Lande Lande

HYPER-KAMIOKANDE

Xiaoyue Li, for the Hyper-Kamiokande Collaboration

xiaoyuel@triumf.ca

NNN 2025, Sudbury, Canada

October 1, 2025

HYPER-KAMIOKANDE OVERVIEW

Hyper-Kamiokande

Mt. Noguchi-Goro 2,924 m

Mt. Nijyugo ~600 m overburden Intermediate Water
Cherenkov Detector (IWCD)
850 m from target
(1.5°-4° off-axis)

ND280 (2.5° off-axis)

Near Detectors

1,700 m below sea level

Neutrino Beam

295 km

HYPER-K NEUTRINO BEAM

- Off-axis beam at 2.5°
- ▶ 30 GeV proton beam will be upgraded to 1.3 MW for Hyper-K operation
 - Upgrade to reduce the time between beam spills from 1 spill every 2.48s → 1.36s
 → 1.28s → 1.16s
 - Improve stability to increase the number of protons per spill
- Expected to collect 2.7 × 10²¹ POT per year

- Target for 1.3 MW developed and ready for installation at J-PARC in summer 2026
- Upgrades are needed for 1.3 MW operation, such as
 - Increase cooling capacity
 - Improving maintainability under radioactive environment

Upgrade technical design report

INTERMEDIATE WATER CHERENKOV DETECTOR (IWCD)

- Located 850m from the neutrino source
- Detector can move vertically in 50m deep pit, position controlled by water level
- 300 ton mass in instrumented volume
- Multi-PMT photosensors with good spatial and timing resolution (<1 ns) containing 19 8-cm diameter PMTs and integrated electronics

INTERMEDIATE WATER CHERENKOV DETECTOR (IWCD)

 $E_{\nu}\left(GeV\right)$

0.5

- > Spans 1.5° to 4° off-axis
- Measurements with the "PRISM" method at different off-axis angles
 - "Mono"-energetic spectra to study neutrinonucleus scattering
 - Predict spectra after oscillations at HK detector

INTERMEDIATE WATER CHERENKOV DETECTOR (IWCD)

- > IWCD can measure the 1% intrinsic beam ν_e / $\bar{\nu}_e$
 - > Self-shield against entering gammas, a dominant background for ND280 ν_e / $\bar{\nu}_e$ measurement
 - > IWCD can improve the constraint on $(\sigma_{\nu_{\mu}}/\sigma_{\nu_{e}})/(\sigma_{\bar{\nu}_{\mu}}/\sigma_{\bar{\nu}_{e}})$, which is currently estimated by theory at ~5%

Hyper-Kamiokande ~600 m overburden 258 kton Super-Kamiokande 1000 m overburden 50 kton NINSEREZE DE LA COMP 68 m

- ▶ 600 m below Nijyugo-yama near Kamioka Town
- ▶ 8.4 x in fiducial mass compared to Super-K

- ▶ 600 m below Nijyugo-yama near Kamioka Town
- ▶ 8 x increase in fiducial mass compared to Super-K
- Cavern excavation completed in July, 2025
- Tank lining construction has started

- ▶ 600 m below Nijyugo-yama near Kamioka Town
- ▶ 8 x increase in fiducial mass compared to Super-K
- Cavern excavation completed in July, 2025
 - The HK cavern is one of the largest man-made spaces ever excavated in bedrock

CAVERN EXCAVATION

Excavation work began in May 2021

CAVERN EXCAVATION

July 13, 2023

- 20,000 20-inch Box&Line PMTs
 - ▶ 20% photocathode coverage
 - X2 quantum efficiency and better charge/timing resolution
- Also 800 multi-PMTs for calibration purposes
 - ▶ 200 mPMTs contain 35 LED light sources each with <1 ns pulse width
- > 3,600 3" PMT+WLS plate in outer detector
- Mass production well underway with over 15,000 PMTs delivered

HYPER-K 10-YEAR PROJECTION

- > Thousands of ν_e and $\bar{\nu}_e$ events after 10 years
- Systematic uncertainties will soon surpass statistical uncertainty

HYPER-K SENSITIVITY

- Discovery of CPV may be possible after a few years of data taking
 - Important to reduce systematic uncertainties!
- lacktriangle Evidence of CPV for over 75% of δ_{CP} values at 3 σ , over 60% of δ_{CP} values at 5 σ
- Hyper-K atmospheric neutrino data is sensitive to mass ordering

HYPER-K SENSITIVITY

HK sensitivity paper

- \blacktriangleright Precision for δ_{CP} in 6°-20° range, depending on true value
- Uncertainty on Δm_{32}^2 reaching ~0.35%

OTHER PHYSICS IN HYPER-K

- Hyper-K is a multi-purpose detector without the beam neutrinos
- Solar neutrino @ Hyper-K
 - > 2σ tension in Δm^2_{21} between solar neutrino experiments and KamLAND
 - Hyper-K will test this to > 4σ after 10 years
- Supernova neutrinos @ Hyper-K
 - > 50k ~ 80k events from a SN at 10 kpc (galactic centre)
 - > 4σ discovery of diffuse SN neutrino background after 10 years
- Further pushes proton decay lifetime limits in benchmark channels

Atmospheric neutrino

Solar neutrino

 $R(\vec{\mathbf{x}}) = \Phi(E_{\nu}) \times \sigma(E_{\nu}, \vec{\mathbf{x}}) \times \epsilon(\vec{\mathbf{x}}) \times P(\nu_A \to \nu_B)$

Detector

efficiency

Oscillation

probability

Neutrino

Cross

section

Neutrino Neutrino

rate at far flux

detector

CHALLENGES OF SYSTEMATIC UNCERTAINTIES

T2K systematics	FHC 1Re	FHC 1Rμ	RHC 1Re	RHC 1Rμ	FHC 1Re1De	FHC/RHC 1Re
Flux-xsec	3.6%	2.1%	4.3%	3.4%	4.9%	4.4%
Detector	3.1%	2.1%	3.9%	1.9%	13.2%	1.1%
All	4.7%	3.0%	5.9%	4.0%	14.1%	4.6%
Improved systematics	FHC 1Re	FHC 1Rμ	RHC 1Re	RHC 1Rμ	FHC 1Re1De	FHC/RHC 1Re
Flux-xsec	1.8%	0.9%	1.6%	0.9%	1.8%	1.9%
Detector	1.1%	0.8%	1.5%	0.7%	4.9%	0.4%
All	2.1%	1.2%	2.2%	1.1%	5.2%	2.0%

- Hyper-K aims to more than halve systematic uncertainties compared to T2K
 - ▶ IWCD helps reduce flux⊗xsec uncertainty
 - $\nu_e(\bar{\nu}_e)$ cross section measurement
 - ightharpoonup Better understanding of the detector is needed ightharpoonup Best if can be test with control samples

- Selecting CCQE events with one electron or muon in the final state
 - Neutrino energy reconstruction in water Cherenkov detectors based on lepton kinematics:

$$E_{\nu}^{rec} = \frac{m_p^2 - \left(m_n - E_b\right)^2 - m_l^2 + 2\left(m_n - E_b\right)E_l}{2\left(m_n - E_b - E_l + p_l\cos\theta\right)}, \text{ where } E_b \text{ is the }$$

nucleon removal energy

- > Selecting CCQE events with one electron or muon in the final state
 - Neutrino energy reconstruction in water Cherenkov detectors based on lepton kinematics:

$$E_{\nu}^{rec} = \frac{m_p^2 - \left(m_n - E_b\right)^2 - m_l^2 + 2\left(m_n - E_b\right)E_l}{2\left(m_n - E_b - E_l + p_l\cos\theta\right)}, \text{ where } E_b \text{ is the nucleon removal energy}$$

Resonant and NC pion production and DIS events can also mix in if the charged pions are below Cherenkov threshold or fake a lepton

- Selecting CCQE events with one electron or muon in the final state
 - Neutrino energy reconstruction in water Cherenkov detectors based on lepton kinematics:

$$E_{\nu}^{rec} = \frac{m_p^2 - \left(m_n - E_b\right)^2 - m_l^2 + 2\left(m_n - E_b\right)E_l}{2\left(m_n - E_b - E_l + p_l\cos\theta\right)}, \text{ where } E_b \text{ is the }$$

nucleon removal energy

- Resonant and NC pion production and DIS events can also mix in if the charged pions are below Cherenkov threshold or fake a lepton
- Multi-nucleon interactions (e.g. 2p-2h) can cause bias in neutrino energy reconstruction

- Selecting CCQE events with one electron or muon in the final state
 - Neutrino energy reconstruction in water Cherenkov detectors based on lepton kinematics:

$$E_{\nu}^{rec} = \frac{m_p^2 - \left(m_n - E_b\right)^2 - m_l^2 + 2\left(m_n - E_b\right)E_l}{2\left(m_n - E_b - E_l + p_l\cos\theta\right)}, \text{ where } E_b \text{ is the}$$

nucleon removal energy

- Resonant and NC pion production and DIS events can also mix in if the charged pions are below Cherenkov threshold or fake a lepton
- Multi-nucleon interactions (e.g. 2p-2h) can cause bias in neutrino energy reconstruction
- Final state interactions (FSI) and secondary interactions (SI) can further obscure event reconstruction

DETECTOR SYSTEMATIC UNCERTAINTY

- The way neutrino energy is reconstructed in water Cherenkov detectors leads to "feed-down" effect
 - ► IWCD can probe this effect with measurements at different off-axis angles and make flux⊗xsec measurement more robust
 - This means understanding the detector is ever more crucial

- Control samples are used to estimated SK detector systematic uncertainties
 - Based on data/MC differences
 - Will not be reduced with increased statistics alone
- Progress on detector calibration
 - Can we test it on actual data? —> Yes! With WCTE

WATER CHERENKOV TEST EXPERIMENT (WCTE)

- Water Cherenkov Test Experiment (WCTE) acts as prototype for IWCD
 - ▶ 93 IWCD mPMTs and 4 Hyper-K mPMTs installed
 - Testbed for water Cherenkov detector systems and new calibration techniques
 - Detector height/diameter is ~1/2 of IWCD
- Departed in CERN T9 (East Hall) beam line from Oct. 2024 to Jun. 2025
 - Pure water and Gd-doped operations
- ▶ Data collected for π^{\pm} , p, e^{\pm} , μ^{\pm} , γ at 0.08 ~ 1.8 GeV/c
- Also opportunity for important reconstruction and physics studies
 - Pion hadronic scattering
 - Muon/electron scattering to probe nuclear effects
 - Study of particle identification techniques and capability with tagged data
 - Neutron production by hadrons in water

Laboratorio Subterráneo

SUMMARY

- Hyper-K is well positioned for operation in 2028
 - Cavern excavation completed in July!
- Wide-ranging physics discoveries to come
 - Discovery of CPV in the lepton sector
 - Precision measurement of neutrino oscillation
 - Neutrino astrophysics & proton decay
 - Lowering systematic uncertainties will be crucial
 - Efforts are underway

22 countries, ~650 members in 2025

THANK YOU FOR YOUR ATTENTION. ANY QUESTIONS?

Relevant posters:

"The Water Cherenkov Test Experiment: Detector and Physics Lessons Towards Hyper-Kamiokande"

"Leveraging Water Cherenkov Detector Technologies for Water Quality Monitoring"

HK PMT ELECTRONICS, COVER, AND OD PMT

PMT electronics
 will be house in
 pressure vessels
 under water

OD PMT and WLS plate

▶ 20" PMT cover

OTHER QA AND INSTALLATION TEST

Mock-up ID, OD PMT installation test

PULSED LIGHT SOURCES IN HYPER-K

- For 200 mPMTs in HK we would replace 5 PMTs with LED units
 - Each of the five LED units will have 7 LEDs with wavelengths ranging from 295 nm to 550 nm,
 - < 1 ns pulse width</p>
 - Same LED driving circuit also used by WCTE mPMTs and beam monitor calibration
- 4,000 collimated light sources to calibrate photon scattering, absorption and reflection
- 3,000 Wide-angle light sources to calibrate PMT timing and angular response calibration

SOLAR NEUTRINOS

- > 100 solar $\nu + e \rightarrow \nu + e$ events per day in Hyper-K
- $ightharpoonup 2\sigma$ tension in Δm^2_{21} between solar neutrino experiments and KamLAND
 - Hyper-K will test this to > 4σ after 10 years
- > Super-K and SNO predict slower "upturn": non -standard interaction in the dense Sun? Light sterile neutrinos?
 - Hyper-K will be able to test it to > 3σ after 10 years

SUPERNOVA NEUTRINOS

- Core collapse supernova (SN) emit neutrinos of flavors
 - Neutrinos carry 99% of the energy
 - ▶ Measure SN neutrino time profile and energy spectrum → SN modelling
 - Hyper-K will detect 50k ~ 80k events from a SN at 10 kpc (galactic centre)
 - Super-K detected 11 neutrinos from SN1087A (51 kpc)
 - Majority of SN neutrinos detected in HK are $\bar{\nu}_e$ inverse beta decays
 - DUNE will detect thousands of events mostly through ν_e CC interactions
 - Hyper-K and DUNE are complimentary
- Diffuse SN neutrino background (DSNB) from all the SN explosions in the Universe → guaranteed steady source of SN neutrinos
 - Cosmic star formation history
 - Expect >4 sigma discovery with 10 years of HK

PROTON DECAY

- GUTs predict proton decay
- Decades of search in Super-K has not returned any positive proton decay signal
 - HK and DUNE will push the limits further

 $p \to K^+ \nu$ event in DUNE

 $p \rightarrow K^+ \nu$ lifetime limit of 1.3×10^{34} years can be set by DUNE with 40 kton fiducial mass and 10 years running

WCTE PHYSICS GOALS (1)

- Study pion interactions in water
 - Absorption, charge exchange, quasi-elastic scattering
- Study $e/\mu/\pi$ PID in a water Cherenkov detector

~500 MeV/c pions produced by neutrino interactions

WCTE PHYSICS GOALS (2)

- Study pion interactions in water
 - ▶ Absorption, charge exchange, quasi-elastic scattering
- Study $e/\mu/\pi$ PID in a water Cherenkov detector
- ightharpoonup Study $e/\mu/\pi^0$ energy reconstruction in a water Cherenkov detector
- Tagged gamma measurements
 - e/γ separation in IWCD
 - Pion photoproduction in water

 $\cos\theta$

Discrepancy between MC in the backward direction

ResNet

Electron signal PID efficiency [%]	_			1 1 1		
al PID e	<u> </u>	•	fiTO	Qun	-	٦
ngis no		F	reliminar	Y		1
		,				
0_	0	200	400 True mor	600 nentum	800	1000

IWCD Gamma Rejection with ML

e efficiency when rejecting 80% of γ

	1-Ring e					
Error source	FHC	RHC	FHC 1 d.e.	FHC/RHC		
SK Detector	2.8	3.8	13.2	1.5		
SK FSI+SI+PN	3.0	2.3	11.4	1.6		
Flux + Xsec (ND unconstrained)	15.1	12.2	12.0	1.2		
Flux + Xsec (ND constrained)	3.2	3.1	4.1	2.7		
Nucleon Removal Energy	7.1	3.7	3.0	3.6		
$\sigma(\nu_e)/\sigma(\overline{\nu}_e)$	2.6	1.5	2.6	3.0		
$NC1\gamma$	1.1	2.6	0.3	1.5		
NC Other	0.2	0.3	1.0	0.2		
$\sin^2 \theta_{23} + \Delta m_{21}^2$	0.5	0.3	0.5	2.0		
$\sin^2 \theta_{13} \text{ PDG2018}$	2.6	2.4	2.6	1.1		
All Systematics	8.8	7.1	18.4	6.0		

WCTE PHYSICS GOALS (3)

- Study pion interactions in water
 - Absorption, charge exchange, quasi-elastic scattering
- Study $e/\mu/\pi$ PID in a water Cherenkov detector
- \blacktriangleright Study $e/\mu/\pi^0$ energy reconstruction in a water Cherenkov detector
- Tagged gamma measurements
 - e/γ separation in IWCD
 - ▶ Pion photoproduction in water
- High momentum measurements
 - e/μ scattering on oxygen
 - ▶ GeV proton detection for dark matter search
 - \blacktriangleright Kaon measurements for proton decay and atmospheric ν_{τ} appearance

Neutrino-nucleus scattering

Electron/muonnucleus scattering

2-body τ decay BR=0.7%:

$$\tau^- \to K^- + \nu_{\tau}$$

3-4 events in the current SK data, 10-20 events for HK

Proton decay $p \to K^+ \nu$ 1.1GeV K^+ stops in the tank

WCTE PHYSICS GOALS (4)

- Gd-phase physics
 - Neutron tagging for neutrino/antineutrino separation
 - Secondary neutron production in water from proton, stopped μ^- and π^\pm
 - Neutron production from 2p-2h in quasielastic scattering
 - Photonuclear reaction with gamma beam
 - 9Li production from π^-
 - Cosmogenic 9Li are a significant background for DSNB search

Neutron production in CCQE interactions in T2K

WCTE TIMELINE

Detector assembly and installation
July 2024 - Oct.
2024

1st detector commissioning Oct. - Nov. 2024

2nd detector commissioning, Mar. 2025 Data taking in pure water
April - May
2025

Data taking in Gd water, May 2025 Decommissioning and disassembly,
June 3, 2025 present

WCTE TIMELINE

20 "bad" mPMTs (ADC corruption problem) in 2024 run are recovered by firmware update -> 83 working IWCD mPMTs

Detector assembly and installation
July 2024 - Oct.
2024

1st detector commissioning Oct. - Nov. 2024

2nd detector commissioning, Mar. 2025 Data taking in pure water
April - May
2025

Data taking in Gd water (0.03%), May 2025

Decommissioning and disassembly, June 3, 2025 - present

Ring structures clearly seen in the small water Cherenkov detector with small "Dwall"!

WCTE TIMELINE

Detector assembly and installation
July 2024 - Oct.
2024

1st detector commissioning Oct. - Nov. 2024

2nd detector commissioning, Mar. 2025 Data taking in pure water
April - May
2025

Data taking in Gd water, May 2025 Decommissioning and disassembly, June 3, 2025 - present

MuTR

MuTL

HODO0 ... F

BEAM DETECTORS - CHARGED PARTICLE

- A series of trigger scintillator detectors, hole counters, aerogel Cherenkov threshold (ACT) detectors, and a TOF detector are used to distinguish charged particles, measure beam momentum, and provide WCTE trigger
 - Refractive index of ACTs ranges from 1.01 to 1.15

BEAM DETECTORS - TAGGED PHOTON

Electrons that undergo
 Bremsstrahlung emit gammas along
 beam direction; gamma energy
 inferred from electron trajectory
 after it is bent by permanent magnet

- Beam momentum is calibrated using time-offlight measurements
- Magnet/hodoscope spectrometer response is calibrated with beam

BEAM DETECTORS - PERFORMANCE

Charged particle separation

The beam detectors have been donated to CERN and could be used for HK-related test beam activities in the future

