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The Plan

* Lecture 1 — Machine Learning Fundamentals
* Lecture 2 — Intro to Neural Networks

* Lecture 3 — Intro to Deep Learning

* Lecture 4 — Intro to Unsupervised Learning

* Lecture 5 — Intro to Deep Generative Models



Modeling Data and Meaningful Degrees of Freedom

How can we find the “meaningful degrees of
freedom” in the data?
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Latent space &

Original space &

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Autoencoders

* Map a space to itself through a compression

X—>Z-oX

— Encoder: Map from data to a lower dim. latent space

 Neural network fy(x) with parameters 6

— Decoder: Map from latent space back to data space

* Neural network g,,(z) with parameters i
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Autoencoder Mappings
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» Latent space is of lower dimension than data

* Model must learn a “good” parametrization
and capture dependencies between components

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

Autoencoder Loss

, 2
L(O,)) = Nzuxn - gw(fe (xn))H

* Loss: mean reconstruction loss (MSE) between data
and encoded-decoded data

* Min. over params. of encoder (8) and decoder ().
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Can We Generate Data with Decoder?

« Can we sample in latent space
g
and decode to generate data? . /\\@

— Latent space &

Original space &

« What distribution to sample from

Autoencoder sampling (d = 16)

in latent space? R 2323353604
— Try Gaussian with mean and 0345237 %5534 60
variance from data 3 ¢HhoR2DLFTSESBE

* Don't know the right latent space density

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

 Autoencoders learn the latent space, but we
don’t know what is the latent space distribution

» Autoencoder prescribes a deterministic
relationship between data space and latent
space

* One set of “meaningful degrees of freedom”
can only describe one data space point



Generative Models



Generative Models Goal
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A generative model is a probabilistic model g that can
be used as a simulator of the data.

Goal: generate synthetic, realistic high-dimension data

x~q(x;0)

that is as close as possible to the unknown data
distribution p(x) for which we have empirical samples.

i.e. want to recreate the raw data distribution
(such as the distribution of natural images).



Types of Generative Models

11

 Generative models aim to:

— Learn a distribution p(x) that explains the data
— Draw samples of plausible data points

* Explicit Models

— Can evaluate the density p(x) of a data point x

» Implicit Models

— Can only sample p(x), but not evaluate density
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Variational Autoencoders



Denoising Autoencoders -

» Learn a mapping from corrupted data space X
back to original data space

— Mapping ¢,,(X) = X
— ¢, will be a neural network with parameters w

e LOss:

1
L= NE“xn _ ¢W(xn + En)”
/

Perturbation, e.g. Gaussian noise
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Denoising Autoencoders Examples
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https://fleuret.org/dlc/

Denoising Autoencoders Examples ,

e Autoencoder learns
the average behavior

SN[ e S
VA, .
v  What if we care about

2l A %, . .
/Q“*,! these variations?
 Can we add a notion of

variation in the
autoencoder?

Fleuret, Deep Learning Course
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Variational Autoencoder ;
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Variational Autoencoder N
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| atent Variable Models

19

a0

* Observed random variable x depends on unobserved
latent random variable z

* Joint probability: p(x,z) = p(x|2)p(2)

* p(x|z) is stochastic generation process from z = x



From Deterministic to Probabilistic Autoencoder

20

* Probabilistic relationship between data and latents

x,z~p(x,z) =plx|z)p(z)

* Autoencoding

x = q(z]x) z - p(x]z)

sample

— Encoder: Learn what latents can produced data: q(z|x)
— Decoder: Learn what data is produced by latent: p(x|z)



Variational Autoencoder

21

resampling

latent space

p(2)

* Close-by points must decode to similar images



How do we design Encoder and Decoder .

» Classification / regression models make single prediction

How to model a conditional density p(a|b) ?

» Assume a known form of density, e.g. normal
p(alb) = N (a; u(b),a (b))

— Parameters of density depend on conditioned variable

* Use neural network to model density parameters

p(alb)

p(alb =b;)  p(alb=Dby)

A{I(bl)

u(by) a



Encoding

 Typical encoder maps input x to “average” point in latent space

fQx) = p(x)
f y
\/g—\\
— Latent space ?/

Original space &



Encoding

24

* AVAE Encoder has two outputs: mean & variance function

fp () = {1y (), 0 (x

)} 1) are parameters of the NN

N

M — Density

N

Draw sample

N

Original space &

7

Latent space



Encoding
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* AVAE Encoder has two outputs: mean & variance function

fp (o) = {1y (x), o (x

)} 1) are parameters of the NN

* What is the probability of a point in latent space?

Py (z|lx) = N(z | ) (x), UIIZJ (x)) Could choose different density

Gaussian is easiest

N

M — Gaussian Density

N

Draw sample

N

Original space &

7

Latent space #



26

\

Probabilistic

Encoder

—

Kingma, Welling, 1312.6114
Rezende, Mohamed, Wierstra, 1401.4082

Sample

—

Probabilistic
Decoder

z~p¢,(z|x)

\



https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082
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__) ”
T Sample ___—

E‘ ﬁ! E Probabilistic Probabilistic o o1 &
Baw Y Encoder 1 2 Decoder X Bor i |
— z~py(zlx)

__) G

But for training:
How do we take a derivative through a randomly sampled number?

How do we know the dependence on the parameters?

Kingma, Welling, 1312.6114
Rezende, Mohamed, Wierstra, 1401.4082


https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082

Re-parameterization trick

28

* Given x~p(x|0)
« Sometimes, we can rewrite x as a function of

the parameters and a simpler distribution
without parameter dependence

x = g(g0) e~p(€)
» Example:

x~N(x|u,0) - x=0*€e+u with e~N(0,1)



Encoding
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* AVAE Encoder has two outputs: mean & variance function

fp (o) = {1y (x), o (x

)} 1) are parameters of the NN

* What is the probability of a point in latent space?

Py (z|lx) = N(z | ) (x), UIIZJ (x)) Could choose different density

Gaussian is easiest

* How do we draw a sample in latent space?

Z = Oy (x) * €+ Uy (x) e~N(0,1) Re-parameterization trick
3 N
M — Gaussian Density
N

g

/\ N\

Draw sample
— Latent space #

Original space &
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‘ Probabilistic
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Kingma, Welling, 1312.6114
Rezende, Mohamed, Wierstra, 1401.4082

—
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z~p¢,(z|x)

\



https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082

Decoding )

« Same as autoencoder
g@ (Z) = ,ng (Z) 6 are parameters of the NN

e Likelihood of an observation x
po(x|z) = N(x | ug(2),1)

/]
Gaussian Density
N
g

N

Draw sample

7

= Latent space F

Original space &



Decoding
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 Same as autoencoder
9go(z) = ug(2)

e Likelihood of an observation x
po(x|z) = N(x | ug(2),1)

¢ “Reconstruction Loss”: Maximum likelihood

Lyeco = Ezeqiz1x) llog p(x[2)]



Decoding
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 Same as autoencoder
9go(z) = ug(2)

e Likelihood of an observation x
po(x|z) = N(x | ug(2),1)

¢ “Reconstruction Loss”: Maximum likelihood

1

Lyeco = Ezeqiz1x) llogp(x|z)] = N

> logN (x| go(z), 1)

zi~q(z|x)



Decoding
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 Same as autoencoder
9go(z) = ug(2)

e Likelihood of an observation x
po(x|z) = N(x | ug(2),1)

¢ “Reconstruction Loss”: Maximum likelihood

1

2
Lyeco = Ezeqiz1x) llogp(x|z)] = N 2 (x — gH(Zi))

zi~q(z|x)



Variational Autoencoder Training Loss

35

* How do we make sure system doesn’t collapse to an
autoencoder (i.e. VAE encoder only predicts mean)?



Variational Autoencoder Training Loss

36

* How do we make sure system doesn’t collapse to an
autoencoder (i.e. VAE encoder only predicts mean)?

 Use prior p(z) for the latent space distribution,
need to ensure the encoder is consistent with prior

f AN

— Latent space #

WV

Original space &



Variational Autoencoder Training Loss
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* Constrain difference between distributions with
Kullback-Leibler divergence

q(z|x)

Dgrla(z|X)|p(2)] = Eqz1x) [log () ] = ] q(z]x) logq

p

— Dgilglp] =2 0 andisonly O whenqg =p

(21x)
@ °



Variational Autoencoder Training Loss .

* Constrain difference between distributions with
Kullback-Leibler divergence

q(ZIx)] ] q(z|x)
D z|x)|p(z)] = E lo = Z|x)lo dz
xla0Ip(2)] q(zlx)[ 850G | = ) 1 loem s
 VAE fU” ObjeCtive Reconstruction Loss Regularization of Encoder

| |

max L(6,y) = max [Eqw(ZIx) [log pe (x|2)] — D, [qu(Z|X)IP(Z)]]



Examples
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(b) emotion (smile)

(c) hair (fringe)

Higgins et al., 2017


https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf

Comparing Latent Spaces
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component 2
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Data: MNIST data set of hand-written digits



Examples
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(a) (b)

SMILES input

cleceec]

ENCODER
Neural Network

CONTINUQUS “

MOLECULAR do 4 : 5
REPRESENTATION £ , flz) ! 5
(Latent Space) - r i i : E
- i PROPERTY ! ' 5

— PREDICTION :

DECODER
Neural Network

SMILES output ©

cleccec

Most Probable Decoding
argmax p(*z)

Design of new molecules with desired chemical properties.
(Gomez-Bombarelli et al, 2016)

Slide credit: G. Louppe



https://glouppe.github.io/info8010-deep-learning/?p=lecture7.md

What have we learned?

42

In generative modeling,
want to learn the lower dimensional degrees of
freedom that describe the features of the data

“Degrees of freedom” are modeled with a latent
distribution (kept simple for convenience) and
complex neural network mappings

Need to think about probabilistic systems

Design loss around this probabilistic model



The Zoo of Generative Models...
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GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

Image credit: Lilian Weng

Discriminator

Generator

X — Z =
D(X) G(z)

x L, Encoder - Decoder R
q¢(2]x) po(x|z)
Flow z Inverse

X > > - . —>
f(x) (=)

Xo— X1 — X2 ———— T R— >



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Generative Adversarial Networks (GAN)

Goodfellow et. al., 2014 44
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Known Noise Distribution

Vv

“real,l

llfa ke"

What D wants

Fleuret, Deep Learning Course

* Generator creates data from noise, trained to trick

Discriminator that ¢

10!
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https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/2109.02551
https://fleuret.org/dlc/
https://arxiv.org/abs/2005.05334

Generative Adversarial Networks (GAN)

WV

“real,l

What D wants

Vv

llfa ke"

7

Known Noise Distribution

* Generator creates data from noise, trained to trick
Discriminator that classifies data as real or fake

Fleuret, Deep Learning Course

Optimization of the magnet system 200
For the SHiP experiment loi 500
£
G C o
>
—200 <
—400
0 500 1000 1500 2000 2500 3000
Z,cm

Shirbokov, MK, et al., Neur!PS 33, 14650-14662 (2020)



https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://fleuret.org/dlc/
https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html

Normalizing Flows

Explicit density estimation
We can evaluate density p(x)

~1
px(x) = p,(2) |det <a¢(Z))

dz

é )
Invertible
¢ (Z ) .~ &

z Tractable X
7 Jacobian ‘
p(x)
81 8i 8it1 8n
- | —_ e
|\ J
Y

Many simple layers
composed to produce ¢

Approximates

Easil led
aslly sample desired dist.

Slide credit: G. Kanwar



https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Event Generation with Normalizing Flows -
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arXiv: 2001.05486, ML:ST
arXiv: 2001.10028, PRD
Slide credit: C. Krause

Learned distribution

with learning color

"¢ cos® of decaying fermion with beam
< 4 of decaying fermion with beam

< cos ¥ of decay

+ ¢ of decay

< propagator of decaying fermion

£ < multichannel
0@5\) ;



https://indico.cern.ch/event/943433/contributions/4002421/attachments/2098914/3528389/i-flow.C.Krause.pdf

Diffusion Models »

Use variational lower bound

Lilian Weng

» lteratively add noise to data,
Train model to learn how to denoise step by step



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Some Final Thoughts



Since Tim Berners-Lee Invented the World Wide Web...

50

Vagee  Eur e Ry %,

CERN DD/OC Tim Bemers-Lee,

Information Management: A Pr

Information Management: ‘Toposal

Abstract

This proposal concems the management of general information abost accelerators and cxperiments at
CERN. It discasses the problems of loss of information about complex evolving systems and derives &
solution based on a distribared hyperiex: ytstem.

~10 years

Kepwords: Hyperc, Compuir confraciag., Document reirs, Informaion rmamagemen, Project

Google!

B ET

Search the web using Google

Google Search I I'm feeling lucky I

49
More Google!

Copyright ©1999 Google Inc.

2149 —
@ enwikipediad®@

~25 years

‘‘‘‘‘

» YouTube

Richard Feynman on Quantum Mechanics Part 1

Photons Corpuscles of Light



Still Early for Deep Learning, Where Will We be in 25 Years? .

Che New Jork Times

fl Chatbots > OpenAl Unveils GPT-4  What GPT-4 Can and Can't Do Funding Frenzy Escalates  How

Scientists See Promise in Deep-
Learning Programs

£ Gretisatice &> []

A voice recognition program translated a speech given by Richard F. Rashid,

Microsoft’s top scientist, into Mandarin Chinese. Hao Zhang/The New York Times

2012

. ~25 years

o

Prompt: Several giant wooly
mammoths approach treading
through a snowy meadow [..]

OpenAl Sora


https://openai.com/sora

Do These Models Know Physics?... Maybe Not Yet

52

n

Credit: Jim Fan + Sora


https://twitter.com/DrJimFan/status/1758549500585808071?t=G2zRCc37yEQOR2gXVLQ-ww

Summary N

* Deep neural networks are an extremely
powerful class of models

» We can express our inductive bias about a
system in terms of model design, and can be
adapted to a many types of data

 Even beyond classification and regression, deep
neural networks allow powerful unsupervised
learning and Generative modeling!
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Backup
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Explicit Density Estimation with Normalizing Flows



Reminder: Calculus Change of Variables

56

ff(g(x)) a‘zix) dx = [ f(uw)du where u = g(x)

Multivariate:
I flg(x) ‘detag(x) dx = [ f(u)du where u = g(x)

|

Determinant of Jacobian
of the transformation

— Change of volume



Change of Variables in Probability .

* If f is continuous, invertible, differentiable, and

x = f71(z2) = ¢(2) then

det (a¢(z))_1

dz

px(x) = p,(2) where x = ¢(z)

Hz

1 KX 5

et (222)

Z

The term accounts for the local stretching of space




Change of Variables with Neural Networks

58

* If f is continuous, invertible, differentiable, and

x = f71(z2) = ¢(2) then

det (a¢(z))_1

dz

px(x) = p,(2) where x = ¢(z)

* x = data we want to model, Z = known noise

* ¢g(z) will be a neural network with parameters 6

— Must be continuous, 1nvertible, differentiable

* Output of ¢ is a potential sample x

— Learn the right ¢: adjust weights 6 to maximize data
probability (formula above)



Change of Variables with Neural Networks .

* If f is continuous, invertible, differentiable, and

x = f71(z2) = ¢(2) then

det (a¢(z))_1

dz

px(x) = p,(2) where x = ¢(z)

* x = data we want to model, Z = known noise

¢ (z) neural network ®~1(x) inverse
— Input = asample of noise <= — Input = asample X
— QOutput = a sample of X — Qutput = a sample of noise

* Calculate the probability of a sample using the formula above



Normalizing Flows
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4

20N N

Slide credit: G. Kanwar

¢ (2)

Px(x) = p,(2)

dp(z)
det ( iz

p(x)

|
. i’
¥

;



https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows

61

&

p(2) A

Easily sampled

Slide credit: G. Kanwar

P(2) -

Invertible
&
Tractable
Jacobian

p(x)

W

Approximates
desired dist.


https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows

4 )
Invertible
§[) (Z ) - &

z Tractable
\ ! Jacobian \ ,
\‘~__,a’, \ s\~_-—’,
JOW N - p(x) -
gl 8i — il 8n
- —
. ~ J

Many simple layers
composed to produce ¢

Approximates

Easil led
aslly sample desired dist.

Slide credit: G. Kanwar


https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows

flnvertible\
¢(Z) - &
Z Tractable
; Jacobian 4
T ) \-___—"
Pl A P
: g , 3 | -
- -
Approximates

Easily sampled
y P desired dist.

Slide credit: G. Kanwar


https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf

Normalizing Flows

¢~ (x)
X "z
| (2) |
| Pz (67 (X)) ‘det (aqb;(x)) |
px(x) < ~ pL(2)

-1
p,(z) |det (ad)(Z))

dz




Normalizing Flows Training

65

 Learn @ with maximum likelihood

max p(x) = maxp,(¢y" ()

— Gradient descent on 6

det<

0pg ' (x)

dx

— Find transformation s.t. data is most likely

* Benefits once trained
— Can evaluate p(x) for any point X

— Can generate “new” data points

» Sample noise: z~p(z)

e Transform:

$(z) =x

|




Example Normalizing Flow: Real NVP

X1
e Data vector x = ( )

X2
Functions f() and g()
e Transformation are neural networks
| X1\ _ ($1(2)\ _ 21
P(2): (xz) B (Cbz(Z)) B (Zz * f(z1) + Q(Zl))
“1(,. z1y _ (b1 () _ X1
7 (0): (Zz) - (gbz_l(x)) - ((xz - 9(x1))/f(x1))
Jacobian is

e Determinant: / lower triangular

1 0
d
det( "U’I(ZZ)) _ det((aff’z(z)) f(21)> = f(z2)

le



Example Normalizing flow .

Standard Normal p(xy1)
60 - 0.35
50 - 0.30
0.25
401
0.20
30 -
Samples from p(x;, x3) 0.15
2o 2.0 .S
[ J 4
M m 0.10
L i 1
10 % & ]
1.0 s pompe 0.05
[eXe
0- 0.5 # 0.00 .
-2 0 2
) < e
Standard Normal 6%
60 p(xz)
-1.0
0.35
-15
0.30
_2.0 T T T T T T T T T
-20 -15 -10 -05 00 05 1.0 15 2.0 0.25 -
x1
0.20
0.15
0.10 -
0.05
0.00



Applications: Sampling in Lattice QCD

o

R -~

<EEEEEE >

e Ry ey

generating samples is
"embarrassingly parallel"

68

Parameterize flow using Real

Each layer contains

NVP coupling layers «—

'

Training step

Draw samples from model
|

Compute loss function
|

Gradient descent
\_

arbitrary neural nets

Desired accuracy?

Markov chain using
samples from model

=

Save trained
model

Slide credit: G. Kanwar


https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf
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GANS



Another Way To Do Generative Modeling...

70

Formulate as a two player game

One player tries to output data that looks as
real as possible

Another player tries to compare real and fake
data

In this case we need:

1. A generator that can produce samples
2. A measure of not too far from the real data



Generative Adversarial Network (GAN)

Goodfellow et. al., 2014 71

* Generator network gg(z) with parameters 6
— Map sample from known p(z) to sample in data space

x =gg(z) z~p(2)

— We don’t know what the generated distribution pg(x) is,
but we can sample from it = Implicit Model


https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Goodfellow et. al., 2014

Generative Adversarial Network (GAN)

72

 Generator network gg(z) with parameters 6
— Map sample from known p(z) to sample in data space

x=gg(z) z~p(2)

— We don’t know what the generated distribution pg(x) is,
but we can sample from it = Implicit Model

* Discriminator Network d 4 (x) with parameters ¢

— Classitfier trained to distinguish between real and fake data
— Classifier is learning to predict p(y = real | x)

— This classifier is our measure of not too far from the real data


https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
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vV

“real”

What D wants

“fa kell

N4

» Generator’s goal is to produce fake data that tricks the
discriminator to think it is real data

 Discriminator wants to miss-classify data as real or fake
as little as possible

 The setup is adversarial because the two networks have
opposing objectives

Fleuret, Deep Learning Course



https://fleuret.org/dlc/

GAN Obijective
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* Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {X; = gg(z;),¥; = 0}

with: z;~p(2)
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* Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {¥; = gg(z;),y; = 0} with: z;~p(2)

» For a fixed generator, can train discriminator by

minimizing the cross entropy
N
1

L(¢) = — 557 D |vilogds(w:) + (1= ) log(1 — dy (&) )|



GAN Obijective ,

* Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {¥; = gg(z;),y; = 0} with: z;~p(2)

» For a fixed generator, can train discriminator by

minimizing the cross entropy
N

D) = — 50 D [wilogda(e) + (1~ ) log(1 — dy (i) )
= —% [log de(2;) + log(1 — dy(go(zi)) )}

1=1
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* Data
— Real data samples: {x;,y; = 1}

— Fake data samples: {¥; = gg(z;),y; = 0} with: z;~p(2)

» For a fixed generator, can train discriminator by

minimizing the cross entropy
N

D) = — 50 O [wilogda(e) + (1— ) log(1 — dy (i) )
= —% [log de(z;) + log(1 — dy(go(zi)) )}

1=1

= —Forpyon(2) {log d¢(x)i| —E.p2) {log(l — dy(g0(2)) )}
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* However, generator isn’t fixed... have to train it!
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* However, generator isn’t fixed... have to train it!

 Consider objective as a value function of ¢ and 6

V(9,0) = Eanpyunae) | 108 do(@)]| + Eempis) | 108(1 = di(90(2)) )



GAN Obijective .

* However, generator isn’t fixed... have to train it!

 Consider objective as a value function of ¢ and 6

V(9,0) = Eanpyunae) | 108 do(@)]| + Eempis) | 108(1 = di(90(2)) )

— For fixed generator, V (¢, 8) is high when discriminator is
good, 1.e. when generator 1s not producing good takes

— For a perfect discriminator, a good generator will confuse
discriminator and V (¢, 8) will be low
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* However, generator isn’t fixed... have to train it!

 Consider objective as a value function of ¢ and 6

V(9,0) = Eanpyunae) | 108 do(@)]| + Eempis) | 108(1 = di(90(2)) )

— For fixed generator, V (¢, 8) is high when discriminator is
good, 1.e. when generator 1s not producing good takes

— For a perfect discriminator, a good generator will confuse
discriminator and V (¢, 8) will be low

* So our optimization goal becomes:

0" = arg m@in max Vo, 0)
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* However, generator isn’t fixed... have to train it!

 Consider objective as a value function of ¢ and 6

V(9,0) = Eanpyunae) | 108 do(@)]| + Eempis) | 108(1 = di(90(2)) )

— For fixed generator, V (¢, 8) is high when discriminator is
good, 1.e. when generator 1s not producing good takes

— For a perfect discriminator, a good generator will confuse

discriminator and V (¢, 8) will be low
* So our optimization goal becomes:

0" = arg m@in max Vo, 0)

NOTE: can prove that
minimax solution
corresponds to generator
that perfectly reproduces
data distribution

qo+*(X) = Paata(x)



GAN Training

Goodfellow et. al., 2014 83

* Alternating Gradient descent to solve the min-max problem:
v d(dg) dge

Yad ag a6

v d(dy)

od do

0 <0 —yVeV(p,0) =6 —

$—p—yVyV(d0)=¢—v

 For each 0 step, take k steps in ¢ to keep discriminator near
optimal

Data distribution
Model distribution

CEPRP

& N
L 8.

T 7 T TN

Poorly fit model After updating D After updating G =~ Mixed strategy equilibrium



https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

GAN Training Example
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MODEL OVERVIEW GRAPH

Gradients

[Fm—————N

Real
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IR o
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Discriminator Prediction of
: Samples
|
|
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|
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Gradients
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Discriminator
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Generator
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LAYERED DISTRIBUTIONS METRICS
3 . [l Discriminator's Loss

[l Generator's Loss
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0 2000 4000

Each dot is a 2D data sample: real samples; fake samples.

Background colors of grid cells represent discriminator's classifications.
Samples in green regions are likely to be real; those in purple regions likely fake.

Opacity encodes density: darker purple means more samples in smaller area.

Pink lines from fake samples represent gradients for generator.
& This sample needs to move upper right to decrease generator's loss.

GAN Lab Demo



https://poloclub.github.io/ganlab/

Examples
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Goodfellow et. al., 2014

Radford et al, 2015

Not so good

Goodfellow 2016



https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Challenges
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Oscillations without convergence: unlike standard loss
minimization, alternating stochastic gradient descent
has no guarantee of convergence.

Vanishing gradients: if classifier is too good, value
function saturates = no gradient to update generator

Mode collapse: generator models only a small sub-
population, concentrating on a few data distribution
modes.

Difficult to assess !)erformance, when are generated
data good enough

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Slide credit: G. Louppe Mode collapse (Metz et al, 2016)


https://glouppe.github.io/info8010-deep-learning/?p=lecture8.md

Improving GANS

» Standard GANS compare

035 -

real and fake distributions
with Jensen-Shannon

0.20 -

Divergence, “vertically”

0.10 -
0.05 -

» Wasserstein-GAN (Arjovsky oo~ ——
et al, 2017) compares
“horizontally” with e N
Wasserstein-1 distance G prenminater
(a.k.a. Earth Movers *
distance)

0.4

0.2+

0.0

» Substantially improves e vy <2

=0.2} Vanishing gradients

vanishing gradient and L e
mode collapse problems! L

-8 -6 -4

-2

Figure 2: Optimal discriminator and critic

As we can see, the discriminator of a minimar GAN saturates and results in vanishing
gradients. Our WGAN critic provides very clean gradients on all parts of the space.

when learning to differentiate two Gaussians.


https://arxiv.org/abs/1701.07875v3
https://arxiv.org/abs/1701.07875v3

WGAN Examples
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(Arjovsky et al, 2017)



https://arxiv.org/abs/1701.07875v3

Scaling Up
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Latent Latent

ﬁﬁ

.i ! Reals l ' Reals

D

Progressive GAN

Latent

1024x1024

. | Reals
¥

Y
1024x1024

Training progresses

(Karras et al, 2017)



Scaling Up
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StyleGAN v2

BigGAN




Applications: Image-to-Image Translation with CycleGAN
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. p(z) doesn’t have to be random noise

* CycleGAN uses cycle-consistency loss in addition to GAN loss
— Translating from A->B->A should be consistent with original A

Monet Y_ Photos Zebras T Horses Summer % Winter

el T
zebra —» horse

p 22 = .
H

Rt R
. N o W 2] E
.- - q ¥ 5y H
- H
b tuathe, | I
AG K
¥ ol : :
\ H :
' Hw |

horse — zebra

Van Gogh




Applications: Text-to-Image Synthesis with Stack GAN
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A small bird A small yellow  This small bird

The bird is A bird witha This small with varying bird with a has a white
Text Thisbirdisred  shortand mediumorange  black bird has shades of black crown breast, light
desc:'xt'on and brown in stubby with bill white body  a short, slightly  brown with and a short grey head, and
P color, witha yellow on its gray wingsand  curvedbilland  white underthe black pointed black wings
stubby beak body webbed feet long legs eyes beak and tail
64x64 ¥
GAN-INT-CLS

128x128
GAWWN
256x256

StackGAN-v1

S s

-~ d

Fig. 3: Example results by our StackGAN-vl, GAWWN [29], and GAN-INT-CLS [31] conditioned on text descriptions from CUB test set.

(Zhanget al, 2017)




Generative Models in Physics
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» Often studied for fast approximate simulation,
simulation-based inference, optimization, ...

N-body simulation samples
. ¥ " o5 i B v

10' MeV

ylcells]

10° MeV

10" MeV

2005.05334 1801.09070



https://arxiv.org/abs/1801.09070
https://arxiv.org/abs/2005.05334

