Non-Standard Interactions and Tau-Neutrino Detection at DUNE

Presented by:

Xin Yue (Theodore) Yu

Coauthors: Zishen Guan, William Dallaway, Ushak Rahaman,

Nikolina Ilic

PhD Supervisor: Nikolina Ilic

October 02, 2025

Based on JHEP07(2025)245

Outline

- The Deep Underground Neutrino Experiment (DUNE)
- Why $\nu_{ au}$ at a long baseline; **High Energy beam** vs regular beam
- Neutrino Non-Standard interactions (NSI) framework and event rates at DUNE
- Headline sensitivities
- Short detour: PMNS row-3 non-unitary & role of $u_{ au}$
- Conclusions

Key Messages

- The NSI parameter $\epsilon_{\mu\tau}$ is most sensitive to tau-neutrino detection at DUNE.
- If mass hierarchy is known, $\nu_{ au}$ detection helps determine $\phi_{\mu au}$, complex phase of $\epsilon_{\mu au}$.
- $\nu_{ au}$ detection has **very limited improvements** on Mass Hierarchy / $\delta_{\rm cp}$ / Octant measurements.

The Deep Underground Neutrino Experiment (DUNE)

Dreams Are Messages from the Deep

Deep Underground Neutrino Experiment

- DUNE is a nextgeneration longbaseline (LBL) neutrino experiment under construction.
- Far Detector (FD): two liquid argon timeprojection chamber (LArTPC), total fiducial mass starts with 20 kt.

UNIVERSITY OF TORONTO

Xin Yue (Theodore) Yu, NNN25 arXiv:2002.02967

Scientific objectives of DUNE

Unravel the mysteries in Standard Model and our universe through neutrinos

- Measuring neutrino oscillation parameters
 - \circ neutrino mass hierarchy, CP violating phase ($\delta_{
 m cp}$), mixing angles, and testing three-flavour model.
- Neutrino astronomy
 - Record Supernovae Neutrino Bursts and astronomical neutrinos from other sources.
- Search for beyond the Standard Model Physics (this talk)
 - Look for deviations from Standard Model predictions, such as those described by non-standard interactions.

In this work, we study the capabilities of DUNE as outlined in its technical design report.

High Energy Beam and tau-neutrino at DUNE

In search of the elusive flavour

Reasons to study tau-neutrino appearance

Tau-neutrino data provides unique view into BSM new physics.

- Testing the three-flavour oscillation framework and matter effects
- Direct test of PMNS unitarity (row 3)
 - \circ Confirm that missing ν_{μ} reappear as ν_{τ} with the **expected rate**
 - Otherwise) Shed light on sterile-neutrino or heavy neutral leptons.
- Test of BSM theories of neutrino physics
 - Providing constraints on theories such as non-unitary neutrino mixing or non-standard interactions (NSI)

Challenges at LBL experiments

Tau-neutrinos are more difficult to study than electron and muon neutrinos.

- High threshold for production
 - Production of a tau lepton requires neutrino energy threshold of 3.5 GeV
- Lifetime of Tau lepton is very short
 - Requires very high spatial resolution for the detector
- Not focused on previous LBL experiments:
 - NOvA and T2K use beam below threshold, also limited by detector resolution.
 - OPERA and ICARUS in CNGS project successfully optimized for tau appearance, not oscillation parameter precision.

Neutrino beam at DUNE

- Top plot: regular beam, bottom: highenergy beam
- "New" is flux profile used in our study,
 "old" is outdated flux from previous
 works.
- Peak of the regular beam < 3.5 GeV Tau lepton production threshold.
- Achieved through replacement of three baseline horns with two parabolic horns (NuMI-like).

Neutrino Non-Standard interactions (NSI)

Echoes of hidden interactions

How NSI affects neutrino oscillation in matter

NSI = additional matter potential with off-diagonal flavour terms

$$\mathcal{L}_{\rm NC-NSI} = -2\sqrt{2}G_F \epsilon^{fC}_{\alpha\beta}(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}P_Cf)$$

The NSI interaction Lagrangian operator

- α, β denotes neutrino flavours (electron, muon, tau)
- f denotes fermion type in matter (e, u, d)
- C is L or R handed projection operator.
- Very general parameterization of a neutrino flavour changing interaction, at a dimension 6 four particle vertex.

$$H = H_{\text{vac}} + H_{\text{mat}} + H_{\text{NSI}}$$

$$H_{
m vac} = rac{1}{2E} U egin{bmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & m_3^2 \end{bmatrix} U^\dagger; H_{
m mat} = \sqrt{2} G_F N_e egin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix};$$
 $H_{
m NSI} = \sqrt{2} G_F N_e egin{bmatrix} \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e au} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu au} \\ \epsilon_{e au}^* & \epsilon_{\mu au}^* & \epsilon_{ au au} \end{bmatrix}.$

Effective term from NSI in the Hamiltonian

- NSI enters as an addition effective matter potential term
- Six degrees of freedom from 3 diagonal and 3 offdiagonal terms
- Off-diagonal term introduces flavour-changing neutral-current effects in propagation through matter.

NSI Modification to $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation probability (1/2)

Expanding probability, treating NSI as perturbative term

For 3-flavour oscillation, we can expand to second order

$$P_{\mu\tau}^{\text{NSI}} = P_{\mu\tau}^{2\text{vac}} + P_{\mu\tau}^{\epsilon_{e\mu},\epsilon_{e\tau}} + P_{\mu\tau}^{\epsilon_{\mu\mu},\epsilon_{\mu\tau},\epsilon_{\tau\tau}} + \dots$$

The leading term is vacuum oscillation probability in 2-flavour model, which is

$$P_{\mu\tau}^{2\text{vac}} = 4\cos^2\theta_{23}\sin^2\theta_{23}\sin^2\frac{\Delta_{31}L}{4E}$$

NSI Modification to $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation probability (2/2)

Examine the contribution from $\epsilon_{\mu au}$ term

At order $O(\epsilon)$, the contribution from $\epsilon_{\mu\tau}$ is

$$\Delta_{\mu\tau} \propto \sin^2(2\theta_{23}) |\epsilon_{\mu\tau}| \cos(\phi_{\mu\tau}) \sin(\Delta_{31}L/2E)$$

At $|\epsilon_{u\tau}|=0.2, \phi_{u\tau}=0$, this term is ~ 10 times larger than the subleading term

This term is sensitive to hierarchy, but no octant sensitivity.

 $\epsilon_{\mu\mu}$ and $\epsilon_{ au au}$ terms proportional to $\cos^22\theta_{23}\sim0$, $\epsilon_{e\mu}$ and $\epsilon_{e au}$ terms always 2nd order -> Both negligible

Observing NSI at DUNE

Signals beneath the Dunes

Simulation Details

Key assumptions and sources from the simulation

The χ^2 values are calculated using GLoBES, through comparison of true experimental event rates and test theoretical rates in each energy bin.

Energy resolution, energy-dependent detector efficiencies, and systematic uncertainties are from DUNE TDR.

In particular, used bin based energy smearing suggested by arXiv:1904.07265:

$$R^{c}(E, E') = \frac{1}{\sqrt{2\pi}\sigma(E)} \exp(-\frac{(E - E')^{2}}{2\sigma^{2}(E)})$$

Where

$$\sigma(E) = 0.25E$$

Beam running schemes at DUNE

Exposure & Channels	Beam / Mode	Description	
5 + 5 (μ + e)	Regular beam; v & v̄: 5 years each	Muon disappearance and electron appearance with DUNE regular beam; 5 years in ν-mode and 5 years in ν-mode.	
5 + 5 (μ + τ)	Regular beam; v & v̄: 5 years each	Same as above, but τ appearance instead of e.	
5 + 5 (μ + e + τ)	Regular beam; ν & ν̄: 5 years each	Combine all three channels from above.	
5 + 5 + 1 + 1 (μ + τ)	Regular: v & v̄ 5y each High-energy: v & v̄ 1y each	Same as $\mu + \tau$ case, plus 1 year each in ν and $\bar{\nu}$ with the DUNE high-energy beam.	
5 + 5 + 1 + 1 (μ + e + τ)	Regular: v & v̄ 5y each High-energy: v & v̄ 1y each	Combining everything above (all channels and both beams).	

1.1e21 POT per year for both regular and high-energy beam.

Modification to (expected) event rates at DUNE

 ν_{τ} + $\bar{\nu}_{\tau}$ event numbers after DUNE 5+5 regular beam.

Ellipse is from varying $\delta_{\rm cp}$ in $[-\pi,\pi]$

Event rates includes background

Suggests that when hierarchy is given, there should be good sensitivity for existence of $\epsilon_{\mu\tau}$.

Modification to (expected) event rates at DUNE

 ν_e + $\bar{\nu}_e$ event numbers DUNE 5+5 regular beam.

Ellipse is from varying CP violation phase in $[-\pi, \pi]$

Larger Ellipse distinct from SI suggests good $\delta_{\rm cp}$ sensitivity in presence of $\epsilon_{e\mu}$ or $\epsilon_{e\tau}$.

Not very good sensitivity for distinction between the two.

$\phi_{\mu au}$ -Hierarchy degeneracy

Degeneracy arising from the perturbative term

Hierarchy sensitivity with $\epsilon_{\mu\tau}$ present comes from

$$\Delta_{\mu\tau} \propto \sin^2(2\theta_{23}) |\epsilon_{\mu\tau}| \cos(\phi_{\mu\tau}) \sin(\Delta_{31}L/2E)$$

A consequence is that NH, $\phi_{\mu\tau}=0$ is mimicked by IH, $\phi_{\mu\tau}=\pi$.

Therefore, when the phase and mass hierarchy is **simultaneously unknown**, this degeneracy affects sensitivity in attempts to measure either of them.

$\phi_{\mu au}$ -Hierarchy degeneracy

Degeneracy arising from the perturbative term

 $\Delta P_{\mu\tau} \propto \sin^2{(2\theta_{23})} |\varepsilon_{\mu\tau}| \cos{\phi_{\mu\tau}} \sin(\Delta_{31}L/2E)$ Degeneracy map: $P^{\text{NH}}(\phi_{\mu\tau}) = P^{\text{IH}}(180^{\circ} - \phi_{\mu\tau})$

Mass hierarchy sensitivity with NSI

- Reduction in sensitivity with $\epsilon_{\mu\tau}$
- $\epsilon_{e\mu}$ and $\epsilon_{e\tau}$ case also see reduction, due to $\delta_{
 m cp}$ and NSI phase interference.

20.0

IH true NH test (SI)

NH true IH test (SI)

20.0

$\delta_{\rm cp}$ and Octant sensitivity

2

NSI term sensitivity

In truth SI case, can DUNE rule out NSI existence

NSI term sensitivity

In truth SI case, can DUNE rule out NSI existence (subleading terms)

25

NSI phase sensitivity

If NSI phase in nature is 0, how precisely can DUNE measure it?

NSI phase sensitivity

If NSI phase in nature is 0, how precisely can DUNE measure it?

Final Future Constraints on NSI parameter from DUNE

Parameters	5 + 5	5 + 5	5 + 5	5 + 5 + 1 + 1	5+5+1+1
	$(\mu + e)$	$(\mu + au)$	$(\mu + e + au)$	$(\mu + au)$	$(\mu + e + \tau)$
$ \epsilon_{e\mu} $ NH	< 0.04 (0.10)	< 0.31 (0.43)	< 0.04 (0.10)	< 0.31 (0.43)	< 0.04 (0.10)
IH	< 0.04 (0.09)	< 0.25 (0.38)	< 0.0.04 (0.09)	< 0.25 (0.38)	< 0.04 (0.09)
$ \epsilon_{e au} $ NH	< 0.07 (0.20)	< 0.83 (1.02)	< 0.07 (0.20)	< 0.83 (1.02)	< 0.07 (0.20)
IH	< 0.09 (0.13)	$< 0.78 \; (0.98)$	< 0.0.09 (0.13)	$< 0.78 \; (0.98)$	< 0.09 (0.13)
$ \epsilon_{\mu au} $ NH	< 0.08 (0.14)	< 0.09 (0.17)	< 0.08 (0.14)	< 0.09 (0.15)	< 0.07 (0.13)
IH	< 0.07 (0.12)	$< 0.10 \ (0.16)$	< 0.07 (0.12)	< 0.09 (0.14)	< 0.06 (0.11)
$\epsilon_{\mu\mu}$ NH	> -0.40 (-0.50)	> -0.43 (-0.50)	> -0.40 (-0.50)	> -0.43 (-0.50)	$> -0.40 \ (-0.50)$
	< 0.11 (0.48)	$< 0.50 \ (0.57)$	< 0.11 (0.48)	< 0.50 (0.57)	< 0.11 (0.48)
IH	> -0.17 (-0.34)	$> -0.43 \; (-0.50)$	> -0.17 (-0.34)	> -0.43 (-0.50)	> -0.17 (-0.34)
	$< 0.14 \ (0.56)$	$< 0.49 \ (0.54)$	$< 0.14 \ (0.56)$	< 0.49 (0.54)	$< 0.14 \ (0.56)$
$\epsilon_{ au au}$ NH	> -0.12 (-0.26)	> -0.54 (-0.63)	> -0.12 (-0.26)	> -0.54 (-0.63)	> -0.12 (-0.26)
	$< 0.14 \ (0.35)$	< 0.45 (0.51)	$< 0.14 \ (0.35)$	< 0.45 (0.51)	$< 0.14 \ (0.35)$
IH	> -0.11 (-0.20)	> -0.51 (-0.60)	> -0.11 (-0.20)	> -0.51 (-0.60)	> -0.11 (-0.20)
	< 0.09 (0.25)	$< 0.42 \ (0.51)$	< 0.09 (0.25)	$< 0.42 \ (0.51)$	< 0.09 (0.25)

The 90% (3σ) constraints

PMNS row-3 unitarity: why ν_{τ} matters

Role of $\nu_{ au}$ detection in PMNS constraining PMNS third row unitarity

Non-unitarity of PMNS matrix

General formula of a non-unitary mixing matrix

A model is when a **fourth neutrino flavour** ν_s exists, where ν_s is mainly of a heavy mass eigenstate m_4 such that $m_4 \gg m_1, m_2, m_3$.

Further the extra generation of sterile neutrino existing as **iso-singlet neutral heavy lepton** (NHL), where $\Delta_{41} \equiv m_4^2 - m_1^2 \gg O(\text{eV}^2)$.

In this case, it does not take part in neutrino oscillation. Their involvement in weak interaction gives effective 3-flavour mixing that can be described by modified non-unitary PMNS matrix, namely

$$N = N_{NP}U_{3\times3} = \begin{bmatrix} \alpha_{00} & 0 & 0 \\ \alpha_{10} & \alpha_{11} & 0 \\ \alpha_{20} & \alpha_{21} & \alpha_{22} \end{bmatrix} U_{3\times3}$$

30

Constraining the non-unitary mixing matrix

Current status and bounds

The **first two rows** of the mixing matrix can be constrained by **detecting electrons and** ν_{μ} at neutrino oscillation experiments.

Constraints on third row mostly from charged lepton flavour violation (CLFV)

 3σ limit for 1 dof on third row unitarity violation from joint neutrino oscillation and CLFV fit (with neutrino oscillation only in brackets) from arXiv:1612.07377:

$$|\alpha_{20}| < 4.4 \times 10^{-3} (9.8 \times 10^{-2}); \quad |\alpha_{21}| < 2.0 \times 10^{-3} (1.7 \times 10^{-2}); \quad \alpha_{22} > 0.9976 (0.76)$$

Constraining the non-unitary mixing matrix

Capabilities of DUNE to constrain non-unitarity

The plots shows **sensitivity** under DUNE exposure

Considered unitary mixing to be truth, marginalized $|\Delta_{31}|$ and $\sin^2\theta_{23}$ in 3σ range, $\delta_{\rm cp}$ in $[-\pi,\pi]$.

Tested $|\alpha_{21}|$ in [0:0.1], α_{22} in [0.7:1], ϕ_{21} in $[-\pi,\pi]$

Better constraint in α_{22} than neutrino oscillation only fit (>0.76).

32

Conclusion

We considered the impact of ν_{τ} and $\bar{\nu}_{\tau}$ detection at DUNE in relation to NSI.

- Tau-neutrino detection and NSI parameter $\epsilon_{\mu au}$
 - \circ Most significant contribution to tau event rates is from $\epsilon_{\mu\tau}$, for which ν_{τ} detection **boosts sensitivity in its** existence
 - \circ If mass hierarchy is fixed, $u_{ au}$ detection also help determine $\phi_{\mu au}$
 - $_{\circ}$ Strategically, can measure MH from ν_{e} appearance data, then determine $\epsilon_{\mu\tau}$
- Oscillation parameter measurements
 - $_{\circ}$ Tau-neutrino detection **does not have significant improvement** to mass hierarchy, $\delta_{
 m cp}$, and octant measurements

Overall, tau appearance channels provides complementary constraint on NSI and BSM physics.

Backup Slides

Backup Slides

NSI Modification to $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation probability (3/3)

- The plot is produced with $|\epsilon_{\mu\tau}|=0.2$ with 0 complex phase.
- The 0.2 magnitude is similar to best-fit values of $|\epsilon_{e\mu}|$ and $|\epsilon_{e\tau}|$ values from T2K and NOvA.
- The lack of octant sensitivity can be seen from the graph.

Mass hierarchy sensitivity

- Varied the CP Violating phase
- Marginalized $\sin^2\theta_{23}$ and $|\Delta_{31}|$ in their respective 3 sigma range
- DUNE has decisive sensitivity on mass hierarchy in the SI case.
- Does not change with inclusion of tau-neutrino appearance data.

Mass hierarchy sensitivity

Octant sensitivity

- Allowed region in the SI case
- Inclusion of electron neutrino appearance is needed for any meaningful sensitivity.

Octant sensitivity

$$5 + 5(\mu + e)$$
 ---- $5 + 5 + 1 + 1(\mu + \tau)$ ---- $5 + 5 + 1 + 1(\mu + e + \tau)$ ---- $5 + 5(\mu + e)$ --- $5 + 5(\mu + e)$

Octant sensitivity

CP sensitivity

- Varied the CP Violating phase
- Marginalized $\sin^2\theta_{23}$ and $|\Delta_{31}|$ in their respective 3 sigma range
- Test CP values 0, 180, -180.
- Good CP sensitivity at the plotted ranges.

CP sensitivity

NSI Sensitivity

In truth SI case, ability of DUNE to rule out NSI existence (Terms from subleading contribution)

How NSI affects neutrino oscillation in matter

$$H = H_{\text{vac}} + H_{\text{mat}} + H_{\text{NSI}},$$

$$\mathcal{L}_{\text{NC-NSI}} = -2\sqrt{2}G_F \epsilon_{\alpha\beta}^{fC} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}P_C f)$$

The NSI interaction Lagrangian operator

- α , β denotes neutrino flavours (electron, muon, tau)
- f denotes fermion type in matter (e, u, d)
- C is L or R handed projection operator.
- Very general parameterization of a neutrino flavour changing interaction, at a dimension 6 four particle vertex.
- UV completion come from models such as new heavy states or LFV through light mediators.

Effective term from NSI in the Hamiltonian

- Assume: $N_n \approx N_p = N_e$, can use electron density as the scale (electric neutrality)
- NSI enters as an addition effective matter potential term
- Six degrees of freedom from 3 diagonal and 3 offdiagonal terms
- Off-diagonal term introduces flavour-changing neutralcurrent effects in propagation through matter.

