The XENON project - · XENON experiment: Rare event search experiment using liquid xenon detector - Dark matter, solar neutrinos, neutrino-less double beta decay,… - Currently, XENONnT experiment is ongoing at LNGS, Italy - XLZD: future project of XENON (+ LZ experiment in US) | Years | 2005 - 2007 | 2008 - 2016 | 2012 - 2018 | 2019 - NOW | mid 2030s - | |----------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------| | Total Xe mass | 25 kg | 161 kg | 3200 kg | 8500 kg | 60 - 100 t | | WIMPs
sensitivity | ~10 ⁻⁴³ cm ² | ~10 ⁻⁴⁵ cm ² | ~10 ⁻⁴⁷ cm ² | ~10 ⁻⁴⁸ cm ² | ~10 ⁻⁴⁹ cm ² | ## Liquid Xenon Time Projection Chamber - Dual phase detector: LXe and GXe - Using PMTs to detect photons - Electric field is applied to drift electrons generated - · DM and BG particles generate signals in LXe - S1 signal: Scintillation photon - S2 signal: Ionization electrons - S1/S2 depends on the type of interaction - Electronic recoils: γ ray, β ray, Axion,... - · Nuclear recoils: Neutron, WIMPs,··· - ER events have larger S2 than NR events - BG rejection for WIMPs ### XENONnT detector - · The XENONnT detector is located at Laboratori Nazionali del Gran Sasso (LNGS), Italy - · Underground area: suppress muon background - Measurement of solar neutrinos: one of the target for XENONnT - Ultra-low radioactive BG - Low threshold - Ton-scale mass - Multiple channels for solar neutrino measurement: - 1. keV scale: via the electronic recoil - pp + ⁷Be - 2. MeV scale: via the nuclear recoil - Measurement of solar neutrinos: one of the target for XENONnT - Ultra-low radioactive BG - Low threshold - Ton-scale mass - Multiple channels for solar neutrino measurement: - 1. keV scale: via the electronic recoil - pp + ⁷Be - 2. MeV scale: via the nuclear recoil - Measurement of solar neutrinos: one of the target for XENONnT - Ultra-low radioactive BG - Low threshold - Ton-scale mass - Multiple channels for solar neutrino measurement: - 1. keV scale: via the electronic recoil - pp + ⁷Be - 2. MeV scale: via the nuclear recoil Neutrino energy [MeV] ### The measurement via electronic recoils - Measurement of solar neutrinos: one of the target for XENONnT - Ultra-low radioactive BG - Low threshold - Ton-scale mass - Multiple channels for solar neutrino measurement: - 1. keV scale: via the electronic recoil - pp + ⁷Be - 2. MeV scale: via the nuclear recoil # Measurement for the pp neutrino - Measurement via the electronic recoil events: - Sensitive for low energy neutrino (pp, ⁷Be) - Advantage of XENON: lower threshold - XENON detector: ~1keVee - <=> ~160-190keV by Borexino # Measurement for the pp neutrino #### Low-E neutrino physics - Measurement for ν_e survival probability (Pe-e) - Measurement for the Weinberg angle - Search for exotic neutrino interactions (ex. Magnetic moment) #### • Goal for XENONnT: Demonstration with 3σ Measurement with few % precision expected in future experiment ## Analysis for XENONnT initial data (SRO) - Right: first science run by XENONnT (SR0) - Good agreement between **Data** and **BG** - Main target for the analysis: peak-like signals - "XENON1T Excess": ex. solar-axions - => solar-nu signal was calculated by Borexino's result #### XENONnT SR0 data ## Analysis for XENONnT initial data (SRO) - Right: first science run by XENONnT (SR0) - Good agreement between Data and BG - Main target for the analysis: peak-like signals - "XENON1T Excess": ex. solar-axions - => solar-nu signal was calculated by Borexino's result XENONnT SR0 data ## Analysis for XENONnT initial data (SRO) - Right: first science run by XENONnT (SR0) - Good agreement between **Data** and **BG** - Main target for the analysis: peak-like signals - "XENON1T Excess": ex. solar-axions - => solar-nu signal was calculated by Borexino's result - To search for the solar-nu signal, precise understanding of other BG is essential - · Radon-induced ²¹⁴Pb, ⁸⁵Kr, γ -rays,… - Radon-induced ²¹⁴Pb: largest BG component in XENONnT - \$\beta\$ decay of \$214Pb\$ creates BG events - 222 Rn can be counted using α decay; but typically daughters have less activities - Ex. in XENONnT SR0: - 1.69 (222 Rn) > 214 Pb > 0.78 (214 Po) [uBq/kg] - => ~35% uncertainty for ²¹⁴Pb activity - To search for solar-nu signal, we need to reduce the uncertainty down to ~5% level! - ²²²Rn calibration: - Compare [β from ²¹⁴Pb] vs [α from ²²²Rn] - Place the source in the GXe circulation system, and diffuse ²²²Rn into the detector - Source: ²²⁶Ra implanted SUS (~2Bq, made by MPIK^[1]) - 222 Rn α : ~150 higher than normal run - Can be removed by distillation after the calibration [1] F. Joerg, et al., Applied Radiation and Isotopes, 194, 110666 (2023) - ²²²Rn calibration: - Compare [β from ²¹⁴Pb] vs [α from ²²²Rn] - Place the source in the GXe circulation system, and diffuse ²²²Rn into the detector - Source: ²²⁶Ra implanted SUS (~2Bq, made by MPIK^[1]) - 222 Rn α : ~150 higher than normal run - Can be removed by distillation after the calibration [1] F. Joerg, et al., Applied Radiation and Isotopes, 194, 110666 (2023) - ²²²Rn calibration: - Compare [β from ²¹⁴Pb] vs [α from ²²²Rn] - Place the source in the GXe circulation system, and diffuse ²²²Rn into the detector - Source: ²²⁶Ra implanted SUS (~2Bq, made by MPIK^[1]) - 222 Rn α : ~150 higher than normal run - Can be removed by distillation after the calibration [1] F. Joerg, et al., Applied Radiation and Isotopes, 194, 110666 (2023) - Result of the calibration - [Rate of α] vs [Rate of ER (10-70keV)] - e^{214} Pb $\propto ^{222}$ Rn: e^{214} Pb $\propto ^{222}$ Rn: e^{214} Pb $\propto ^{222}$ Rn: e^{214} Pb - a: Ratio between ²²²Rn and ²¹⁴Pb - b: BG other than ²¹⁴Pb - ε (calc):correction by branching ratio, efficiency etc - (preliminary) fit result: - a= 0.67 +/- 0.03 [Bq/Bq] - Note: - 1 Bq of 222 Rn <=> 0.67 Bq of 214 Pb - Uncertainty down to ~4.5% level - Uncertainty of conversion between calibration and normal runs is under estimation... # Other backgrounds - Other BG : Material γ and Kr-induced - Material γ - Low energy compton scattering induced by γ from detector materials - Reduced by fiducial cut, estimation by simulation - Kr-induced - β decay of 85Kr (Q=687keV) - Removed by our own distillation (<0.1ppt for Kr) - Mass spectrum analysis for sampled gas - Also, analytical estimation using rare decay mode of 85Kr # Other backgrounds - Other BG : Material γ and Kr-induced - Material γ - Low energy compton scattering induced by γ from detector materials - Reduced by fiducial cut, estimation by simulation - Kr-induced - β decay of 85Kr (Q=687keV) - Removed by our own distillation (<0.1ppt for Kr) - Mass spectrum analysis for sampled gas - Also, analytical estimation using rare decay mode of 85Kr # Other backgrounds - Other BG : Material γ and Kr-induced - Material γ - Low energy compton scattering induced by γ from detector materials - Reduced by fiducial cut, estimation by simulation - Kr-induced - β decay of 85Kr (Q=687keV) - Removed by our own distillation (<0.1ppt for Kr) - Mass spectrum analysis for sampled gas - Also, analytical estimation using rare decay mode of 85Kr ## The measurement via nuclear recoils - Measurement of solar neutrinos: one of the target for XENONnT - Ultra-low radioactive BG - Low threshold - Ton-scale mass - Multiple channels for solar neutrino measurement: - 1. keV scale: via the electronic recoil - pp + ⁷Be - 2. MeV scale: via the nuclear recoil Neutrino energy [MeV] ## Observing the ⁸B neutrino signal via CEvNS - Measurement of solar 8B ν via CEvNS - CE ν NS: Coherent Elastic ν -N scattering - No observation for natural ν yet - Shape of recoil spectrum from $^8\mbox{B}~\nu$ is very similar to DM signal (5.5GeV WIMPs) - Important demonstration for DM search - In future experiments, atm- ν with higher energy becomes BG: "neutrino fog" #### Accidental Coincidence BG - · Main BG: Accidental Coincidences (AC) - Random pairing of isolated S1 and isolated S2 - Exact origin is under investigation, but several parameters can be used to distinguish the signal and BG - Ex. timing distribution - BG suppression via dedicated cuts (including machine learning) - The BG model was validated using sideband data ### ⁸B neutrino measurement via CEvNS - Signal expectation: 11.9+4.5-4.2 - BG expectation: 26.4+1.4-1.3 - Observed 10.7+3.7_{-4.2} 26.3+1.4_{-1.4} - Null signal was excluded by 2.73σ #### PRL, 133 191002 ### ⁸B neutrino measurement via CEvNS - Observed cross section is consistent with standard model - Reported on PRL, 133 191002 (2024) ### Summary - XENONnT: Astroparticle rare event search experiment in LNGS - DM, neutrino physics and other particle physics - Neutrino search in XENON - MeV-scale (8B): nuclear recoil… published in 2024 - Observed CEvNS signal by 2.7σ - keV-scale (pp, ⁷Be): electronic recoil - Reduction of the uncertainty for Rn BG; down to ~5% by calibration - Approaching to the final phase of analysis … Stay tuned! # Thank you for your attention! • 9-years ago, as visiting student with Honda-Canada fellowship… # Back Up - Ys from detector material - Low-E Compton scattering events induced by γs from U, Th in detector components - Reduction by FV cut, and then estimate using simulation - Ys from detector material - Low-E Compton scattering events induced by from U, Th in detector components - Reduction by FV cut, and then estimate using simulation - Ys from detector material - Validation using 'skin' data outside FV - Subtract the uniform events using central volume - Data/MC = 1.49 (1.05) in SR0 (SR1) - MC the MC by the ratio, and take the difference as sys. uncertainty - Ys from detector material - Validation using 'skin' data outside FV - Subtract the uniform events using central volume - Data/MC = 1.49 (1.05) in SR0 (SR1) - MC the MC by the ratio, and take the difference as sys. uncertainty # Other backgrounds: Kripton-85 - Kr : β decay (Q=687keV) by 85Kr - Remove Kr by distillation: <0.1ppt - Take gas sample and analysis with mass spectrum - Also, analytical estimation using rare decay mode of ⁸⁵Kr - Current UL: 0.25ppq @90%CL - Limited due to the double-peak selection efficiency - Can be improve by ML? # Other backgrounds: Kripton-85 - Kr : β decay (Q=687keV) by 85Kr - Remove Kr by distillation: <0.1ppt - Take gas sample and analysis with mass spectrum - Also, analytical estimation using rare decay mode of ⁸⁵Kr - Current UL: 0.25ppq @90%CL - Limited due to the double-peak selection efficiency - Can be improve by ML? ### Result for CEVNS | Component | Expectation | Best-fit | | |------------------|----------------------|----------------------|--| | AC (SR0) | 7.5 ± 0.7 | 7.4 ± 0.7 | | | AC (SR1) | 17.8 ± 1.0 | 17.9 ± 1.0 | | | \mathbf{ER} | 0.7 ± 0.7 | $0.5^{+0.7}_{-0.6}$ | | | Neutron | $0.5^{+0.2}_{-0.3}$ | 0.5 ± 0.3 | | | Total background | $26.4_{-1.3}^{+1.4}$ | 26.3 ± 1.4 | | | ⁸ B | $11.9^{+4.5}_{-4.2}$ | $10.7^{+3.7}_{-4.2}$ | | | Observed | 37 | | | • Signal expectation: 11.9+4.5-4.2 • BG expectation: 26.4+1.4-1.3 10.7+3.7-4.2 26.3+1.4-1.4 # Weinbergangle ### Likelihood for CEvNS / Low mass WIMPs Search ## Low threshold analysis - Due to the small energy deposit from ⁸B v, it is critical to lower the energy threshold - The threshold is mainly defined by S1 - Improvement of the acceptance by lowering the threshold by 3 PMT hits -> 2 PMT hits - # of signal -> increased by ~17 times! - However: BG rate increases as well - BG suppression via dedicated cuts (including machine learning) #### S2 shadow - Accidental Coincidence (AC): Random unphysical pairing of isolated S1 and isolated S2 - Isolated peaks are believed to be side products of high energy (HE) interactions - Exact physical mechanisms of isolated peaks are under investigation - Isolated-S1 Rate before mitigation: 15 Hz - Isolated-S2 Rate before mitigation: 150 mHz - Mitigated by utilizing selections based on space&time correlation to previous HE interactions - Isolated-S1 rate after mitigation: 2.3 Hz - Isolated-S2 rate after mitigation: 25 mHz eg. TimeShadow selection on Isolated S1s #### YBe #### 88YBe LOW ENERGY NR CALIBRATION - Low energy NR yield model significantly affects 8B CE ν NS detection efficiency - 152 keV neutrons from photo-disintegration of 9 Be by γ -ray of 88 Y - **Recoil energy spectrum similar to ^8B CE\nuNS** - Good match between simulation and data - Light/charge yield model are constrained by 88YBe data at 23V/cm - Yield model uncertainty leads to ~34% signal rate uncertainty #### Publication in preparation #### Validation of AC model with sideband data After the High-E events, there are more noisy events - AC background model was validated using the sideband data — events excluded by the S2 score (AC-like events) - Parameters : - S2 size - S2size/Δt of event right before - S1 ML score - S2 ML score - Difference between data and the model is taken into account as systematic uncertainty - 9.0% (SR0), 5.8%(SR1)