
Introduction to Machine Learning:

Lecture 5 – Deep Generative Models

Michael Kagan

TRISEP Summer School
July 8-12, 2024

The Plan

• Lecture 1 – Machine Learning Fundamentals

• Lecture 2 – Intro to Neural Networks

• Lecture 3 – Intro to Deep Learning

• Lecture 4 – Intro to Unsupervised Learning

• Lecture 5 – Intro to Deep Generative Models

2

Modeling Data and Meaningful Degrees of Freedom 3

Fleuret, Deep Learning Course

How can we find the “meaningful degrees of
freedom” in the data?

https://fleuret.org/dlc/

Autoencoders

• Map a space to itself through a compression

𝑥 → 𝑧 → $𝑥

4

– Encoder: Map from data to a lower dim. latent space
• Neural network 𝑓! 𝑥 with parameters 𝜃

– Decoder: Map from latent space back to data space
• Neural network 𝑔" 𝑧 with parameters 𝜓

𝑔! 𝑧𝑓" 𝑥

Autoencoder Mappings

• Latent space is of lower dimension than data

• Model must learn a “good” parametrization
and capture dependencies between components

5

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data
and encoded-decoded data

• Min. over params. of encoder (𝜃) and decoder (𝜓).

• NOTE: if 𝑓' 𝑥 and 𝑔(𝑧 are linear, optimal
solution given by Principle Components Analysis

6

𝐿(𝜃, 𝜓) =
1
𝑁
*
!

𝑥! − 𝑔" 𝑓# 𝑥!
$

𝑔! 𝑧𝑓" 𝑥

Can We Generate Data with Decoder?

• Don’t know the right latent space density

7

• Can we sample in latent space
and decode to generate data?

• What distribution to sample from
in latent space?
– Try Gaussian with mean and

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

• Autoencoders learn the latent space, but we
don’t know what is the latent space distribution

• Autoencoder prescribes a deterministic
relationship between data space and latent
space

• One set of “meaningful degrees of freedom”
can only describe one data space point

8

Generative Models

9

Generative Models Goal

A generative model is a probabilistic model 𝑞 that can
be used as a simulator of the data.

Goal: generate synthetic, realistic high-dimension data

𝑥~𝑞(𝑥; 𝜃)

that is as close as possible to the unknown data
distribution 𝑝(𝑥) for which we have empirical samples.

i.e. want to recreate the raw data distribution
(such as the distribution of natural images).

10

Types of Generative Models 11

• Generative models aim to:
– Learn a distribution 𝑝(𝑥) that explains the data
– Draw samples of plausible data points

• Explicit Models
– Can evaluate the density 𝑝(𝑥) of a data point x

• Implicit Models
– Can only sample 𝑝(𝑥), but not evaluate density

Variational Autoencoders

12

Denoising Autoencoders

• Learn a mapping from corrupted data space !𝒳
back to original data space

–Mapping 𝜙% 4𝒳 = 𝒳
– 𝜙% will be a neural network with parameters 𝑤

• Loss:

L =
1
𝑁
'
!

𝑥! − 𝜙"(𝑥! + 𝜖!)

13

Perturbation, e.g. Gaussian noise

Denoising Autoencoders Examples 14

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Denoising Autoencoders Examples 15

Fleuret, Deep Learning Course

• Autoencoder learns
the average behavior

• What if we care about
these variations?

• Can we add a notion of
variation in the
autoencoder?

https://fleuret.org/dlc/

Autoencoder 16

*

⋆

*
x

Variational Autoencoder 17

*

⋆

*
x

Variational Autoencoder 18

*

⋆

Draw sample*
x

Latent Variable Models 19

• Observed random variable 𝑥 depends on unobserved
latent random variable 𝑧

• Joint probability: 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

• 𝑝(𝑥|𝑧) is stochastic generation process from 𝑧 → 𝑥

𝑧 𝑥

From Deterministic to Probabilistic Autoencoder 20

• Autoencoding

𝑥 → 𝑞 𝑧 𝑥 	
)*+,-.

	 𝑧	 → 𝑝(𝑥|𝑧)

– Encoder: Learn what latents can produced data: 𝑞(𝑧|𝑥)
– Decoder: Learn what data is produced by latent: 𝑝(𝑥|𝑧)

• Probabilistic relationship between data and latents

𝑥, 𝑧	~	𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

Variational Autoencoder

• Close-by points must decode to similar images

21

Image credit: L. Heinrich

How do we design Encoder and Decoder

• Classification / regression models make single prediction

 How to model a conditional density 𝑝(𝑎|𝑏) ?

• Assume a known form of density, e.g. normal

𝑝 𝑎 𝑏 = 𝒩 𝑎; 𝜇 𝑏 , 𝜎 𝑏

– Parameters of density depend on conditioned variable

• Use neural network to model density parameters

22

𝜇(𝑏)

𝜎(𝑏)
𝑏

𝑝(𝑎|𝑏 = 𝑏!) 𝑝(𝑎|𝑏 = 𝑏")

𝑎

𝑝(
𝑎|
𝑏)

𝜇(𝑏!)

𝜎(𝑏!)

Encoding 23

• Typical encoder maps input 𝑥 to “average” point in latent space

𝑓 𝑥 = 𝜇(𝑥)

• A VAE Encoder has two outputs: mean & variance function

𝑓" 𝑥 = {𝜇" 𝑥 , 𝜎"# 𝑥 }

• What is the probability of a point in latent space?

𝑝" 𝑧 𝑥 = 𝑁 𝑧	 𝜇" 𝑥 , 𝜎" 𝑥)

• How do we draw a sample in latent space?

𝑧 = 𝜎" 𝑥 ∗ 𝜖 + 𝜇" 𝑥 	 𝜖~𝑁(0, 𝐼)

Encoding 24

Density

𝜓 are parameters of the NN

Re-parameterization trick

• A VAE Encoder has two outputs: mean & variance function

𝑓" 𝑥 = {𝜇" 𝑥 , 𝜎"# 𝑥 }

• What is the probability of a point in latent space?

𝑝" 𝑧 𝑥 = 𝑁 𝑧	 𝜇" 𝑥 , 𝜎"# 𝑥)

• How do we draw a sample in latent space?

𝑧 = 𝜎" 𝑥 ∗ 𝜖 + 𝜇" 𝑥 	 𝜖~𝑁(0, 𝐼)

Encoding 25

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

Could choose different density
Gaussian is easiest

26

Kingma, Welling, 1312.6114
Rezende, Mohamed, Wierstra, 1401.4082

𝑧~𝑝!(𝑧|𝑥)

Sample

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082

27

Kingma, Welling, 1312.6114
Rezende, Mohamed, Wierstra, 1401.4082

𝑧~𝑝!(𝑧|𝑥)

Sample

But for training:

How do we take a derivative through a randomly sampled number?

How do we know the dependence on the parameters?

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082

Re-parameterization trick

• Given 𝑥~𝑝(𝑥|𝜃)

• Sometimes, we can rewrite 𝑥 as a function of
the parameters and a simpler distribution
without parameter dependence

𝑥 = 𝑔 𝜖, 𝜃 	 𝜖~𝑝(𝜖)

• Example:

𝑥~𝑁 𝑥 𝜇, 𝜎 	→ 	 𝑥 = 𝜎 ∗ 𝜖 + 𝜇	 with	 𝜖~𝑁(0,1)	

28

Encoding 29

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

• A VAE Encoder has two outputs: mean & variance function

𝑓" 𝑥 = {𝜇" 𝑥 , 𝜎"# 𝑥 }

• What is the probability of a point in latent space?

𝑝" 𝑧 𝑥 = 𝑁 𝑧	 𝜇" 𝑥 , 𝜎"# 𝑥)

• How do we draw a sample in latent space?

𝑧 = 𝜎" 𝑥 ∗ 𝜖 + 𝜇" 𝑥 	 𝜖~𝑁(0, 𝐼)

Could choose different density
Gaussian is easiest

30

Kingma, Welling, 1312.6114
Rezende, Mohamed, Wierstra, 1401.4082

𝜖
~𝒩 0,1
𝜖

𝑧~𝑝!(𝑧|𝑥)

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082

Decoding 31

• Same as autoencoder
𝑔# 𝑧 ≡ 𝜇# 𝑧

• Likelihood of an observation 𝑥
𝑝# 𝑥 𝑧 = 𝑁 𝑥	 𝜇# 𝑧 , 𝐼)

𝜃 are parameters of the NN

Gaussian Density

Decoding 32

• Same as autoencoder
𝑔# 𝑧 ≡ 𝜇# 𝑧

• Likelihood of an observation 𝑥
𝑝# 𝑥 𝑧 = 𝑁 𝑥	 𝜇# 𝑧 , 𝐼)

𝜃 are parameters of the NN

• “Reconstruction Loss”: Maximum likelihood

𝐿./01 = 𝔼2~4(2|5) log 𝑝 𝑥 𝑧 ≈
1
𝑁

/
2(~4(2|5)

log𝑁 𝑥	 𝑔6 𝑧7 , 𝐼)

Decoding 33

• Same as autoencoder
𝑔# 𝑧 ≡ 𝜇# 𝑧

• Likelihood of an observation 𝑥
𝑝# 𝑥 𝑧 = 𝑁 𝑥	 𝜇# 𝑧 , 𝐼)

𝜃 are parameters of the NN

• “Reconstruction Loss”: Maximum likelihood

𝐿./01 = 𝔼2~4(2|5) log 𝑝 𝑥 𝑧 ≈
1
𝑁

/
2(~4(2|5)

log𝑁 𝑥	 𝑔6 𝑧7 , 𝐼)

Decoding 34

• Same as autoencoder
𝑔# 𝑧 ≡ 𝜇# 𝑧

• Likelihood of an observation 𝑥
𝑝# 𝑥 𝑧 = 𝑁 𝑥	 𝜇# 𝑧 , 𝐼)

𝜃 are parameters of the NN

• “Reconstruction Loss”: Maximum likelihood

𝐿./01 = 𝔼2~4(2|5) log 𝑝 𝑥 𝑧 ≈
1
𝑁

/
2(~4(2|5)

log𝑁 𝑥	 𝑔6 𝑧7 , 𝐼)−
1
𝑁 /
2(~4(2|5)

𝑥 − 𝑔6 𝑧7
8
	

Same as the autoencoder loss

Variational Autoencoder Training Loss

• How do we make sure system doesn’t collapse to an
autoencoder (i.e. VAE encoder only predicts mean)?

35

Variational Autoencoder Training Loss

• Use prior 𝑝 𝑧 for the latent space distribution,
need to ensure the encoder is consistent with prior

36

• How do we make sure system doesn’t collapse to an
autoencoder (i.e. VAE encoder only predicts mean)?

Variational Autoencoder Training Loss 37

• Constrain difference between distributions with
Kullback–Leibler divergence

𝐷!" 𝑞 𝑧 𝑥 𝑝 𝑧 = 𝔼# 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

= -𝑞 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

	𝑑𝑧

– 𝐷9:[𝑞|𝑝] ≥ 0 and is only 0 when 𝑞 = 𝑝

Variational Autoencoder Training Loss 38

• Constrain difference between distributions with
Kullback–Leibler divergence

𝐷!" 𝑞 𝑧 𝑥 𝑝 𝑧 = 𝔼# 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

= -𝑞 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

	𝑑𝑧

– 𝐷9:[𝑞|𝑝] ≥ 0 and is only 0 when 𝑞 = 𝑝

• VAE full objective

max
6,<

𝐿 𝜃, 𝜓 = max
6,<

𝔼4) 𝑧 𝑥 log 𝑝6(𝑥|𝑧) − 𝐷9:[𝑞< 𝑧 𝑥 |𝑝(𝑧)]

Reconstruction Loss Regularization of Encoder

Examples 39

Higgins et al., 2017

https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf

Comparing Latent Spaces 40

Autoencoder Variational Autoencoder

Data: MNIST data set of hand-written digits

Examples 41

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture7.md

What have we learned?

• In generative modeling,
want to learn the lower dimensional degrees of
freedom that describe the features of the data

• “Degrees of freedom” are modeled with a latent
distribution (kept simple for convenience) and
complex neural network mappings

• Need to think about probabilistic systems

• Design loss around this probabilistic model

42

The Zoo of Generative Models… 43

Image credit: Lilian Weng

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Generative Adversarial Networks (GAN)

• Generator creates data from noise, trained to trick
Discriminator that classifies data as real or fake

44Goodfellow et. al., 2014

Known Noise Distribution

Image credit: 1705.02355 2109.02551

Fleuret, Deep Learning Course

G

2005.05334

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/2109.02551
https://fleuret.org/dlc/
https://arxiv.org/abs/2005.05334

Generative Adversarial Networks (GAN)

• Generator creates data from noise, trained to trick
Discriminator that classifies data as real or fake

45Goodfellow et. al., 2014

Known Noise Distribution
Fleuret, Deep Learning Course

G

Shirbokov, MK, et al., NeurIPS 33, 14650-14662 (2020)

Optimization of the magnet system
For the SHiP experiment

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://fleuret.org/dlc/
https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html

Normalizing Flows 46

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

𝜙

Slide credit: G. Kanwar

𝑝! 𝒙 = 𝑝" 𝒛 det
𝜕𝜙 𝒛
𝑑𝒛

#$Explicit density estimation
We can evaluate density 𝑝(𝑥)

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Event Generation with Normalizing Flows 47

Example: Learning 𝒆#𝒆$ → 𝟑𝒋

Slide credit: C. Krause

arXiv: 2001.05486, ML:ST
arXiv: 2001.10028, PRD

https://indico.cern.ch/event/943433/contributions/4002421/attachments/2098914/3528389/i-flow.C.Krause.pdf

Diffusion Models

• Iteratively add noise to data,
Train model to learn how to denoise step by step

48

Image credit: Lilian Weng

noise data

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Some Final Thoughts

49

Since Tim Berners-Lee Invented the World Wide Web… 50

1989

Slide credit: L. Heinrich

Still Early for Deep Learning, Where Will We be in 25 Years? 51

Prompt: Several giant wooly
mammoths approach treading
through a snowy meadow […]
OpenAI Sora

?

2012

Slide credit: L. Heinrich

https://openai.com/sora

Do These Models Know Physics?... Maybe Not Yet 52

Credit: Jim Fan + Sora

https://twitter.com/DrJimFan/status/1758549500585808071?t=G2zRCc37yEQOR2gXVLQ-ww

Summary

• Deep neural networks are an extremely
powerful class of models

• We can express our inductive bias about a
system in terms of model design, and can be
adapted to a many types of data

• Even beyond classification and regression, deep
neural networks allow powerful unsupervised
learning and Generative modeling!

53

Backup

54

Explicit Density Estimation with Normalizing Flows

55

Reminder: Calculus Change of Variables

∫ 𝑓 𝑔 𝑥 01(𝒙)
4𝒙

𝑑𝑥 = ∫ 𝑓 𝑢 𝑑𝑢 where 𝑢 = 𝑔 𝑥

Multivariate:
∫ 𝑓 𝑔 𝒙 det 01(𝒙)

4𝒙
𝑑𝒙 = ∫ 𝑓 𝒖 𝑑𝒖 where 𝒖 = 𝑔 𝒙

56

Determinant of Jacobian
of the transformation

à Change of volume

Change of Variables in Probability
• If 𝑓 is continuous, invertible, differentiable, and
𝑥 = 𝑓01 𝑧 ≡ 𝜙 𝑧 then

 𝑝5 𝒙 = 𝑝6 𝒛 det 07 𝒛
4𝒛

89
 where 𝒙 = 𝜙 𝒛

57

The term det %& 𝒛
(𝒛

$)
 accounts for the local stretching of space

Change of Variables with Neural Networks 58

• 𝑥 = data we want to model, 𝑧 = known noise

• 𝜙'(𝑧) will be a neural network with parameters 𝜃
– Must be continuous, invertible, differentiable

• Output of 𝜙 is a potential sample 𝑥
– Learn the right 𝜙: adjust weights 𝜃 to maximize data

probability (formula above)

• If 𝑓 is continuous, invertible, differentiable, and
𝑥 = 𝑓01 𝑧 ≡ 𝜙 𝑧 then

 𝑝5 𝒙 = 𝑝6 𝒛 det 07 𝒛
4𝒛

89
 where 𝒙 = 𝜙 𝒛

Change of Variables with Neural Networks 59

• 𝑥 = data we want to model, 𝑧 = known noise

• If 𝑓 is continuous, invertible, differentiable, and
𝑥 = 𝑓01 𝑧 ≡ 𝜙 𝑧 then

 𝑝5 𝒙 = 𝑝6 𝒛 det 07 𝒛
4𝒛

89
 where 𝒙 = 𝜙 𝒛

𝜙89 𝒙 inverse
– Input = a sample X
– Output = a sample of noise

𝜙 𝒛 neural network
– Input = a sample of noise
– Output = a sample of X

⟺

• Calculate the probability of a sample using the formula above

Normalizing Flows 60

𝑝* 𝒙 = 𝑝+ 𝒛 det
𝜕𝜙 𝒛
𝑑𝒛

$)

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 61

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 62

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

𝜙

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 63

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows 64

𝑥 𝑧
𝜙#$(𝑥)

𝜙(𝑧)

𝑝5(𝑥) 𝑝6(𝑧)
𝑝"(𝜙#$ 𝑥) det

𝜕𝜙#$ 𝒙
𝑑𝒙

𝑝" 𝑧 det
𝜕𝜙 𝒛
𝑑𝒛

#$

Normalizing Flows Training

• Learn 𝜃 with maximum likelihood

max
'
𝑝 𝑥 = max

'
𝑝@ 𝜙'AB(𝑥) det

𝜕𝜙'AB 𝒙
𝑑𝒙

– Gradient descent on 𝜃
– Find transformation s.t. data is most likely

• Benefits once trained
– Can evaluate p(x) for any point X
– Can generate “new” data points

• Sample noise: 𝑧~𝑝(𝑧)
• Transform: 𝜙 𝑧 = 𝑥

65

Example Normalizing Flow: Real NVP 66

• Data vector 𝑥 =
𝑥J
𝑥8

• Transformation

 𝜙 𝑧 :	
𝑥J
𝑥8 = 𝜙J(𝑧)

𝜙8(𝑧)
=

𝑧J
𝑧8 ∗ 𝑓 𝑧J + 𝑔(𝑧J)

 𝜙KJ 𝑥 :	
𝑧J
𝑧8 = 𝜙JKJ(𝑥)

𝜙8KJ 𝑥
=

𝑥J
𝑥8 − 𝑔 𝑥J /𝑓(𝑥J)

	

• Determinant:

det
𝜕𝜙 𝒛
𝑑𝒛

= det
1 0

𝜕𝜙%(𝑧)
𝑑𝑧$

𝑓(𝑧$)
= 𝑓(𝑧%)

Functions f() and g()
are neural networks

Jacobian is
lower triangular

Example Normalizing flow 67

𝜙(𝑧)

𝑧)

𝑧,

Applications: Sampling in Lattice QCD 68

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

GANS

69

Another Way To Do Generative Modeling…

• Formulate as a two player game

• One player tries to output data that looks as
real as possible

• Another player tries to compare real and fake
data

• In this case we need:
1. A generator that can produce samples
2. A measure of not too far from the real data

70

Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔! 𝑧 	 𝑧~𝑝(𝑧)	

– We don’t know what the generated distribution 𝑝!(𝑥) is,
but we can sample from it à Implicit Model

71Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔6 𝑧 	 𝑧~𝑝(𝑧)	

– We don’t know what the generated distribution 𝑝6(𝑥) is,
but we can sample from it à Implicit Model

• Discriminator Network 𝒅𝝓(𝒙) with parameters 𝜙
– Classifier trained to distinguish between real and fake data

– Classifier is learning to predict 𝑝 𝑦 = 𝑟𝑒𝑎𝑙	 𝑥)

– This classifier is our measure of not too far from the real data

72Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

GAN Setup

• Generator’s goal is to produce fake data that tricks the
discriminator to think it is real data

• Discriminator wants to miss-classify data as real or fake
as little as possible

• The setup is adversarial because the two networks have
opposing objectives

73

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

GAN Objective

• Data
– Real data samples: 𝑥7, 𝑦7 = 1

– Fake data samples: I𝑥7 = 𝑔6(𝑧7), I𝑦7 = 0 with: 𝑧7~𝑝(𝑧)

74

GAN Objective

• Data
– Real data samples: 𝑥7, 𝑦7 = 1

– Fake data samples: I𝑥7 = 𝑔6(𝑧7), I𝑦7 = 0 with: 𝑧7~𝑝(𝑧)

• For a fixed generator, can train discriminator by
minimizing the cross entropy

75

L(�) = � 1

2N

NX

i=1

h
yi log d�(xi) + (1� ỹi) log(1� d�(x̃i))

i

= � 1

2N

NX

i=1

h
log d�(xi) + log(1� d�(g✓(zi)))

i

= �Ex⇠pdata(x)

h
log d�(x)

i
� Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

GAN Objective

• Data
– Real data samples: 𝑥7, 𝑦7 = 1

– Fake data samples: I𝑥7 = 𝑔6(𝑧7), I𝑦7 = 0 with: 𝑧7~𝑝(𝑧)

• For a fixed generator, can train discriminator by
minimizing the cross entropy

76

L(�) = � 1

2N

NX

i=1

h
yi log d�(xi) + (1� ỹi) log(1� d�(x̃i))

i

= � 1

2N

NX

i=1

h
log d�(xi) + log(1� d�(g✓(zi)))

i

= �Ex⇠pdata(x)

h
log d�(x)

i
� Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

GAN Objective

• Data
– Real data samples: 𝑥7, 𝑦7 = 1

– Fake data samples: I𝑥7 = 𝑔6(𝑧7), I𝑦7 = 0 with: 𝑧7~𝑝(𝑧)

• For a fixed generator, can train discriminator by
minimizing the cross entropy

77

L(�) = � 1

2N

NX

i=1

h
yi log d�(xi) + (1� ỹi) log(1� d�(x̃i))

i

= � 1

2N

NX

i=1

h
log d�(xi) + log(1� d�(g✓(zi)))

i

= �Ex⇠pdata(x)

h
log d�(x)

i
� Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

GAN Objective

• However, generator isn’t fixed… have to train it!

78

GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃

79

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃

80

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse
discriminator and 𝑉(𝜙, 𝜃) will be low

GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃

81

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse
discriminator and 𝑉(𝜙, 𝜃) will be low

• So our optimization goal becomes:

✓⇤ = argmin
✓

max
�

V (�, ✓)

GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃

82

V (�, ✓) = Ex⇠pdata(x)

h
log d�(x)

i
+ Ez⇠p(z)

h
log(1� d�(g✓(z)))

i

– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse
discriminator and 𝑉(𝜙, 𝜃) will be low

• So our optimization goal becomes:

✓⇤ = argmin
✓

max
�

V (�, ✓)

NOTE: can prove that
minimax solution
corresponds to generator
that perfectly reproduces
data distribution

𝑞*∗ 𝑥 = 𝑝+,-,(𝑥)

GAN Training

• Alternating Gradient descent to solve the min-max problem:

	 𝜃 ← 𝜃 − 𝛾∇!𝑉 𝜙, 𝜃 = 𝜃 − 𝛾
𝜕𝑉
𝜕𝑑

𝜕(𝑑,)
𝜕𝑔

𝜕𝑔!
𝜕𝜃

𝜙 ← 𝜙 − 𝛾∇,𝑉 𝜙, 𝜃 = 𝜙 − 𝛾
𝜕𝑉
𝜕𝑑

𝑑(𝑑,)
𝑑𝜙

• For each 𝜃 step, take 𝑘 steps in 𝜙 to keep discriminator near
optimal

83

equilibrium

Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

GAN Training Example 84

GAN Lab Demo

https://poloclub.github.io/ganlab/

Examples 85

Goodfellow et. al., 2014

Radford et al, 2015

Not so good
Goodfellow 2016

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Challenges
• Oscillations without convergence: unlike standard loss

minimization, alternating stochastic gradient descent
has no guarantee of convergence.

• Vanishing gradients: if classifier is too good, value
function saturates à no gradient to update generator

• Mode collapse: generator models only a small sub-
population, concentrating on a few data distribution
modes.

• Difficult to assess performance, when are generated
data good enough?

86

Mode collapse (Metz et al, 2016)Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture8.md

Improving GANS

• Standard GANS compare
real and fake distributions
with Jensen-Shannon
Divergence, “vertically”

• Wasserstein-GAN (Arjovsky
et al, 2017) compares
“horizontally” with
Wasserstein-1 distance
(a.k.a. Earth Movers
distance)

• Substantially improves
vanishing gradient and
mode collapse problems!

87

(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3
https://arxiv.org/abs/1701.07875v3

WGAN Examples 88

(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3

Scaling Up 89

Progressive GAN

Scaling Up 90

BigGAN

StyleGAN v2

Applications: Image-to-Image Translation with CycleGAN 91

• 𝑝(𝑧) doesn’t have to be random noise

• CycleGAN uses cycle-consistency loss in addition to GAN loss
– Translating from AàBàA should be consistent with original A

Applications: Text-to-Image Synthesis with StackGAN 92

Generative Models in Physics 93

• Often studied for fast approximate simulation,
simulation-based inference, optimization, …

1801.090702005.05334

https://arxiv.org/abs/1801.09070
https://arxiv.org/abs/2005.05334

