

The XENON project

- · XENON experiment: Rare event search experiment using liquid xenon detector
 - Dark matter, solar neutrinos, neutrino-less double beta decay,…
- Currently, XENONnT experiment is ongoing at LNGS, Italy
 - XLZD: future project of XENON (+ LZ experiment in US)

Years	2005 - 2007	2008 - 2016	2012 - 2018	2019 - NOW	mid 2030s -
Total Xe mass	25 kg	161 kg	3200 kg	8500 kg	60 - 100 t
WIMPs sensitivity	~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²	~10 ⁻⁴⁹ cm ²

Liquid Xenon Time Projection Chamber

- Dual phase detector: LXe and GXe
 - Using PMTs to detect photons
 - Electric field is applied to drift electrons generated
- · DM and BG particles generate signals in LXe
 - S1 signal: Scintillation photon
 - S2 signal: Ionization electrons

- S1/S2 depends on the type of interaction
 - Electronic recoils: γ ray, β ray, Axion,...
 - · Nuclear recoils: Neutron, WIMPs,···
- ER events have larger S2 than NR events
 - BG rejection for WIMPs

XENONnT detector

- · The XENONnT detector is located at Laboratori Nazionali del Gran Sasso (LNGS), Italy
- · Underground area: suppress muon background

- Measurement of solar neutrinos: one of the target for XENONnT
 - Ultra-low radioactive BG
 - Low threshold
 - Ton-scale mass
- Multiple channels for solar neutrino measurement:
 - 1. keV scale: via the electronic recoil
 - pp + ⁷Be
 - 2. MeV scale: via the nuclear recoil

- Measurement of solar neutrinos: one of the target for XENONnT
 - Ultra-low radioactive BG
 - Low threshold
 - Ton-scale mass
- Multiple channels for solar neutrino measurement:
 - 1. keV scale: via the electronic recoil
 - pp + ⁷Be
 - 2. MeV scale: via the nuclear recoil

- Measurement of solar neutrinos: one of the target for XENONnT
 - Ultra-low radioactive BG
 - Low threshold
 - Ton-scale mass
- Multiple channels for solar neutrino measurement:
 - 1. keV scale: via the electronic recoil
 - pp + ⁷Be
 - 2. MeV scale: via the nuclear recoil

Neutrino energy [MeV]

The measurement via electronic recoils

- Measurement of solar neutrinos: one of the target for XENONnT
 - Ultra-low radioactive BG
 - Low threshold
 - Ton-scale mass
- Multiple channels for solar neutrino measurement:
 - 1. keV scale: via the electronic recoil
 - pp + ⁷Be
 - 2. MeV scale: via the nuclear recoil

Measurement for the pp neutrino

- Measurement via the electronic recoil events:
 - Sensitive for low energy neutrino (pp, ⁷Be)
- Advantage of XENON: lower threshold
 - XENON detector: ~1keVee
 - <=> ~160-190keV by Borexino

Measurement for the pp neutrino

Low-E neutrino physics

- Measurement for ν_e survival probability (Pe-e)
- Measurement for the Weinberg angle
- Search for exotic neutrino interactions (ex. Magnetic moment)

• Goal for XENONnT: Demonstration with 3σ

 Measurement with few % precision expected in future experiment

Analysis for XENONnT initial data (SRO)

- Right: first science run by XENONnT (SR0)
 - Good agreement between **Data** and **BG**
- Main target for the analysis: peak-like signals
 - "XENON1T Excess": ex. solar-axions
 - => solar-nu signal was calculated by Borexino's result

XENONnT SR0 data

Analysis for XENONnT initial data (SRO)

- Right: first science run by XENONnT (SR0)
 - Good agreement between Data and BG
- Main target for the analysis: peak-like signals
 - "XENON1T Excess": ex. solar-axions
 - => solar-nu signal was calculated by Borexino's result

XENONnT SR0 data

Analysis for XENONnT initial data (SRO)

- Right: first science run by XENONnT (SR0)
 - Good agreement between **Data** and **BG**
- Main target for the analysis: peak-like signals
 - "XENON1T Excess": ex. solar-axions
 - => solar-nu signal was calculated by Borexino's result
- To search for the solar-nu signal, precise understanding of other BG is essential
 - · Radon-induced ²¹⁴Pb, ⁸⁵Kr, γ -rays,…

- Radon-induced ²¹⁴Pb: largest BG component in XENONnT
 - \$\beta\$ decay of \$214Pb\$ creates BG events
 - 222 Rn can be counted using α decay; but typically daughters have less activities
- Ex. in XENONnT SR0:
 - 1.69 (222 Rn) > 214 Pb > 0.78 (214 Po) [uBq/kg]
 - => ~35% uncertainty for ²¹⁴Pb activity
- To search for solar-nu signal, we need to reduce the uncertainty down to ~5% level!

- ²²²Rn calibration:
 - Compare [β from ²¹⁴Pb] vs [α from ²²²Rn]

- Place the source in the GXe circulation system, and diffuse ²²²Rn into the detector
 - Source: ²²⁶Ra implanted SUS (~2Bq, made by MPIK^[1])
 - 222 Rn α : ~150 higher than normal run
 - Can be removed by distillation after the calibration

[1] F. Joerg, et al., Applied Radiation and Isotopes, 194, 110666 (2023)

- ²²²Rn calibration:
 - Compare [β from ²¹⁴Pb] vs [α from ²²²Rn]

- Place the source in the GXe circulation system, and diffuse ²²²Rn into the detector
 - Source: ²²⁶Ra implanted SUS (~2Bq, made by MPIK^[1])
 - 222 Rn α : ~150 higher than normal run
 - Can be removed by distillation after the calibration

[1] F. Joerg, et al., Applied Radiation and Isotopes, 194, 110666 (2023)

- ²²²Rn calibration:
 - Compare [β from ²¹⁴Pb] vs [α from ²²²Rn]

- Place the source in the GXe circulation system, and diffuse ²²²Rn into the detector
 - Source: ²²⁶Ra implanted SUS (~2Bq, made by MPIK^[1])
 - 222 Rn α : ~150 higher than normal run
 - Can be removed by distillation after the calibration

[1] F. Joerg, et al., Applied Radiation and Isotopes, 194, 110666 (2023)

- Result of the calibration
- [Rate of α] vs [Rate of ER (10-70keV)]
- e^{214} Pb $\propto ^{222}$ Rn: e^{214} Pb $\propto ^{222}$ Rn: e^{214} Pb $\propto ^{222}$ Rn: e^{214} Pb
 - a: Ratio between ²²²Rn and ²¹⁴Pb
 - b: BG other than ²¹⁴Pb
 - ε (calc):correction by branching ratio, efficiency etc

- (preliminary) fit result:
 - a= 0.67 +/- 0.03 [Bq/Bq]
- Note:
 - 1 Bq of 222 Rn <=> 0.67 Bq of 214 Pb
 - Uncertainty down to ~4.5% level
- Uncertainty of conversion between calibration and normal runs is under estimation...

Other backgrounds

- Other BG : Material γ and Kr-induced
- Material γ
 - Low energy compton scattering induced by γ from detector materials
 - Reduced by fiducial cut, estimation by simulation
- Kr-induced
 - β decay of 85Kr (Q=687keV)
 - Removed by our own distillation (<0.1ppt for Kr)
 - Mass spectrum analysis for sampled gas
 - Also, analytical estimation using rare decay mode of 85Kr

Other backgrounds

- Other BG : Material γ and Kr-induced
- Material γ
 - Low energy compton scattering induced by γ from detector materials
 - Reduced by fiducial cut, estimation by simulation
- Kr-induced
 - β decay of 85Kr (Q=687keV)
 - Removed by our own distillation (<0.1ppt for Kr)
 - Mass spectrum analysis for sampled gas
 - Also, analytical estimation using rare decay mode of 85Kr

Other backgrounds

- Other BG : Material γ and Kr-induced
- Material γ
 - Low energy compton scattering induced by γ from detector materials
 - Reduced by fiducial cut, estimation by simulation
- Kr-induced
 - β decay of 85Kr (Q=687keV)
 - Removed by our own distillation (<0.1ppt for Kr)
 - Mass spectrum analysis for sampled gas
 - Also, analytical estimation using rare decay mode of 85Kr

The measurement via nuclear recoils

- Measurement of solar neutrinos: one of the target for XENONnT
 - Ultra-low radioactive BG
 - Low threshold
 - Ton-scale mass
- Multiple channels for solar neutrino measurement:
 - 1. keV scale: via the electronic recoil
 - pp + ⁷Be
 - 2. MeV scale: via the nuclear recoil

Neutrino energy [MeV]

Observing the ⁸B neutrino signal via CEvNS

- Measurement of solar 8B ν via CEvNS
 - CE ν NS: Coherent Elastic ν -N scattering
 - No observation for natural ν yet
- Shape of recoil spectrum from $^8\mbox{B}~\nu$ is very similar to DM signal (5.5GeV WIMPs)
 - Important demonstration for DM search
 - In future experiments, atm- ν with higher energy becomes BG: "neutrino fog"

Accidental Coincidence BG

- · Main BG: Accidental Coincidences (AC)
- Random pairing of isolated S1 and isolated S2
 - Exact origin is under investigation, but several parameters can be used to distinguish the signal and BG
 - Ex. timing distribution
- BG suppression via dedicated cuts (including machine learning)
 - The BG model was validated using sideband data

⁸B neutrino measurement via CEvNS

- Signal expectation: 11.9+4.5-4.2
- BG expectation: 26.4+1.4-1.3

- Observed
 10.7+3.7_{-4.2}
 26.3+1.4_{-1.4}
- Null signal was excluded by 2.73σ

PRL, 133 191002

⁸B neutrino measurement via CEvNS

- Observed cross section is consistent with standard model
- Reported on PRL, 133 191002 (2024)

Summary

- XENONnT: Astroparticle rare event search experiment in LNGS
 - DM, neutrino physics and other particle physics
- Neutrino search in XENON
 - MeV-scale (8B): nuclear recoil… published in 2024
 - Observed CEvNS signal by 2.7σ
 - keV-scale (pp, ⁷Be): electronic recoil
 - Reduction of the uncertainty for Rn BG; down to ~5% by calibration
 - Approaching to the final phase of analysis … Stay tuned!

Thank you for your attention!

• 9-years ago, as visiting student with Honda-Canada fellowship…

Back Up

- Ys from detector material
 - Low-E Compton scattering events induced by γs from U, Th in detector components
 - Reduction by FV cut, and then estimate using simulation

- Ys from detector material
 - Low-E Compton scattering events induced by from U, Th in detector components
 - Reduction by FV cut, and then estimate using simulation

- Ys from detector material
 - Validation using 'skin' data outside FV
 - Subtract the uniform events using central volume
 - Data/MC = 1.49 (1.05) in SR0 (SR1)
 - MC the MC by the ratio, and take the difference as sys. uncertainty

- Ys from detector material
 - Validation using 'skin' data outside FV
 - Subtract the uniform events using central volume
 - Data/MC = 1.49 (1.05) in SR0 (SR1)
 - MC the MC by the ratio, and take the difference as sys. uncertainty

Other backgrounds: Kripton-85

- Kr : β decay (Q=687keV) by 85Kr
 - Remove Kr by distillation: <0.1ppt
 - Take gas sample and analysis with mass spectrum

- Also, analytical estimation using rare decay mode of ⁸⁵Kr
 - Current UL: 0.25ppq @90%CL
 - Limited due to the double-peak selection efficiency
 - Can be improve by ML?

Other backgrounds: Kripton-85

- Kr : β decay (Q=687keV) by 85Kr
 - Remove Kr by distillation: <0.1ppt
 - Take gas sample and analysis with mass spectrum

- Also, analytical estimation using rare decay mode of ⁸⁵Kr
 - Current UL: 0.25ppq @90%CL
 - Limited due to the double-peak selection efficiency
 - Can be improve by ML?

Result for CEVNS

Component	Expectation	Best-fit	
AC (SR0)	7.5 ± 0.7	7.4 ± 0.7	
AC (SR1)	17.8 ± 1.0	17.9 ± 1.0	
\mathbf{ER}	0.7 ± 0.7	$0.5^{+0.7}_{-0.6}$	
Neutron	$0.5^{+0.2}_{-0.3}$	0.5 ± 0.3	
Total background	$26.4_{-1.3}^{+1.4}$	26.3 ± 1.4	
⁸ B	$11.9^{+4.5}_{-4.2}$	$10.7^{+3.7}_{-4.2}$	
Observed	37		

• Signal expectation: 11.9+4.5-4.2

• BG expectation: 26.4+1.4-1.3

10.7+3.7-4.2

26.3+1.4-1.4

Weinbergangle

Likelihood for CEvNS / Low mass WIMPs Search

Low threshold analysis

- Due to the small energy deposit from ⁸B v, it is critical to lower the energy threshold
 - The threshold is mainly defined by S1
- Improvement of the acceptance by lowering the threshold by 3 PMT hits -> 2 PMT hits
 - # of signal -> increased by ~17 times!
 - However: BG rate increases as well
 - BG suppression via dedicated cuts (including machine learning)

S2 shadow

- Accidental Coincidence (AC): Random unphysical pairing of isolated S1 and isolated S2
 - Isolated peaks are believed to be side products of high energy (HE) interactions
 - Exact physical mechanisms of isolated peaks are under investigation
 - Isolated-S1 Rate before mitigation: 15 Hz
 - Isolated-S2 Rate before mitigation: 150 mHz
- Mitigated by utilizing selections based on space&time correlation to previous HE interactions
 - Isolated-S1 rate after mitigation: 2.3 Hz
 - Isolated-S2 rate after mitigation: 25 mHz

eg. TimeShadow selection on Isolated S1s

YBe

88YBe LOW ENERGY NR CALIBRATION

- Low energy NR yield model significantly affects 8B CE ν NS detection efficiency
- 152 keV neutrons from photo-disintegration of 9 Be by γ -ray of 88 Y
 - **Recoil energy spectrum similar to ^8B CE\nuNS**
- Good match between simulation and data
- Light/charge yield model are constrained by 88YBe data at 23V/cm
 - Yield model uncertainty leads to ~34% signal rate uncertainty

Publication in preparation

Validation of AC model with sideband data

After the High-E events, there

are more noisy events

- AC background model was validated using the sideband data — events excluded by the S2 score (AC-like events)
- Parameters :
 - S2 size
 - S2size/Δt of event right before
 - S1 ML score
 - S2 ML score
- Difference between data and the model is taken into account as systematic uncertainty
 - 9.0% (SR0), 5.8%(SR1)

