The Results and Prospects from Solar Neutrinos

Szymon Manecki, SNOLAB, NNN25, October 2nd, 2025

Why Solar Neutrinos

- Probes of stellar fusion (pp chain, CNO cycle)
- Precision test of neutrino oscillations

- Constraints on solar metallicity
- Complementarity
 - astrophysics & particle physics

pp-chain

Density ~146 g/cm³ Temp. ~15.5 mln K

After only 8mins.
Solar-v reach Earth

Energy production in the Sun: pp chain→ 99% of energy in Sun CNO cycle→ minor contribution (<1%)

CNO-cycle

Solar Neutrinos Now

Measured fluxes

- pp (~10%), ⁷Be (~2.7%), pep (~20%), ⁸B (~3–5%), CNO (~30–35%).
- hep (upper limits only, not yet directly observed.

Oscillation parameters

- $\Delta m_{21}^2 \approx 7.4 \times 10^{-5} \ eV^2$, $\theta_{12} \approx 33^{\circ} (LMA-MSW solution)$.
- Solar neutrino data alone prefer slightly lower Δm^2_{21} than reactor data, giving a ~2 σ tension.
- Day–night asymmetry measured with low significance; more precise measurements needed.

• Survival probability $P_{ee}(E)$

- Measured in low-energy (pp, ⁷Be) and high-energy (⁸B) regimes.
- Consistent with LMA-MSW predictions, but intermediate upturn region (2–5 MeV) remains poorly constrained.

Solar v Spectrum

Solar v Spectrum

Metallicity and survival probability

N. Vynioles et al., ApJ 835 202 (2017)

M. Maltoni et al., Eur. Phys. J. A 52 (2016) 87

Borexino (⁸B)

Super-K

- Hyper-K
 - ~258 kton of UPW 12× Super-Kamiokande's mass.
 - Elastic scattering of solar v_e (v_{μ}/v_{τ} with reduced cross section) on electrons in water.
 - Sensitive to solar neutrinos with Ev ≥ 5 MeV (so primarily the ⁸B and potentially hep components).

- Hyper-K
 - Expected event rate: ~6o-7o per day per 22.5 kt in Super-K → scaled to HK, ~5oo events/day.
 - That's ~2×10⁵ solar neutrino events per year!
 - This gives a percent-level precision on the 8B flux (currently ~3–4%).
 - Day–night asymmetry (MSW matter effect in the Earth):
 - HK can measure day-night differences with ~0.5% statistical precision.
 - Improves sensitivity to Δm_{21}^2 and tests the LMA-MSW solution.
 - hep neutrinos (rare, $\sim 10^{-3}$ of 8 B flux) but perhaps credible for evidence 2000 hep ES events per year (bf cuts & eff).
 - HK's high-stat 8 B and day-night data could decisively test the Δm^2 ₂₁ tension.

THEIA

 Large-scale water-based liquid scintillator (WbLS) detector (30 kton target), combining water Cherenkov and scintillation detection.

Simultaneous low energy threshold and directional sensitivity.

70m

THEIA25

THEIA (WbLS)

- CNO neutrinos: flux with <12% uncertainty; Transformative for solar metallicity problem → distinguishing high-metallicity vs low-metallicity Standard Solar Models.
- ⁸B neutrinos: excellent statistics for ⁸B spectrum \rightarrow precise measurement of $P_{ee}(E)$ in the MSW transition region (\sim 2–10 MeV).
- Low-energy neutrinos
 - pp neutrinos: Could decisively test solar luminosity constraints and the solar fusion rate.
 - pep neutrinos: pep flux to ~1-2%; Critical to test neutrino oscillations in vacuum—MSW transition region.

THEIA talk by Logan Lebanowski: Friday, 2:00PM.

- LAr (DarkSide-20k and ARGO)
 - Target: ~20 tonnes of ultra-pure liquid argon (LAr).
 - Primary goal: WIMP dark matter detection via nuclear recoils.
 - Secondary goal: Low-background electron recoil physics → solar neutrino detection.
 - Energy threshold: ~1 keV (for electron recoils), but solar neutrino physics is dominated by events in the MeV range.

The DarkSide-20k cryostat containing the veto system and the argon TPC.

- LAr (DarkSide-2ok and ARGO)
 - Large ES cross-section for high energies solar neutrinos.
 - Low intrinsic background for these energies.
 - Spectral reconstruction of recoils above ~1 MeV.
 - 8B neutrinos:
 - Predicted event rate: ~5—10 events per day in 20 tonnes.
 - Over a few years: thousands of events → percent-level measurement of 8B flux.
 - hep neutrinos (rare, >10 MeV):
 - With large exposure, DarkSide-20k could see hints, complementing Hyper-Kamiokande and other detectors.
 - CNO neutrinos:
 - Rates low and backgrounds challenging.
 - Larger argon detectors (ARGO scale, 300 tonnes) would improve sensitivity.

The DarkSide-20k cryostat containing the veto system and the argon TPC.

ARGO talk by Asish Moharana: Friday, 9:00AM.

LAr vs LXe

Low-energy threshold

pp neutrinos

⁷Be neutrinos

pep neutrinos

8B neutrinos

CNO neutrinos

hep neutrinos

Energy resolution

LXe

lower(~1 keV achievable)

excellent

excellent

possible

measurable, but statistics limited

possible with isotope (d)enrichment

challenging

~1-2% at MeV scale

LAr

somewhat higher (~few keV)

poor sensitivity

poor

possible

excellent

possible

challenging

~3–5% at MeV scale

- Xe is expensive \rightarrow hundreds of \$millions for large detectors.
- Ar is cheap and abundant \rightarrow easier to scale to multi-ktonnes.

Conclusions

- Perhaps in the next 15 years?
- Solar spectroscopy:
 - ~1% measurements of pp, ⁷Be and pep neutrino flux and high-precision ⁸B spectrum.
- Solar metallicity problem resolution
 - Direct detection of CNO neutrinos with <10% uncertainty.
- Testing neutrino oscillation theory in detail
 - Map $P_{ee}(E)$ across vacuum–MSW transition region with high precision \rightarrow test LMA predictions and search for deviations.
 - Potential resolution of Δm_{21}^2 tension between solar and reactor data.
 - Day/night asymmetry and matter effect tests at the percent level.
- Astrophysics and solar physics
 - Direct measurement of solar luminosity via neutrinos \rightarrow test stellar energy generation in real time.
 - Solar composition and fusion cycle diagnostics from combined pp, pep, ⁷Be, ⁸B, CNO spectra.

Backup