Introduction to Machine Learning:

Lecture 5 – Deep Generative Models

TRISEP Summer School July 8-12, 2024

• Lecture 1 – Machine Learning Fundamentals

• Lecture 2 – Intro to Neural Networks

• Lecture 3 – Intro to Deep Learning

• Lecture 4 – Intro to Unsupervised Learning

• Lecture 5 – Intro to Deep Generative Models

Modeling Data and Meaningful Degrees of Freedom

How can we find the "meaningful degrees of freedom" in the data?

Autoencoders

• Map a space to itself through a compression

$$
x \to z \to \hat{x}
$$

- **Encoder**: Map from data to a lower dim. latent space
	- Neural network $f_{\theta}(x)$ with parameters θ
- **Decoder**: Map from latent space back to data space
	- Neural network $g_{\psi}(z)$ with parameters ψ

Autoencoder Mappings

Original space $\mathscr X$

- Latent space is of lower dimension than data
- Model must learn a "good" parametrization and capture dependencies between component

Autoencoder Loss

$$
L(\theta, \psi) = \frac{1}{N} \sum_{n} ||x_n - g_{\psi}(f_{\theta}(x_n))||^2
$$

- **Loss**: mean *reconstruction loss* (MSE) between data and encoded-decoded data
- Min. over params. of encoder (θ) and decoder (ψ) .

Can We Generate Data with Decoder?

• Can we sample in latent space and decode to generate data?

- [What dist](https://fleuret.org/dlc/)ribution to sample from in latent space?
	- Try Gaussian with mean and variance from data

• Don't know the right latent space density

• Autoencoders learn the latent space, but we don't know what is the latent space distribution

- Autoencoder prescribes a deterministic relationship between data space and latent space
- One set of "meaningful degrees of freedom" can only describe one data space point

Generative Models

A generative model is a probabilistic model q that can be used as a simulator of the data.

Goal: generate synthetic, realistic high-dimension data

 $x \sim q(x; \theta)$

that is as close as possible to the unknown data distribution $p(x)$ for which we have empirical samples.

i.e. want to recreate the raw data distribution (such as the distribution of natural images).

- Generative models aim to:
	- Learn a distribution $p(x)$ that explains the data
	- Draw samples of plausible data points

- Explicit Models
	- Can evaluate the density $p(x)$ of a data point x
- Implicit Models
	- Can only sample $p(x)$, but not evaluate density

Variational Autoencoders

• Learn a mapping from corrupted data space \mathcal{X} back to original data space

$$
-\mathrm{Mapping}\ \phi_w(\widetilde{X})=\mathcal{X}
$$

 $-\phi_w$ will be a neural network with parameters w

 \bullet Loss:

$$
L = \frac{1}{N} \sum_{n} ||x_n - \phi_w(x_n + \epsilon_n)||
$$

Denoising Autoencoders Examples

Denoising Autoencoders Examples

- **Autoencoder lea** the average beha
- What if we care these variations?
- Can we add a no variation in the autoencoder?

Autoencoder 16

Original space \mathscr{X}

Variational Autoencoder and the state of the state of

Original space \mathscr{X}

Variational Autoencoder and the set of the set

Original space $\mathscr X$

Latent Variable Models 19

- Observed random variable x depends on unobserved latent random variable
- Joint probability: $p(x, z) = p(x|z)p(z)$
- $p(x|z)$ is stochastic generation process from $z \to x$

From Deterministic to Probabilistic Autoencoder

• Probabilistic relationship between data and latents

$$
x, z \sim p(x, z) = p(x|z)p(z)
$$

• Autoencoding

$$
x \to q(z|x) \quad \xrightarrow{\text{sample}} \quad z \quad \to p(x|z)
$$

- **Encoder:** Learn what latents can produced data: $q(z|x)$
- **Decoder:** Learn what data is produced by latent: $p(x|z)$

Variational Autoencoder

• Close-by points must decode to similar images

Image credit: L. Heinrich

How do we design Encoder and Decoder

- Classification / regression models make single prediction How to model a conditional density $p(a|b)$?
- Assume a known form of density, e.g. normal $p(a|b) = \mathcal{N}(a; \mu(b), \sigma(b))$
	- Parameters of density depend on conditioned variable
- Use neural network to model density parameters

() () (| = !) (| = ") (|)(!) (!)

• Typical encoder maps input x to "average" point in latent space

 $f(x) = \mu(x)$

• A VAE Encoder has two outputs: mean & variance function

$$
f_{\boldsymbol{\psi}}(\boldsymbol{x}) = \{\mu_{\boldsymbol{\psi}}(\boldsymbol{x}), \sigma_{\boldsymbol{\psi}}^2(\boldsymbol{x})\} \qquad \text{where parameters of the NN}
$$

• A VAE Encoder has two outputs: mean & variance function

 $f_{\psi}(x) = {\mu_{\psi}(x), \sigma_{\psi}^2(x)}$ ψ are parameters of the NN

What is the probability of a point in latent space?

 $p_{\psi}(z|x) = N(z | \mu_{\psi}(x), \sigma_{\psi}^{2}(x))$ Could choose different density Gaussian is easiest

But for training:

How do we take a derivative through a randomly sampled num

How do we know the dependence on the parameters?

- Given $x \sim p(x|\theta)$
- Sometimes, we can rewrite x as a function of the parameters and a simpler distribution without parameter dependence

$$
x = g(\epsilon, \theta) \qquad \epsilon \sim p(\epsilon)
$$

• Example:

 $x \sim N(x|\mu, \sigma) \rightarrow x = \sigma * \epsilon + \mu$ with $\epsilon \sim N(0,1)$

• A VAE Encoder has two outputs: mean & variance function

$$
f_{\psi}(x) = {\mu_{\psi}(x), \sigma_{\psi}^{2}(x)}
$$
 where ψ are parameters of the NN

What is the probability of a point in latent space?

$$
p_{\psi}(z|x) = N(z | \mu_{\psi}(x), \sigma_{\psi}^{2}(x))
$$
 Could choose different density Gaussian is easiest

• How do we draw a sample in latent space?

• Same as autoencoder

$$
g_{\theta}(z) \equiv \mu_{\theta}(z)
$$

 θ are parameters of the NN

• Likelihood of an observation x $p_{\theta}(x|z) = N(x | \mu_{\theta}(z), I)$

• Same as autoencoder

$$
g_{\theta}(z) \equiv \mu_{\theta}(z)
$$

 θ are parameters of the NN

• Likelihood of an observation x $p_{\theta}(x|z) = N(x | \mu_{\theta}(z), I)$

• "**Reconstruction Loss**": Maximum likelihood

 $L_{reco} = \mathbb{E}_{z \sim q(z|x)} [\log p(x|z)]$

• Same as autoencoder

$$
g_{\theta}(z) \equiv \mu_{\theta}(z)
$$

 θ are parameters of the NN

• Likelihood of an observation x $p_{\theta}(x|z) = N(x | \mu_{\theta}(z), I)$

• "**Reconstruction Loss**": Maximum likelihood

$$
L_{reco} = \mathbb{E}_{z \sim q(z|x)} [\log p(x|z)] \approx \frac{1}{N} \sum_{z_i \sim q(z|x)} \log N(x | g_{\theta}(z_i), I)
$$

• Same as autoencoder

$$
g_{\theta}(z) \equiv \mu_{\theta}(z)
$$

 θ are parameters of the NN

• Likelihood of an observation x $p_{\theta}(x|z) = N(x | \mu_{\theta}(z), I)$

• "**Reconstruction Loss**": Maximum likelihood

$$
L_{reco} = \mathbb{E}_{z \sim q(z|x)} [\log p(x|z)] \approx -\frac{1}{N} \sum_{z_i \sim q(z|x)} (x - g_{\theta}(z_i))^2
$$

Same as the autoencoder loss

Variational Autoencoder Training Loss

• How do we make sure system doesn't collapse to an autoencoder (i.e. VAE encoder only predicts mean)?

Variational Autoencoder Training Loss

- How do we make sure system doesn't collapse to an autoencoder (i.e. VAE encoder only predicts mean)?
- Use prior $p(z)$ for the latent space distribution, **need to ensure the encoder is consistent with prior**

Variational Autoencoder Training Loss

• Constrain difference between distributions with Kullback-Leibler divergence

$$
D_{KL}[q(z|x)|p(z)] = \mathbb{E}_{q(Z|X)}\left[\log \frac{q(z|x)}{p(z)}\right] = \int q(z|x) \log \frac{q(z|x)}{p(z)} dz
$$

 $-D_{KL}[q|p] \ge 0$ and is only 0 when $q = p$

Variational Autoencoder Training Loss

• Constrain difference between distributions with **Kullback–Leibler divergence**

$$
D_{KL}[q(z|x)|p(z)] = \mathbb{E}_{q(z|x)}\left[\log \frac{q(z|x)}{p(z)}\right] = \int q(z|x) \log \frac{q(z|x)}{p(z)} dz
$$

• VAE full objective max $\overline{\theta}$, $\overline{\psi}$ $L(\theta, \psi) = \max$ $\max_{\theta,\psi} \left[\mathbb{E}_{q_{\bm{\psi}}(Z|\mathcal{X})}[\log p_{\theta}(x|z)] - D_{KL}[q_{\bm{\psi}}(z|x)|p(z)] \right]$ **Reconstruction Loss Regularization of Encoder**

Examples

Data: MNIST data set of hand-written digits

Examples

Design of new molecules with desired chemical properties. (Gomez-Bombarelli et al, 2016)

What have we learned?

- In generative modeling, want to learn the lower dimensional degrees of freedom that describe the features of the data
- "Degrees of freedom" are modeled with a latent distribution (kept simple for convenience) and complex neural network mappings
- Need to think about **probabilistic systems**
- Design loss around this probabilistic model

The Zoo of Generative Models...

Generative Adversarial Networks (GAN)

Goodfell

Generator creates data from noise, trained to Discriminator that classifies data as real or fa

Generative Adversarial Networks (GAN)

Goodfell

Generator creates data from noise, trained to Discriminator that classifies data as real or fa

Shirbokov, **MK**, et al., NeurIPS **33**, 14650-14662 (2020)

Event Generation with Normalizing Flows

Diffusion Models

Iteratively add noise to data, Train model to learn how to denoise step b

Some Final Thoughts

Still Early for Deep Learning, Where Will We be in 25 Years

2012

 $~10$ years

Prompt: Several giant wooly mammoths approach treading through a snowy meadow […] OpenAI Sora

 $~25$ years

Do These Models Know Physics?... Maybe Not Yet

• Deep neural networks are an extremely powerful class of models

• We can express our inductive bias about a system in terms of model design, and can be adapted to a many types of data

• Even beyond classification and regression, deep neural networks allow powerful unsupervised learning and Generative modeling!

Backup

Explicit Density Estimation with Normalizing Flows

Reminder: Calculus Change of Variables

$$
\int f\big(g(x)\big)\frac{\partial g(x)}{\partial x}dx = \int f(u)du \qquad \text{where } u = g(x)
$$

Multivariate: $\int f(g(x)) \left| \det \frac{\partial g(x)}{\partial x} \right|$ dx $dx = \int f(u)du$ where $u = g(x)$

Determinant of Jacobian of the transformation

 \rightarrow Change of volume

Change of Variables in Probability

• If f is continuous, invertible, differentiable, and $x = f^{-1}(z) \equiv \phi(z)$ then

$$
p_x(\mathbf{x}) = p_z(\mathbf{z}) \left| \det \left(\frac{\partial \phi(\mathbf{z})}{\partial \mathbf{z}} \right)^{-1} \right| \quad \text{where } \mathbf{x} = \phi(\mathbf{z})
$$

Change of Variables with Neural Networks $\frac{1}{58}$

• If f is continuous, invertible, differentiable, and $x = f^{-1}(z) \equiv \phi(z)$ then

$$
p_{x}(x) = p_{z}(z) \left| \det \left(\frac{\partial \phi(z)}{dz} \right)^{-1} \right| \quad \text{where } x = \phi(z)
$$

- $x =$ data we want to model, $z =$ known noise
- $\phi_{\theta}(z)$ will be a neural network with parameters θ – Must be continuous, invertible, differentiable
- Output of ϕ is a potential sample x
	- $-$ **Learn the right** ϕ : adjust weights θ to maximize data probability (formula above)

Change of Variables with Neural Networks $\frac{1}{59}$

• If f is continuous, invertible, differentiable, and $x = f^{-1}(z) \equiv \phi(z)$ then

$$
p_{x}(x) = p_{z}(z) \left| \det \left(\frac{\partial \phi(z)}{dz} \right)^{-1} \right| \text{ where } x = \phi(z)
$$

- $x =$ data we want to model, $z =$ known noise
	- $\phi^{-1}(x)$ inverse - Input = a sample of noise \iff - Input = a sample X $-$ Output $=$ a sample of noise $\phi(\mathbf{z})$ neural network $-$ Output = a sample of X
- Calculate the probability of a sample using the formula above

Normalizing Flows Training

• **Learn** θ with maximum likelihood

$$
\max_{\theta} p(x) = \max_{\theta} p_{z} \big(\phi_{\theta}^{-1}(x) \big) \left| \det \left(\frac{\partial \phi_{\theta}^{-1}(x)}{dx} \right) \right|
$$

- Gradient descent on θ
- Find transformation s.t. data is most likely
- **Benefits** once trained
	- Can evaluate $p(x)$ for any point X
	- Can generate "new" data points
		- Sample noise: $z \sim p(z)$
		- Transform: $\phi(z) = x$

Example Normalizing Flow: Real NVP 66

- Data vector $x =$ $\overline{x_1}$ x_2
- **Transformation**

Functions f() and g() are neural networks

Jacobian is

lower triangular

$$
\phi(z): \qquad \binom{x_1}{x_2} = \binom{\phi_1(z)}{\phi_2(z)} = \binom{z_1}{z_2 * f(z_1) + g(z_1)}
$$

$$
\phi^{-1}(x): \qquad \binom{Z_1}{Z_2} = \binom{\phi_1^{-1}(x)}{\phi_2^{-1}(x)} = \binom{x_1}{(x_2 - g(x_1))/f(x_1)}
$$

• Determinant:

$$
\det\left(\frac{\partial \phi(z)}{dz}\right) = \det\left(\frac{\partial \phi_2(z)}{dz_1}\right) \quad f(z_1) = f(z_2)
$$

Example Normalizing flow

Applications: Sampling in Lattice QCD

GANS

Another Way To Do Generative Modeling…

- Formulate as a two player game
- One player tries to output data that looks as real as possible
- Another player tries to compare real and fake data

- In this case we need:
	- 1. A *generator* that can produce samples
	- 2. A measure of *not too far from the real data*

Generative Adversarial Network (GAN)

Goodfello

• **Generator network** $g_{\theta}(z)$ with parameters θ – Map sample from known $p(z)$ to sample in data s

$$
x = g_{\theta}(z) \quad z \sim p(z)
$$

– We don't know what the generated distribution p but we can sample from it \rightarrow *Implicit Model*

Generative Adversarial Network (GAN)

Generator network $g_{\theta}(z)$ with parameters θ

– Map sample from known $p(z)$ to sample in data spac

Goodfello

$$
x = g_{\theta}(z) \quad z \sim p(z)
$$

- We don't know what the generated distribution $p_{\theta}(x)$ but we can sample from it \rightarrow *Implicit Model*
- **Discriminator Network** $d_{\phi}(x)$ with parameters ϕ
	- Classifier trained to distinguish between real and fake
	- Classifier is learning to predict $p(y = real | x)$
	- This classifier is our measure of *not too far from the real end*
GAN Setup

- 6 [Generat](https://fleuret.org/dlc/)or's goal is to produce *fake* data that trick discriminator to think it is *real* data
- Discriminator wants to miss-classify data as real or as little as possible
- The setup is *adversarial* because the two network opposing objectives

• Data

– Real data samples: $\{x_i, y_i = 1\}$

– Fake data samples: $\{\tilde{x}_i = g_\theta(z_i), \tilde{y}_i = 0\}$ with: $z_i \sim p(z)$

• Data

– Real data samples: $\{x_i, y_i = 1\}$

– Fake data samples: $\{\tilde{x}_i = g_\theta(z_i), \tilde{y}_i = 0\}$ with: $z_i \sim p(z)$

• For a fixed generator, can train discriminator by minimizing the cross entropy

$$
L(\phi) = -\frac{1}{2N} \sum_{i=1}^{N} \left[y_i \log d_{\phi}(x_i) + (1 - \tilde{y}_i) \log (1 - d_{\phi}(\tilde{x}_i)) \right]
$$

• Data

– Real data samples: $\{x_i, y_i = 1\}$

– Fake data samples: $\{\tilde{x}_i = g_\theta(z_i), \tilde{y}_i = 0\}$ with: $z_i \sim p(z)$

• For a fixed generator, can train discriminator by minimizing the cross entropy

$$
L(\phi) = -\frac{1}{2N} \sum_{i=1}^{N} \left[y_i \log d_{\phi}(x_i) + (1 - \tilde{y}_i) \log (1 - d_{\phi}(\tilde{x}_i)) \right]
$$

$$
= -\frac{1}{2N} \sum_{i=1}^{N} \left[\log d_{\phi}(x_i) + \log(1 - d_{\phi}(g_{\theta}(z_i))) \right]
$$

- Data
	- Real data samples: $\{x_i, y_i = 1\}$
	- Fake data samples: $\{\tilde{x}_i = g_\theta(z_i), \tilde{y}_i = 0\}$ with: $z_i \sim p(z)$
- For a fixed generator, can train discriminator by minimizing the cross entropy

$$
L(\phi) = -\frac{1}{2N} \sum_{i=1}^{N} \left[y_i \log d_{\phi}(x_i) + (1 - \tilde{y}_i) \log (1 - d_{\phi}(\tilde{x}_i)) \right]
$$

$$
= -\frac{1}{2N} \sum_{i=1}^{N} \left[\log d_{\phi}(x_i) + \log(1 - d_{\phi}(g_{\theta}(z_i))) \right]
$$

=
$$
-\mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\log d_{\phi}(x) \right] - \mathbb{E}_{z \sim p(z)} \left[\log(1 - d_{\phi}(g_{\theta}(z))) \right]
$$

• However, generator isn't fixed... have to train it!

- However, generator isn't fixed... have to train it!
- Consider objective as a *value function* of ϕ and θ

$$
V(\phi,\theta) = \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\log d_{\phi}(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log(1 - d_{\phi}(g_{\theta}(z)) \right) \right]
$$

- However, generator isn't fixed... have to train it!
- Consider objective as a *value function* of ϕ and θ

$$
V(\phi,\theta) = \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\log d_{\phi}(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log(1 - d_{\phi}(g_{\theta}(z))) \right]
$$

- For fixed generator, $V(\phi, \theta)$ is high when discriminator is good, i.e. when generator is not producing good fakes
- For a perfect discriminator, a good generator will confuse discriminator and $V(\phi, \theta)$ will be low

- However, generator isn't fixed... have to train it!
- Consider objective as a *value function* of ϕ and θ

$$
V(\phi,\theta) = \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\log d_{\phi}(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log(1 - d_{\phi}(g_{\theta}(z))) \right]
$$

- For fixed generator, $V(\phi, \theta)$ is high when discriminator is good, i.e. when generator is not producing good fakes
- For a perfect discriminator, a good generator will confuse discriminator and $V(\phi, \theta)$ will be low
- So our optimization goal becomes:

$$
\theta^* = \arg\min_{\theta} \max_{\phi} V(\phi, \theta)
$$

- However, generator isn't fixed... have to train it!
- Consider objective as a *value function* of ϕ and θ

$$
V(\phi,\theta) = \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\log d_{\phi}(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log(1 - d_{\phi}(g_{\theta}(z))) \right]
$$

- For fixed generator, $V(\phi, \theta)$ is high when discriminator is good, i.e. when generator is not producing good fakes
- For a perfect discriminator, a good generator will confuse discriminator and $V(\phi, \theta)$ will be low
- So our optimization goal becomes:

$$
\theta^* = \arg\min_{\theta} \max_{\phi} V(\phi, \theta)
$$

NOTE: can prove that minimax solution corresponds to generator that perfectly reproduces data distribution

 $q_{\theta^*}(x) = p_{data}(x)$

GAN Training

Alternating Gradient descent to solve the min-max proor

$$
\theta \leftarrow \theta - \gamma \nabla_{\theta} V(\phi, \theta) = \theta - \gamma \frac{\partial V}{\partial d} \frac{\partial (d_{\phi})}{\partial g} \frac{\partial g_{\theta}}{\partial \theta}
$$

$$
\phi \leftarrow \phi - \gamma \nabla_{\phi} V(\phi, \theta) = \phi - \gamma \frac{\partial V}{\partial d} \frac{d(d_{\phi})}{d \phi}
$$

For each θ step, take k steps in ϕ to keep discriminator optimal

GAN Training Example

Pink lines from fake samples represent **gradients** for generator. This sample needs to move upper right to decrease generator's loss.

GAN Lab Demo

Examples

Goodfellow et. al., 2014

Radford et al, 2015

Challenges

- **Oscillations without convergence**: unlike standa minimization, alternating stochastic gradient dese has no guarantee of convergence.
- **Vanishing gradients**: if classifier is too good, value function saturates \rightarrow no gradient to update generators.
- **[Mod](https://glouppe.github.io/info8010-deep-learning/?p=lecture8.md)e collapse**: generator models only a small su
- population, concentrating on a few data distribut modes.
- **Difficult to assess performance**, when are generated data good enough?

Slide credit: G. Louppe Collapse (Metz et al, 2016)

Improv[ing G](https://arxiv.org/abs/1701.07875v3)ANS

- Standard GANS compare real and fake distributions with Jensen-Shannon Divergence, "vertically"
- Wasserstein-GAN (Arjovsky
et al, 2017) compares
"horizontally" with Wasserstein-1 distance (a.k.a. Earth Movers distance)
- Substantially improves *vanishing gradient* and *mode collapse* problems!

Figure 2: Optimal discriminator and critic when learning As we can see, the discriminator of a minimax GAN sate gradients. Our WGAN critic provides very clean gradients

WGAN Examples

(Arjovsky et al, 2017)

Scaling Up 89

Progressive GAN

(Karras et al, 2017)

Scaling Up $\frac{1}{90}$

StyleGAN v2

(Karras et al, 2019)

(Brock et al, 2018)

Applications: Image-to-Image Translation with CycleGAN $_{91}$

- $p(z)$ doesn't have to be random noise
- CycleGAN uses *cycle-consistency loss* in addition to GAN loss – Translating from $A\rightarrow B\rightarrow A$ should be consistent with original A

Fig. 3: Example results by our StackGAN-v1, GAWWN [29], and GAN-INT-CLS [31] conditioned on text descriptions from CUB test set.

 $(Zhang et al, 2017)$

Generative Models in Physics

Often studied for fast approximate simula simulation-based inference, optimization,

2005.05334 1801.09070