credit Florian Jörg and 
Hardy Simgen MPIK 
Heidelberg
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• How to reduce 222Rn in liquid noble gas detectors? 

• Increase mass (volume-to-surface ratio)

Detector medium
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• How to reduce 222Rn in liquid noble gas detectors? 

• Increase mass (volume-to-surface ratio)

• Coat surfaces or build hermetically sealed TPC.

• Coat surface for example with a copper layer

• Prevents emanation of Radon from recoil of 
226Ra decay

• Downside: Not all surfaces in a detector can 

be easily coated

Detector medium What is the typical recoil 
energy of the 222Ra atom?

Rate drop due to 
corrosion of sample 
when removing 
coating

Florian Jörg, 
PhD thesis

https://archiv.ub.uni-heidelberg.de/volltextserver/31915/1/phd_thesis_joerg_2022.pdf
https://archiv.ub.uni-heidelberg.de/volltextserver/31915/1/phd_thesis_joerg_2022.pdf
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• Cryogenic distillation exploits vapor pressure 

difference of gases for a given temperature

• Krypton has a higher volatility (𝜶 = 𝟏𝟎. 𝟓 (@ -

100 °C) and thus accumulates more in the gas 

phase

Detector medium

Ar, Kr

single distillation stage
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Detector medium

LXe
outlet

condenser

GXe
outlet

GXe 
inlet

reboiler

Ar, Kr

Rn

m
u
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ip
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 d
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Ar, Kr

single distillation stage

Ar, Kr

single distillation stage

Ar, Kr

single distillation stage

• Cryogenic distillation exploits vapor pressure 

difference of gases for a given temperature

• Krypton has a higher volatility (𝜶 = 𝟏𝟎. 𝟓 (@ -

100 °C) and thus accumulates more in the gas 

phase

• By repeating we can gradually deplete krypton 

in the liquid and accumulate it in the gas phase.

• The liquid goes back to the detector the gas 

needs to be extracted as an off-gas
Instead of building 
multiple steps in 
series build column 
with LXe reflux.

Talk Lutz Althüser

https://indico.kmi.nagoya-u.ac.jp/event/6/contributions/37/attachments/32/35/20240216-althueser_nagoya.pdf
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• Virtual number of stages can be computed using the 

McCabe-Thiele method

• Method based on a set of coupled equations 

which are described by the difference in vapor 

pressure of the used gaseous and mass flux 

conservation

• The number of virtual stages can be read from 

the graph directly

Detector medium

McCabe-Thiele method
1: LXe out

concentration

6: GXe offgas
concentration

3-4: GXe Feed

Rn concentration in liquid phase

R
n

 c
o

n
ce

n
tr

at
io

n
 in

 g
as

 p
h

as
e

Talk Lutz Althüser

https://indico.kmi.nagoya-u.ac.jp/event/6/contributions/37/attachments/32/35/20240216-althueser_nagoya.pdf
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Detector medium
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Detector medium

Elena Aprile, (XENON 
Collaboration), 
EPJC (2017) 77:275

Reboiler

Package material 
with large surface 
for condensation

Top condenser

GXe inlet 
(8.3 slpm (3 kg/h))

• Separation of about 𝟏𝟎𝟓 achieved 

Residual natKr/Xe < 𝟎. 𝟎𝟓 × 𝟏𝟎−𝟏𝟐

(50 ppq)  achieved.

• 99 % of xenon recovered, 1 % loss as 

offgas

Reduction already sufficient for 
next generation experiments
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Detector medium

LXe
outlet

condenser

GXe
outlet

GXe 
inlet

reboiler

Ar, Kr

Rn
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• Cryogenic distillation exploits vapor pressure 

difference of gases for a given temperature

• Radon has a lower volatility (𝜶 = 𝟎. 𝟏 (@ -100 

°C)) as xenon and thus accumulates in the liquid 

phase.

• Drop 222Rn in the reboiler of the column and let 

it decay (𝑻𝟏/𝟐 = 𝟑. 𝟖 d).

• Extract radon deplete gas from the top of the 

column and reliquefy it.

What does this mean for the 
xenon circulation speed?

What is the big 
difference between 
krypton and radon 
distillation?
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Detector medium

LXe
outlet

condenser

GXe
outlet

GXe 
inlet

reboiler

Ar, Kr

Rn
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• Cryogenic distillation exploits vapor pressure 

difference of gases for a given temperature

• Radon has a lower volatility (𝜶 = 𝟎. 𝟏 (@ -100 

°C)) as xenon and thus accumulates in the liquid 

phase.

• Drop 222Rn in the reboiler of the column and let 

it decay (𝑻𝟏/𝟐 = 𝟑. 𝟖 d).

• Extract radon deplete gas from the top of the 

column and reliquefy it.

• Need to extract the radon before it can decay 

inside our detector!

• Requires high fluxes!

What does this mean for the 
xenon circulation speed?

What is the big 
difference between 
krypton and radon 
distillation?
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• “Online” Rn distillation due to constant outgassing

• No offgas, but requires high LXe circulation (~3 kW cooling 

and heating power required)

• XENONnT uses Clausius-Rankine cycle to reduce power 

requirement

• Requires radon free compressor and 

heat exchanger

Detector medium

M. Murra, D. Schulte, C. 
Huhmann, C. Weinheimer,

Eur. Phys. J. C 82, 1104 (2022)
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• “Online” Rn distillation due to constant outgassing

• 222Rn decay within column (𝑻𝟏/𝟐 = 𝟑. 𝟖 𝐝)

• No offgas, but requires high LXe circulation (~3 kW cooling 

and heating power required)

• GXe (gaseous xenon) only extraction: 25 slpm (9 kg/h)

• GXe + LXe (liquid xenon) extraction: 25 slpm + 200 slpm

(81 kg/h -> entire 8.5 t xenon volume in about 4 days)

• LXe 222Rn reduction factor given by 𝒓𝑳𝑿𝒆≅
𝝀𝑹𝒏𝟐𝟐𝟐+𝑭𝑳𝑿𝒆/𝒎𝑳𝑿𝒆

𝝀𝑹𝒏𝟐𝟐𝟐

Detector medium

Science run 0
GXe only

Science run 1
GXe + LXe 
extraction

x2

x2
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• Due to a strict material selection, cleaning procedure 

and cryogenic radon distillation XENONnT improved 

its background significantly compared to XENON1T

Detector medium

XENON1T 
double electron 
capture results
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• Due to a strict material selection, cleaning procedure 

and cryogenic radon distillation XENONnT improved 

its background significantly compared to XENON1T

• Electronic recoil spectrum dominated by second order 

weak processes!

• Double electron capture (EC) on 124Xe

 𝑻𝟏/𝟐
𝟐𝝂𝑬𝑪𝑬𝑪 = 𝟏. 𝟏𝟓 ± 𝟎. 𝟏𝟑𝒔𝒕𝒂𝒕 ± 𝟎. 𝟏𝟒𝒔𝒚𝒔 ⋅ 𝟏𝟎𝟐𝟐 𝒚𝒓

 (longest half-life ever measured)

• 2 neutrinos double beta decay (2𝝂𝜷𝜷) of 136Xe

• Goal of next generation experiments: 

• Factor 10 lower 222Rn rate than solar neutrino 

background

Detector medium

2𝝂ECEC
KK-capture2𝝂ECEC

KL-capture

2𝝂𝜷𝜷

E. Aprile, (XENON collaboration),
Phys. Rev. C 106, 024328 (2022)

XENONnT
double electron
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• ERC LowRad project at Münster aims to develop the 

distillation systems for the next generation liquid 

xenon dark matter experiment

• Current 85Kr distillation column already sufficient for 

next generation

• Add 85Kr concentrator to reduce off gas to allow for 

online distillation

• Current offgas 𝟏 % ~ 𝟒
𝐤𝐠

𝐝
 ≈ 𝟖

𝐭𝐨𝐧𝐧𝐞

𝟓 𝐲𝐞𝐚𝐫
 

• Goal: 𝟒
𝐠

𝐝
≈ 𝟖

𝐤𝐠

𝟓 𝐲𝐞𝐚𝐫

• Krypton concentrator is currently being build in 

Münster

Detector medium

GXe in

Xe out

Heat
pump
cycle

GXe
compressor

LXe
pump

offgas 1

offgas bottle

offgas 2

concentrator

1T/nT style column
(with heat pump)
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• Next generation dark matter experiment requires a 

x10 reduction in 222Rn

• This requires a x10 increase in LXe flux to 750 kg/h 

• This will require about 30 kW of cooling and heating 

power!

• Build full and hermetically decoupled cryogenic 

heat-pump concept using LXe as working medium.

• First small few kg prototype is currently being build 

in Münster

Detector medium

LXe in

LXe out

Heat
pump
cycle

GXe
compressor

LXe
pump
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Recap

Passive Shielding

Active Vetos

Underground lab

Detector medium

Many small 
modules

“Monolithic” 
liquid

𝜷

𝛄

• Detector media intrinsic radioactive 

isotopes lead to additional 

background signals

• Especially 222Rn and its daughters are 

harmful for most of the rare event 

experiments.

• Radon and krypton can be effectively 

removed from xenon employing 

cryogenic distillation

• Current radon background is on t   he 

level of 1 Rn Atom in 10 mol of    

xenon 
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Overview

Passive Shielding

Active Vetos

Underground lab

Detector medium

Many small 
modules

“Monolithic” 
liquid

𝝌
𝝌

n

The detector is built, but what else 
can we do?
Be smart about your signal!
Exploit signal topologies.
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Signal topology

Teresa Marrodán Undagoitia et al., 
J. Phys. G43 (2016) no.1, 013001
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• Depending on the detector type, ratios of 

different signal carriers can be used to identify 

signal from background.

• LXe detector can use charge-to-light ratio

• Only search for WIMPs below NR median

• Typical ER reduction 99.X %

Signal topology

Electronic Recoils (ER)
β, γ, Axions, neutrinos

Nuclear Recoils (NR)
neutrons, WIMPs, neutrinos

220Rn
37Ar

AmBe

e–

Xe

C
h

ar
ge

 s
ig

n
al

Light signal
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• Depending on the detector type, ratios of 

different signal carriers can be used to identify 

signal from background.

• LXe detector can use charge-to-light ratio

• Only search for WIMPs below NR median

• Typical ER reduction 99.X %

• Cryogenic-bolometers can exploit phono-

to-charge or phonon-to-light ratios 

Signal topology

(E
p

h
o

n
o

n
/E

lig
h

t)

G. Angloher et al., 
arXiv:2307.11139v1

COSINUS 
experiment 
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• Depending on the detector type, ratios of 

different signal carriers can be used to identify 

signal from background.

• LXe detector can use charge-to-light ratio

• Only search for WIMPs below NR median

• Typical ER reduction 99.X %

• Cryogenic-bolometers can exploit phono-

to-charge or phonon-to-light ratios 

• Liquid scintillator and liquid Argon use 

pulse shape discrimination

Signal topology

Electronic recoils from 
beta/gammas

Nuclear recoils from 
neutrons or WIMPs

Fraction of prompt light emission 
(within 150 ns) over delayed 
emission (150 ns to 9 µs)

Pulse shape 
discrimination in DEAP-1



Daniel Wenz Low backgrounds for rare event searches

E. Aprile et al (XENON collaboration),
Phys.Rev.Lett. 129 (2022) 16, 161805

50

Signal topology

Dominated by 222Rn,
85Kr background, and 
solar neutrinos

M
at

e
ri

al
 b

ac
kg

ro
u

n
d

X

Y

Z

0 cm

• Use 3d interaction vertex reconstruction to 

reject background

XENONnT TPC
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Signal topology

LEGEND multi-scatter 
rejection

• Multi-scatter rejection of either Compton scatters 

or neutrons

Liquid nobel time 
projection chambers

T

T

Multiple charge 
signal (S2s)

Width of merged 
charge signals (S2)

S1

S1

Do you have another idea how one 
can identify merged S2 signals?

Taken from “LEGEND-1000 
and the future of neutrinoless
double beta decay search”
Stefan Schönert
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• Fake signals from detector sensors are one of the 

most challenging backgrounds. 

• Experiments using time projection 

chambers(TPCs, like XENONnT, LZ, DarkSide,…) 

suffer from accidental coincidences 

Signal topology

T

Lone S1

Lone S2
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• Fake signals from detector sensors are one of the 

most challenging backgrounds. 

• Experiments using time projection 

chambers(TPCs, like XENONnT, LZ, DarkSide,…) 

suffer from accidental coincidences 

• Lone S1 signal made from false sensor signals 

from thermal emission

Signal topology

T

Lone S1

T

Lone S1

Lone S2
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• Fake signals from detector sensors are one of the 

most challenging backgrounds. 

• Experiments using time projection 

chambers(TPCs, like XENONnT, LZ, DarkSide,…) 

suffer from accidental coincidences 

• Lone S1 signal made from false sensor signals 

from thermal emission

• Lone S2 from ionization due to scintillation 

light, delayed extraction of electrons… 

• Discriminate signals via shape and pattern

properties use machine learning techniques

Signal topology

T

Lone S1

previous S2

T

Lone S1

T

lone S2

Lone S2

Lone S2

What other sensor or experiment specific 
artificial backgrounds do you know?
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Signal topology

WIMPS
or neutrons

Materials,
222Rn, 85Kr…

222Rn/210Pb 
plate out

• After reducing all backgrounds all artificial signals as 

much as possible, build detector and background 

model.

There is one last source of bias which 
needs to be mitigated. What could it be?

Accidental 
coincidences
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Signal topology

• After reducing all backgrounds all artificial signals as 

much as possible, build detector and background 

model.

• Always, blind, salt, or scramble your analysis! Never 

trust yourself!

• Use calibration and side band data to confirm your 

models

There is one last source of bias which 
needs to be mitigated. What could it be?

WIMPS
or neutrons

Materials,
222Rn, 85Kr…

222Rn/210Pb 
plate out

Accidental 
coincidences
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Signal topology

• After reducing all backgrounds all artificial signals as 

much as possible, build detector and background 

model.

• Always, blind, salt, or scramble your analysis! Never 

trust yourself!

• Use calibration and side band data to confirm your 

models

• Only unblind your data once your model and 

selections are fixed.

There is one last source of bias which 
needs to be mitigated. What could it be?
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Recap

Passive Shielding

Active Vetos

Underground lab

Detector medium

Many small 
modules

“Monolithic” 
liquid

𝝌
𝝌

n

• After building a detector we can 

reduce backgrounds further by being 

smart about our detector signals

• Signal ratio

• Pulse shape discrimination

• Fiducilization

• Signal topology e.g. multi-

scatter rejection

• Machine learning

• …

• Avoid human bias! Blind, 

salt or scramble your data!
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The ultimate background

Detector

Passive Shielding

Active Vetos

Underground lab

𝝂

𝝂

𝝂

After mitigating every other 
background, the only background 
(signal) which remains are 
neutrinos!
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• Neutrino fog represents ultimate challenge for 

today’s direct detection DM experiment

• Interaction through coherent elastic neutrino 

nucleus scattering (CEvNS)

• Lower spectrum dominated by solar neutrinos, 

upper spectrum by atmospheric neutrinos 

The ultimate background for DM searches

S. Navas et al. (Particle Data Group),
to be published  (2024)

https://pdg.lbl.gov/2024/html/authors_2024.html
https://doi.org/10.1103/PhysRevD.110.030001
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• Neutrino fog represents ultimate challenge for 

today’s direct detection DM experiment

• Interaction through coherent elastic neutrino 

nucleus scattering (CEvNS)

• Lower spectrum dominated by solar neutrinos, 

upper spectrum by atmospheric neutrinos 

The ultimate background for DM searches

First observation of nuclear 
recoils through weak force.

talk by Fei Gao at IDM

First measurement of solar neutrinos 
through CEvNS in XENONnT @2.73 𝝈
(see also talk by Fei Gao at IDM, 
paper under preparation)

https://agenda.infn.it/event/39713/timetable/#20240710.detailed
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The ultimate background for DM searches
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The ultimate background for DM searches

NR model calibrated using low energy photo-neutrons from YBe
Validation of analysis dimensions using 37Ar

Score based on S1 
shape and pattern

Score based on S2 
shape and depth
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The ultimate background for DM searches

Score based on S1 
shape and pattern

Score based on S2 
shape and depth

• AC background dominant background

• Used sideband unblinding to confirm 

background model. 

• Import define tests and procedure before 

unblinding!

• Raised threshold at cost of signal acceptance 

since model could not handle too small S2s

• Remaining discrepancy added as a systematic 

uncertainty
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The ultimate background for DM searches

After verifying background and signal models, unblind data and perform fit in 4 analysis dimensions
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The ultimate background for DM searches

About 11 8B neutrinos in 
316 days of exposure!
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Recap: Low energy rare event searches

Detector

𝝌
𝝌

𝟎𝝂𝜷𝜷

• Sensitivity of background free 

experiments scale with exposure T

• Background dominated experiments 

with 𝑇

• Search for the needle in the haystack

• Current experiment expect rates 

of ~𝟐𝟎
𝟏

𝐭𝐨𝐧𝐧𝐞 𝐱 𝐲𝐞𝐚𝐫

• Problem, we live in a radioactive 

world:

~ 𝟏𝟎𝟏𝟐
𝟏

𝐡𝐮𝐦𝐚𝐧 𝐭𝐨𝐧𝐧𝐞 𝐱 𝐲𝐞𝐚𝐫 
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Underground laboratories

Detector

Underground lab

𝛍 𝛍

𝛍
• Typical muon rate at sea level about           

1 𝝁/min/cm2

• Typical muon energies in the order of 

1 GeV

• Muons produce neutrons and activate 

detector materials!

• Underground environment effective to 

reduce Muon induced backgrounds

• Typical suppression by 5-7 order of 

magnitudes

n
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Overview

Detector

Passive Shielding

Underground lab

Active Vetos

𝛍 𝛍

𝛍

n

• Passive shielding layers such as Pb and 

Cu help to shield from environmental 

gammas

• Plastics and water help to shield 

neutrons from the laboratory cavern

• Active vetos such as water Cherenkov 

detectors help to also reduce µ-induced 

backgrounds further.

𝛄n

n
𝜶

𝜶

𝜶

𝜶

𝜶

f

f

f

𝜶

𝜶
f

𝛄
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Overview

Detector
materials

Passive Shielding

Active Vetos

Underground lab

𝛄

𝛄
n

n

𝜷

• Detector materials itself are a source 

of backgrounds: 

• U, Th, K, Co,…

• Careful material screening is required 

to reduce backgrounds:

• HPGe, ICP-MS

• Cleaning and working in clean 

environments is required to        

reduce surface contaminations

• Active veto systems can help                  

to further mitigate              

backgrounds via anti-

coincidences
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Recap

Passive Shielding

Active Vetos

Underground lab

Detector medium

Many small 
modules

“Monolithic” 
liquid

𝜷

𝛄

• Detector media intrinsic radioactive 

isotopes lead to additional 

background signals

• Especially 222Rn and its daughters are 

harmful for most of the rare event 

experiments.

• Radon and krypton can be effectively 

removed from xenon employing 

cryogenic distillation

• Current radon background is on t   he 

level of 1 Rn Atom in 10 mol of    

xenon 
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Recap

Passive Shielding

Active Vetos

Underground lab

Detector medium

Many small 
modules

“Monolithic” 
liquid

𝝌
𝝌

n

• After building a detector we can 

reduce backgrounds further by being 

smart about our detector signals

• Signal ratio

• Pulse shape discrimination

• Fiducilization

• Signal topology e.g. multi-

scatter rejection

• Machine learning

• …

• Avoid human bias! Blind,                   

salt or scramble your data!
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Passive Shielding

Active Vetos

Underground lab

Detector medium

Searching for rare events is
awesome and it is all about 
knowing your 
backgrounds!
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