

Project #3: GANDALF

Cosmogenic Activation in Si, Ge and NaI

Ry Cyna, Gulliver Milton, Beymar Quenallata, and Owen **Stanley**

χ \boldsymbol{N} N Project #3: **Germanium NAI silicoN Dark** matter And OvBBLess Fun Cosmogenic Activation in Si, Ge and Nal Ry Cyna, Gulliver Milton, Beymar Quenallata, and Owen **Stanley**

Cosmic rays

Cosmic rays hitting the upper atmosphere produces a large number of different neutral and charged particles. These particles results in the production of different phenomena

- Aurora,
- bitflip in CPU & RAM,
- **cosmogenic production of radionuclides.**

Also see Daniel Wenz & Jeanne Wilson - lectures

https://en.wikipedia.org/wiki/Radiation_hardening [A physical explanation for Aurora, W.Qiang](https://www.scirp.org/journal/paperinformation?paperid=123131)

Cosmogenic Backgrounds

- Muons can interact with material in the detector producing n,p, radioactive isotopes
- Materials above ground experience higher activation rates
	- · Source material
	- During construction
	- In transit

Isotopes produced with short (<1year) half-lives can be mitigated by allowing materials to 'cool' underground

- In-situ cosmogenic production
	- Can veto short-lived isotopes with time-cut after muon

TRISEP 2024 Jeanne Wilson

Underground laboratories

- . Why are muons so important to shield?
	- The average μ energy of about 4 GeV at sea level shifts to higher energies for the remaining μ s when going underground
	- Binding energy nucleons ~8 MeV per nucleon

 μ induced spallation and hadronic shower 2 lead to neutrons and material activation!

- Activation of detector materials lead to a whole range of different isotopes:
- 3H, 39Ar, 42Ar, 60Co, 68Ge, 127Xe, PTFE (C₂F_A) $(^{19}F \rightarrow ^{17}N \rightarrow ^{17}O + B \rightarrow ^{16}O + n)$

Underground laboratories

Underground laboratories

- Why are muons so important to shield?
	- The average μ energy of about 4 GeV at sea level shifts to higher energies for the remaining μ s when going underground
	- Binding energy nucleons ~8 MeV per nucleon

 μ induced spallation and hadronic shower lead to neutrons and material activation!

Image of nudat database nuclide chart https://www.nndc.bnl.gov/nudat3/

Which isotopes due to you expect to be harmful in case of copper? Do you know any of these isotopes from your lab courses?

Why do we care?

DM and 0vββ experiments try to minimise backgrounds (intrinsic and extrinsic). ● Produces intrinsic background within

- our target.
	- Can't be physically separated (ie, via shielding) or removed from material
- **Result in increased rate:**
	- Puts more strain on the DAQ system
	- Events may lie within our ROI (region of
		- interest) Typically ~keV for DM (~MeV 0vββ)
- Long lived. (Months Years)
- Limits transportation, characterization methods.

Figure 2: The transportation shield inside a shipping container

Figure 3: The specific activities of cosmogenic radionuclides in germanium at different stages of the fabrication and transportation processes.

• Grow/Source target material with already low backgrounds

TABLE 1 Representative ICP-MS results of raw and purified powders vs. Astro-grade powder's purity. Uncertainties are given at 90% C.L, and upper limits are given
at 95% C.L.

[Purification of NaI powder for COSINE-200, Keon-Ah Shin](https://indico.sanfordlab.org/event/29/contributions/447/attachments/354/862/Purification%20of%20NaI%20powder%20for%20COSINE-200_LRT.pdf) [Mass production of ultra-pure NaI powder for COSINE-200](https://arxiv.org/abs/2301.05400)

- **Grow/Source target material with** already low backgrounds
- Take care of how the material gets processed
- Choose low background target material dependant
- Shield the experiment
	- Maybe with a mountain ? or in the earth

- Grow/Source target material with already low backgrounds **Na**
- Take care of how the material gets transported
- Choose low background target material dependant
- Shield the experiment
	- Maybe with a mountain ? or in the earth

Cilicon

- **Grow/Source target material with** already low backgrounds
- Take care of how the material gets transported
- Choose low background target material dependant
- Shield the experiment
	- Maybe with a mountain ? or in the earth

Impact on Dark Matter (based only in energy)

- Nuclear recoil energy
	- \sim 1-100 keV

Impact on DM searches

 \sim 1-100 keV

● Si

Impact on DM searches

- \sim 1-100 keV
- NaI

Impact on DM searches

- \sim 1-100 keV
- Ge

Impact on $0\nu\beta\beta$ searches

Ge-76 can undergo $\beta\beta$ decay

Impact on $0\nu\beta\beta$ searches

$Q_{\beta\beta}$ value in Germanium is 2039 keV

Impact on $0\nu\beta\beta$ searches

$Q_{\beta\beta}$ value in Germanium is 2039 keV

Cosmic Ray Flux

● We approximate all cosmic ray flux as muon flux

● Modeled overburden flux as an exponential function

Modeling Cosmogenic Activation

- Activation rate:
- Approximate a constant cross section for large energies $\rightarrow R \propto \phi$
- Benchmarking assumptions:
	- 1. Detector crystal is grown/assembled, transported, and tested for 120 day (⅓ yr) - activation time
	- 2. Cooldown time occurs for 1 yr at 6 km w.e. (SNOLAB depth)

Proton production of Co-60 in nat. Ge

Comparing Results to Detector Rates

Simulated cosmogenic activities at various overburden during assembly. (120 days of assembly, 30 days travel at sea level, 365 day cool down at 6 km w.e.)

- dru = events/kg/keV/day
- Across various experiments (SuperCDMS, EDELWEISS, COSINE, SABRE) cosmogenic activation contributes O(0.1) dru
- Total backgrounds O(1) dru
- Cosmogenic background reduction is limited by travel

Code of Conduct

Purpose

• This policy aims to foster a community based on the principles of equity, diversity, and inclusivity to best support the scientific research carried out by the Collaboration

Key points:

- Professional Conduct
	- Discrimination
	- Inappropriate behaviour
- Ombudsperson

Code of Conduct

Professional Conduct

- All individuals are expected to treat each other with respect and professionalism
- Collaborators are expected to refrain from behaviours and actions that may lead to discrimination, harassment, or retaliation:
	- Ability status
	- Age
	- Educational background
	- Gender, gender identity, or gender expression
	- Political affiliation
	- Race, nationality, or ethnicity
	- Religious or philosophical beliefs
	- Sexual orientation or marital status

Code of Conduct

Ombudsperson

- The Ombudsperson(s) serves as a confidential point of contact for informal exploration of complaints and possible unofficial resolution of any issues
- 2 spokespersons, one early career (graduate student or postdoctoral researcher), and one faculty equivalent member. Efforts should be taken to vary the institution and gender identity of the candidates.
- The Ombudsperson(s) can either advise the complainant to address the situation by attempting to facilitate a conversation between those involved (with the permission of the complainant), provide information, or refer the complainant to appropriate resources to escalate the situation.

Summary

- Cosmogenic Backgrounds in 0vBB in Ge searches are dominated by Co-60
- Main cosmogenic backgrounds in
	- Ge are H-3, Co-60, Ge-68
	- Si are H-3, Na-22
	- \circ Nal(Ti) are H-3, Na-22, Cd-109 (after cool time > 1 yr)
- Constructing detector with overburden can reduce decay rate by an order of magnitude
- Future calculations should be done using ACTIVIA and GEANT4 to improve exposure accuracy.

Bonus Slides

Cosmogenic Activation Systematics

Neutron Flux

Cosmic Ray Production Breakup

TABLE X. Final estimates of the radioisotope production rates in silicon exposed to cosmogenic particles at sea level.

Cosmogenically Activated Ge Decay Rate Component at Start of Experiment

Cosmogenically Activated Si Decay Rate Component Decay Rate at Start of Experiment

32

Cosmogenically Activated NaI(Ti) Decay Rate Component at Start of Experiment

Cosmogenic Backgrounds

- Muons can interact with material in the detector producing n,p, radioactive isotopes
- Materials above ground experience higher activation rates
	- Source material
	- **During construction** \bullet
	- In transit

As was seen earlier in the week

Isotopes produced with short (<1year) half-lives can be mitigated by allowing materials to 'cool' underground

- In-situ cosmogenic production
	- Can veto short-lived isotopes with time-cut after muon \bullet

Why the Search for Dark Matter Depends on Ancient Shipwrecks

Errant particles from everyday radioactive materials are a major obstacle for particle physicists. The solution? Lead from the bottom of the sea.

PLANET EARTH

Particle Physics Experiment Will Use Ancient Lead **From a Roman Shipwreck**

Discoblog By Smriti Rao Apr 16, 2010 5:28 PM | Last Updated Jul 13, 2023 11:16 AM

Ancient Lead Can Help **Experimental Physics**

NEWS PROVIDED BY

The National University of Science and Technology MISiS → Jun 21, 2019, 05:00 ET

Isometric Transition: Decay from excited state $X^m \rightarrow X + y$

Electron Capture: Energy release by absorption

$$
^{40}_{19}K + ^{0}_{-1}e \rightarrow ^{40}_{18}Ar
$$

Beta decay: Results in production of electron/positron

Production process

Cosmic rays, largely result in the production of muons, neutrons and protons (amongst others).

Neutrons and Protons:
- Produces spallation within nucleons

Muons: - Can directly produce spallation or Induce spallation

Results in radiogenic particles.

 3 H, 14 C, 36 Cl, 32 Si, 10 Be and 7 Be

COSINE Background

https://arxiv.org/pdf/1804.05167

SuperCDMS Background

$arXiv:1610.00006v1$ and 40

Comparing Results to Detector Rates

- dru = events/kg/keV/day
- Across various experiments (SuperCDMS, EDELWEISS, COSINE, SABRE) cosmogenic activation contributes O(0.1) dru

Simulated cosmogenic activities at various overburden during assembly. Travel is not considered

⁻ Total backgrounds O(1) dru

Equations used to simulate decay rate

Activation rate:

$$
R = Ae^{-\alpha x}, R(0) = R_0 = A
$$

Decay rate:

 $R/R_0 = e^{-\alpha x_a}(1 - e^{-t_a/\tau})e^{-(t-t_a)/\tau} + e^{-\alpha x_t}(1 - e^{-t_t/\tau})e^{-(t-t_t)/\tau} + e^{-\alpha x_c}(1 - e^{-t_c/\tau})e^{-(t-t_c)\tau}$

Table 1: Fabrication and transportation processes of germanium materials and detectors.

Figure 2: The transportation shield inside a shipping container.

https://arxiv.org/pdf/2312.06127

Project #3: **OvBB And Light Recoils Observations w/ Ge, Si, Nal** Cosmogenic Activation in Si, Ge and Nal

Ry Cyna, Gulliver Milton, Beymar Quenallata, and Owen **Stanley**