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The Plan

• Lecture 1 – Machine Learning Fundamentals

• Lecture 2 – Intro to Neural Networks

• Lecture 3 – Intro to Deep Learning

• Lecture 4 – Intro to Unsupervised Learning

• Lecture 5 – Intro to Deep Generative Models
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Modeling Data and Meaningful Degrees of Freedom 3

Fleuret, Deep Learning Course

How can we find the “meaningful degrees of 
freedom” in the data?

https://fleuret.org/dlc/


Autoencoders

• Map a space to itself through a compression 

𝑥 → 𝑧 → $𝑥

4

– Encoder: Map from data to a lower dim. latent space
• Neural network 𝑓! 𝑥  with parameters 𝜃 

– Decoder: Map from latent space back to data space
• Neural network 𝑔" 𝑧  with parameters 𝜓 

𝑔! 𝑧𝑓" 𝑥



Autoencoder Mappings

• Latent space is of lower dimension than data

• Model must learn a “good” parametrization 
and capture dependencies between components

5

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data 
and encoded-decoded data

• Min. over params. of encoder (𝜃) and decoder (𝜓).

• NOTE: if 𝑓' 𝑥  and 𝑔( 𝑧   are linear, optimal 
solution given by Principle Components Analysis
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𝐿(𝜃, 𝜓) =
1
𝑁
*
!

𝑥! − 𝑔" 𝑓# 𝑥!
$

𝑔! 𝑧𝑓" 𝑥



Can We Generate Data with Decoder?

• Don’t know the right latent space density
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• Can we sample in latent space 
and decode to generate data?

• What distribution to sample from 
in latent space?
– Try Gaussian with mean and 

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


• Autoencoders learn the latent space, but we 
don’t know what is the latent space distribution

• Autoencoder prescribes a deterministic 
relationship between data space and latent 
space 

• One set of “meaningful degrees of freedom” 
can only describe one data space point
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Generative Models
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Generative Models Goal

A generative model is a probabilistic model 𝑞 that can 
be used as a simulator of the data. 

Goal: generate synthetic, realistic high-dimension data

𝑥~𝑞(𝑥; 𝜃)

that is as close as possible to the unknown data 
distribution 𝑝(𝑥) for which we have empirical samples.

i.e. want to recreate the raw data distribution 
(such as the distribution of natural images).
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Types of Generative Models 11

• Generative models aim to:
– Learn a distribution 𝑝(𝑥) that explains the data
– Draw samples of plausible data points

• Explicit Models
– Can evaluate the density 𝑝(𝑥) of a data point x

• Implicit Models
– Can only sample 𝑝(𝑥), but not evaluate density



Variational Autoencoders
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Denoising Autoencoders

• Learn a mapping from corrupted data space !𝒳 
back to original data space

–Mapping 𝜙% 4𝒳 = 𝒳
– 𝜙% will be a neural network with parameters 𝑤

• Loss: 

L =
1
𝑁
'
!

𝑥! − 𝜙"(𝑥! + 𝜖!)
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Perturbation, e.g. Gaussian noise



Denoising Autoencoders Examples 14

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Denoising Autoencoders Examples 15

Fleuret, Deep Learning Course

• Autoencoder learns 
the average behavior

• What if we care about 
these variations?

• Can we add a notion of 
variation in the 
autoencoder?

https://fleuret.org/dlc/


Autoencoder 16

*

⋆

*
x



Variational Autoencoder 17

*

⋆

*
x



Variational Autoencoder 18

*

⋆

Draw sample*
x



Latent Variable Models 19

• Observed random variable 𝑥 depends on unobserved 
latent random variable 𝑧

• Joint probability: 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

• 𝑝(𝑥|𝑧) is stochastic generation process from 𝑧 → 𝑥

𝑧 𝑥



From Deterministic to Probabilistic Autoencoder 20

• Autoencoding

𝑥 → 𝑞 𝑧 𝑥 	
)*+,-.

	 𝑧	 → 𝑝(𝑥|𝑧)

– Encoder: Learn what latents can produced data:  𝑞(𝑧|𝑥)
– Decoder: Learn what data is produced by latent:  𝑝(𝑥|𝑧)

• Probabilistic relationship between data and latents

𝑥, 𝑧	~	𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)



Variational Autoencoder

• Close-by points must decode to similar images
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Image credit: L. Heinrich



How do we design Encoder and Decoder

• Classification / regression models make single prediction 

  How to model a conditional density 𝑝(𝑎|𝑏) ?

• Assume a known form of density, e.g. normal

𝑝 𝑎 𝑏 = 𝒩 𝑎; 𝜇 𝑏 , 𝜎 𝑏

– Parameters of density depend on conditioned variable

• Use neural network to model density parameters

22

𝜇(𝑏)

𝜎(𝑏)
𝑏

𝑝(𝑎|𝑏 = 𝑏!) 𝑝(𝑎|𝑏 = 𝑏")

𝑎

𝑝(
𝑎|
𝑏)

𝜇(𝑏!)

𝜎(𝑏!)



Encoding 23

• Typical encoder maps input 𝑥 to “average” point in latent space

𝑓 𝑥 = 𝜇(𝑥)



• A VAE Encoder has two outputs: mean & variance function 

𝑓" 𝑥 = {𝜇" 𝑥 , 𝜎"# 𝑥 }

• What is the probability of a point in latent space?

𝑝" 𝑧 𝑥 = 𝑁 𝑧	 𝜇" 𝑥 , 𝜎" 𝑥 )

• How do we draw a sample in latent space?

𝑧 = 𝜎" 𝑥 ∗ 𝜖 + 𝜇" 𝑥 	 𝜖~𝑁(0, 𝐼)

Encoding 24

Density

𝜓 are parameters of the NN

Re-parameterization trick



• A VAE Encoder has two outputs: mean & variance function 

𝑓" 𝑥 = {𝜇" 𝑥 , 𝜎"# 𝑥 }

• What is the probability of a point in latent space?

𝑝" 𝑧 𝑥 = 𝑁 𝑧	 𝜇" 𝑥 , 𝜎"# 𝑥 )

• How do we draw a sample in latent space?

𝑧 = 𝜎" 𝑥 ∗ 𝜖 + 𝜇" 𝑥 	 𝜖~𝑁(0, 𝐼)

Encoding 25

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

Could choose different density
Gaussian is easiest
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Kingma, Welling, 1312.6114
Rezende, Mohamed, Wierstra, 1401.4082

𝑧~𝑝!(𝑧|𝑥)

Sample

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082
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Kingma, Welling, 1312.6114
Rezende, Mohamed, Wierstra, 1401.4082

𝑧~𝑝!(𝑧|𝑥)

Sample

But for training:
 

How do we take a derivative through a randomly sampled number? 

How do we know the dependence on the parameters?

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082


Re-parameterization trick

• Given 𝑥~𝑝(𝑥|𝜃)   

• Sometimes, we can rewrite 𝑥 as a function of 
the parameters and a simpler distribution 
without parameter dependence

𝑥 = 𝑔 𝜖, 𝜃 	 𝜖~𝑝(𝜖)

• Example:

𝑥~𝑁 𝑥 𝜇, 𝜎 	→ 	 𝑥 = 𝜎 ∗ 𝜖 + 𝜇	 with	 𝜖~𝑁(0,1)	

28



Encoding 29

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

• A VAE Encoder has two outputs: mean & variance function 

𝑓" 𝑥 = {𝜇" 𝑥 , 𝜎"# 𝑥 }

• What is the probability of a point in latent space?

𝑝" 𝑧 𝑥 = 𝑁 𝑧	 𝜇" 𝑥 , 𝜎"# 𝑥 )

• How do we draw a sample in latent space?

𝑧 = 𝜎" 𝑥 ∗ 𝜖 + 𝜇" 𝑥 	 𝜖~𝑁(0, 𝐼)

Could choose different density
Gaussian is easiest



30

Kingma, Welling, 1312.6114
Rezende, Mohamed, Wierstra, 1401.4082

𝜖
~𝒩 0,1
𝜖

𝑧~𝑝!(𝑧|𝑥)

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082


Decoding 31

• Same as autoencoder
𝑔# 𝑧 ≡ 𝜇# 𝑧

• Likelihood of an observation 𝑥
𝑝# 𝑥 𝑧 = 𝑁 𝑥	 𝜇# 𝑧 , 𝐼)

𝜃 are parameters of the NN

Gaussian Density



Decoding 32

• Same as autoencoder
𝑔# 𝑧 ≡ 𝜇# 𝑧

• Likelihood of an observation 𝑥
𝑝# 𝑥 𝑧 = 𝑁 𝑥	 𝜇# 𝑧 , 𝐼)

𝜃 are parameters of the NN

• “Reconstruction Loss”: Maximum likelihood

𝐿./01 = 𝔼2~4(2|5) log 𝑝 𝑥 𝑧 ≈
1
𝑁

/
2(~4(2|5)

log𝑁 𝑥	 𝑔6 𝑧7 , 𝐼)



Decoding 33

• Same as autoencoder
𝑔# 𝑧 ≡ 𝜇# 𝑧

• Likelihood of an observation 𝑥
𝑝# 𝑥 𝑧 = 𝑁 𝑥	 𝜇# 𝑧 , 𝐼)

𝜃 are parameters of the NN

• “Reconstruction Loss”: Maximum likelihood

𝐿./01 = 𝔼2~4(2|5) log 𝑝 𝑥 𝑧 ≈
1
𝑁

/
2(~4(2|5)

log𝑁 𝑥	 𝑔6 𝑧7 , 𝐼)



Decoding 34

• Same as autoencoder
𝑔# 𝑧 ≡ 𝜇# 𝑧

• Likelihood of an observation 𝑥
𝑝# 𝑥 𝑧 = 𝑁 𝑥	 𝜇# 𝑧 , 𝐼)

𝜃 are parameters of the NN

• “Reconstruction Loss”: Maximum likelihood

𝐿./01 = 𝔼2~4(2|5) log 𝑝 𝑥 𝑧 ≈
1
𝑁

/
2(~4(2|5)

log𝑁 𝑥	 𝑔6 𝑧7 , 𝐼)−
1
𝑁 /
2(~4(2|5)

𝑥 − 𝑔6 𝑧7
8
	

Same as the autoencoder loss



Variational Autoencoder Training Loss

• How do we make sure system doesn’t collapse to an 
autoencoder (i.e. VAE encoder only predicts mean)?

35



Variational Autoencoder Training Loss

• Use prior 𝑝 𝑧  for the latent space distribution, 
need to ensure the encoder is consistent with prior

36

• How do we make sure system doesn’t collapse to an 
autoencoder (i.e. VAE encoder only predicts mean)?



Variational Autoencoder Training Loss 37

• Constrain difference between distributions with 
Kullback–Leibler divergence

𝐷!" 𝑞 𝑧 𝑥 𝑝 𝑧 = 𝔼# 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

= -𝑞 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

	𝑑𝑧

– 𝐷9:[𝑞|𝑝] ≥ 0   and is only 0 when 𝑞 = 𝑝



Variational Autoencoder Training Loss 38

• Constrain difference between distributions with 
Kullback–Leibler divergence

𝐷!" 𝑞 𝑧 𝑥 𝑝 𝑧 = 𝔼# 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

= -𝑞 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

	𝑑𝑧

– 𝐷9:[𝑞|𝑝] ≥ 0   and is only 0 when 𝑞 = 𝑝

• VAE full objective

max
6,<

𝐿 𝜃, 𝜓 = max
6,<

𝔼4) 𝑧 𝑥 log 𝑝6(𝑥|𝑧) − 𝐷9:[𝑞< 𝑧 𝑥 |𝑝(𝑧)]

Reconstruction Loss Regularization of Encoder



Examples 39

Higgins et al., 2017

https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf


Comparing Latent Spaces 40

Autoencoder Variational Autoencoder

Data: MNIST data set of hand-written digits



Examples 41

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture7.md


What have we learned?

• In generative modeling, 
want to learn the lower dimensional degrees of 
freedom that describe the features of the data

• “Degrees of freedom” are modeled with a latent 
distribution (kept simple for convenience) and 
complex neural network mappings

• Need to think about probabilistic systems

• Design loss around this probabilistic model

42



The Zoo of Generative Models… 43

Image credit: Lilian Weng

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Generative Adversarial Networks (GAN)

• Generator creates data from noise, trained to trick 
Discriminator that classifies data as real or fake 

44Goodfellow et. al., 2014

Known Noise Distribution

Image credit: 1705.02355 2109.02551

Fleuret, Deep Learning Course

G

2005.05334

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/2109.02551
https://fleuret.org/dlc/
https://arxiv.org/abs/2005.05334


Generative Adversarial Networks (GAN)

• Generator creates data from noise, trained to trick 
Discriminator that classifies data as real or fake 

45Goodfellow et. al., 2014

Known Noise Distribution
Fleuret, Deep Learning Course

G

Shirbokov, MK, et al., NeurIPS 33, 14650-14662 (2020)

Optimization of the magnet system
For the SHiP experiment

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://fleuret.org/dlc/
https://proceedings.neurips.cc/paper/2020/hash/a878dbebc902328b41dbf02aa87abb58-Abstract.html


Normalizing Flows 46

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

𝜙

Slide credit: G. Kanwar

𝑝! 𝒙 = 𝑝" 𝒛 det
𝜕𝜙 𝒛
𝑑𝒛

#$Explicit density estimation
We can evaluate density 𝑝(𝑥)

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf


Event Generation with Normalizing Flows 47

Example: Learning 𝒆#𝒆$ → 𝟑𝒋

Slide credit: C. Krause

arXiv: 2001.05486, ML:ST
arXiv: 2001.10028, PRD

https://indico.cern.ch/event/943433/contributions/4002421/attachments/2098914/3528389/i-flow.C.Krause.pdf


Diffusion Models

• Iteratively add noise to data,
Train model to learn how to denoise step by step

48

Image credit: Lilian Weng

noise data

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Some Final Thoughts

49



Since Tim Berners-Lee Invented the World Wide Web… 50

1989

Slide credit: L. Heinrich



Still Early for Deep Learning, Where Will We be in 25 Years? 51

Prompt: Several giant wooly 
mammoths approach treading 
through a snowy meadow […] 
OpenAI Sora

?

2012

Slide credit: L. Heinrich

https://openai.com/sora


Do These Models Know Physics?... Maybe Not Yet 52

Credit: Jim Fan + Sora

https://twitter.com/DrJimFan/status/1758549500585808071?t=G2zRCc37yEQOR2gXVLQ-ww


Summary

• Deep neural networks are an extremely 
powerful class of models

• We can express our inductive bias about a 
system in terms of model design, and can be 
adapted to a many types of data

• Even beyond classification and regression, deep 
neural networks allow powerful unsupervised 
learning and Generative modeling!

53



Backup

54



Explicit Density Estimation with Normalizing Flows

55



Reminder: Calculus Change of Variables

∫ 𝑓 𝑔 𝑥 01(𝒙)
4𝒙

𝑑𝑥 = ∫ 𝑓 𝑢 𝑑𝑢           where 𝑢 = 𝑔 𝑥

Multivariate: 
∫ 𝑓 𝑔 𝒙 det 01(𝒙)

4𝒙
𝑑𝒙 = ∫ 𝑓 𝒖 𝑑𝒖   where 𝒖 = 𝑔 𝒙

56

Determinant of Jacobian
of the transformation

à Change of volume 



Change of Variables in Probability
• If 𝑓 is continuous, invertible, differentiable, and 
𝑥 = 𝑓01 𝑧 ≡ 𝜙 𝑧  then

  𝑝5 𝒙 = 𝑝6 𝒛 det 07 𝒛
4𝒛

89
   where 𝒙 = 𝜙 𝒛

57

The term det %& 𝒛
(𝒛

$)
 accounts for the local stretching of space 



Change of Variables with Neural Networks 58

• 𝑥 = data we want to model,       𝑧 = known noise

• 𝜙'(𝑧) will be a neural network with parameters 𝜃
– Must be continuous, invertible, differentiable

• Output of  𝜙 is a potential sample 𝑥
– Learn the right 𝜙: adjust weights 𝜃 to maximize data 

probability (formula above) 

• If 𝑓 is continuous, invertible, differentiable, and 
𝑥 = 𝑓01 𝑧 ≡ 𝜙 𝑧  then

  𝑝5 𝒙 = 𝑝6 𝒛 det 07 𝒛
4𝒛

89
   where 𝒙 = 𝜙 𝒛



Change of Variables with Neural Networks 59

• 𝑥 = data we want to model,       𝑧 = known noise

• If 𝑓 is continuous, invertible, differentiable, and 
𝑥 = 𝑓01 𝑧 ≡ 𝜙 𝑧  then

  𝑝5 𝒙 = 𝑝6 𝒛 det 07 𝒛
4𝒛

89
   where 𝒙 = 𝜙 𝒛

𝜙89 𝒙  inverse
– Input    = a sample X
– Output = a sample of  noise

𝜙 𝒛  neural network
– Input    = a sample of  noise
– Output = a sample of  X

⟺

• Calculate the probability of  a sample using the formula above



Normalizing Flows 60

𝑝* 𝒙 = 𝑝+ 𝒛 det
𝜕𝜙 𝒛
𝑑𝒛

$)

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf


Normalizing Flows 61

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf


Normalizing Flows 62

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

𝜙

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf


Normalizing Flows 63

𝑥

𝑝(𝑥)𝑝(𝑧)

𝜙(𝑧)

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf


Normalizing Flows 64

𝑥 𝑧
𝜙#$(𝑥)

𝜙(𝑧)

𝑝5(𝑥) 𝑝6(𝑧)
𝑝"(𝜙#$ 𝑥 ) det

𝜕𝜙#$ 𝒙
𝑑𝒙

𝑝" 𝑧 det
𝜕𝜙 𝒛
𝑑𝒛

#$



Normalizing Flows Training

• Learn 𝜃 with maximum likelihood
 

max
'
𝑝 𝑥 = max

'
𝑝@ 𝜙'AB(𝑥) det

𝜕𝜙'AB 𝒙
𝑑𝒙

– Gradient descent on 𝜃
– Find transformation s.t. data is most likely

• Benefits once trained
– Can evaluate p(x) for any point X
– Can generate “new” data points

• Sample noise:  𝑧~𝑝(𝑧)
• Transform:     𝜙 𝑧 = 𝑥

65



Example Normalizing Flow: Real NVP 66

• Data vector 𝑥 =
𝑥J
𝑥8

• Transformation

     𝜙 𝑧 :	
𝑥J
𝑥8 = 𝜙J(𝑧)

𝜙8(𝑧)
=

𝑧J
𝑧8 ∗ 𝑓 𝑧J + 𝑔(𝑧J)

         𝜙KJ 𝑥 :	
𝑧J
𝑧8 = 𝜙JKJ(𝑥)

𝜙8KJ 𝑥
=

𝑥J
𝑥8 − 𝑔 𝑥J /𝑓(𝑥J)

	

• Determinant:  

det
𝜕𝜙 𝒛
𝑑𝒛

= det
1 0

𝜕𝜙%(𝑧)
𝑑𝑧$

𝑓(𝑧$)
= 𝑓(𝑧%)

Functions f() and g()
are neural networks

Jacobian is
lower triangular



Example Normalizing flow 67

𝜙(𝑧)

𝑧)

𝑧,



Applications: Sampling in Lattice QCD 68

Slide credit: G. Kanwar

https://indico.cern.ch/event/764552/contributions/3428322/attachments/1865662/3067680/FlowBasedGenerativeModelsMCMC_v2.pdf


GANS

69



Another Way To Do Generative Modeling…

• Formulate as a two player game

• One player tries to output data that looks as 
real as possible

• Another player tries to compare real and fake 
data

• In this case we need:
1. A generator that can produce samples
2. A measure of not too far from the real data 

70



Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔! 𝑧 	 𝑧~𝑝(𝑧)	

– We don’t know what the generated distribution 𝑝!(𝑥) is, 
but we can sample from it à Implicit Model

71Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


Generative Adversarial Network (GAN)

• Generator network 𝒈𝜽(𝒛) with parameters 𝜃
– Map sample from known 𝑝(𝑧) to sample in data space

𝑥 = 𝑔6 𝑧 	 𝑧~𝑝(𝑧)	

– We don’t know what the generated distribution 𝑝6(𝑥) is, 
but we can sample from it à Implicit Model

• Discriminator Network 𝒅𝝓(𝒙) with parameters 𝜙
– Classifier trained to distinguish between real and fake data

– Classifier is learning to predict 𝑝 𝑦 = 𝑟𝑒𝑎𝑙	 𝑥)

– This classifier is our measure of not too far from the real data 

72Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


GAN Setup

• Generator’s goal is to produce fake data that tricks the 
discriminator to think it is real data

• Discriminator wants to miss-classify data as real or fake 
as little as possible

• The setup is adversarial because the two networks have 
opposing objectives 

73

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


GAN Objective

• Data
– Real data samples:   𝑥7, 𝑦7 = 1

– Fake data samples:   I𝑥7 = 𝑔6(𝑧7), I𝑦7 = 0      with:  𝑧7~𝑝(𝑧)
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GAN Objective

• Data
– Real data samples:   𝑥7, 𝑦7 = 1

– Fake data samples:   I𝑥7 = 𝑔6(𝑧7), I𝑦7 = 0      with:  𝑧7~𝑝(𝑧)

• For a fixed generator, can train discriminator by 
minimizing the cross entropy
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GAN Objective

• Data
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– Fake data samples:   I𝑥7 = 𝑔6(𝑧7), I𝑦7 = 0      with:  𝑧7~𝑝(𝑧)
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GAN Objective

• However, generator isn’t fixed… have to train it!

78



GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃
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GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃
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good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse 
discriminator and 𝑉(𝜙, 𝜃) will be low



GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃
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– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is 
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GAN Objective

• However, generator isn’t fixed… have to train it!

• Consider objective as a value function of 𝜙 and 𝜃
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– For fixed generator, 𝑉(𝜙, 𝜃) is high when discriminator is 
good, i.e. when generator is not producing good fakes

– For a perfect discriminator, a good generator will confuse 
discriminator and 𝑉(𝜙, 𝜃) will be low

• So our optimization goal becomes:

✓⇤ = argmin
✓

max
�

V (�, ✓)

NOTE: can prove that 
minimax solution 
corresponds to  generator 
that perfectly reproduces 
data distribution 

𝑞*∗ 𝑥 = 𝑝+,-,(𝑥)



GAN Training

• Alternating Gradient descent to solve the min-max problem:

	 𝜃 ← 𝜃 − 𝛾∇!𝑉 𝜙, 𝜃 = 𝜃 − 𝛾
𝜕𝑉
𝜕𝑑

𝜕(𝑑,)
𝜕𝑔

𝜕𝑔!
𝜕𝜃

𝜙 ← 𝜙 − 𝛾∇,𝑉 𝜙, 𝜃 = 𝜙 − 𝛾
𝜕𝑉
𝜕𝑑

𝑑(𝑑,)
𝑑𝜙

• For each 𝜃 step, take 𝑘 steps in 𝜙 to keep discriminator near 
optimal

83

equilibrium

Goodfellow et. al., 2014

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


GAN Training Example 84

GAN Lab Demo

https://poloclub.github.io/ganlab/


Examples 85

Goodfellow et. al., 2014

Radford et al, 2015

Not so good
Goodfellow 2016

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


Challenges
• Oscillations without convergence: unlike standard loss 

minimization, alternating stochastic gradient descent 
has no guarantee of convergence.

• Vanishing gradients: if classifier is too good, value 
function saturates à no gradient to update generator

• Mode collapse: generator models only a small sub-
population, concentrating on a few data distribution 
modes.

• Difficult to assess performance, when are generated 
data good enough?
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Mode collapse (Metz et al, 2016)Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture8.md


Improving GANS

• Standard GANS compare 
real and fake distributions 
with Jensen-Shannon 
Divergence, “vertically”

• Wasserstein-GAN (Arjovsky 
et al, 2017) compares 
“horizontally” with 
Wasserstein-1 distance 
(a.k.a. Earth Movers 
distance) 

• Substantially improves 
vanishing gradient and 
mode collapse problems!
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(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3
https://arxiv.org/abs/1701.07875v3


WGAN Examples 88

(Arjovsky et al, 2017)

https://arxiv.org/abs/1701.07875v3


Scaling Up 89

Progressive GAN



Scaling Up 90

BigGAN

StyleGAN v2



Applications: Image-to-Image Translation with CycleGAN 91

• 𝑝(𝑧) doesn’t have to be random noise

• CycleGAN uses cycle-consistency loss in addition to GAN loss
– Translating from AàBàA should be consistent with original A



Applications: Text-to-Image Synthesis with StackGAN 92



Generative Models in Physics 93

• Often studied for fast approximate simulation, 
simulation-based inference, optimization, …

1801.090702005.05334

https://arxiv.org/abs/1801.09070
https://arxiv.org/abs/2005.05334

