The SuperNEMO double-beta-decay experiment

Emmanuel Chauveau on behalf of SuperNEMO collaboration

24th International Workshop on Next Generation Nucleon Decay and Neutrino Detectors

Place des Arts, Downtown Sudbury - October 2nd, 2025

The SuperNEMO double-beta-decay experiment – Summary

- Introduction on $0\nu\beta\beta$ physics and SuperNEMO
- Status of SuperNEMO as a technology demonstrator
- Physics goal of SuperNEMO demonstrator

The SuperNEMO double-beta-decay experiment – Summary

- Introduction on $0\nu\beta\beta$ physics and SuperNEMO
- Status of SuperNEMO as a technology demonstrator
- Physics goal of SuperNEMO demonstrator

Neutrinoless double beta research

- \blacksquare $0\nu\beta\beta$ search to probe Majorana neutrino and absolute mass scale of neutrinos
- \blacksquare Signature of 0
 uetaeta is 2 electrons with summed energy = Q_{etaeta}
- \blacksquare $T_{1/2}^{0
 u}>10^{26}$ years ightarrow ultra low background experiment required

Neutrinoless double beta research with SuperNEMO demonstrator

■ SuperNEMO approach = thin $\beta\beta$ source foil + tracker + segmented calorimeter

What makes NEMO super?

ALL ββ EXPERIMENTS

Total Energy

ONLY SUPERNEMO

Topological signature of events

Full kinematic of ββ events

Individual electron energy Angular correlation Total electron energy

- Excellent background rejection
- Background measurement
- Usage of any solid isotope

- $\blacksquare \beta\beta$ kinematics: electron's individual energy + angular correlation
- Investigate models of new physics for $0\nu\beta\beta$ mechanisms
- Detailed study of $2\nu\beta\beta$, excited states, g_A quenching, etc.

What makes NEMO super?

ALL ββ EXPERIMENTS

Total Energy

ONLY SUPERNEMO

Topological signature of events

Full kinematic of ββ events

Individual electron energy Angular correlation Total electron energy

- Excellent background rejection
- Background measurement
- Usage of any solid isotope

- lacksquare etaeta kinematics: electron's individual energy + angular correlation
- \blacksquare Investigate models of new physics for $0\nu\beta\beta$ mechanisms
- Detailed study of $2\nu\beta\beta$, excited states, g_A quenching, etc.

NB: What makes NEMO *not* super ? low $\beta\beta$ mass, low $0\nu\beta\beta$ efficiency (\leq 20% @ ROI), moderate energy resolution ... to be fair !

Example of $\beta\beta$ event

Measured 2-track event (March 2024)

side view top view

Example of background events

²⁰⁸Tl in source foil (top view)

BiPo cascade from Rn

The SuperNEMO collaboration

Plus contributions from Russian colleagues (Russian institutions no longer members)

SuperNEMO demonstrator currently in LSM

SuperNEMO status

- Construction of a demonstrator module completed in LSM
- \blacksquare $\beta\beta$ running since 2025 April 10th

Demonstrator main purposes

- **■** Technology demonstration
- only way to study $0\nu\beta\beta$ mechanism (APPEC 2019 recommendation)
- which scaling of full SuperNEMO will be required to confirm a hypothetical future signal by another experiment?
- Competitive physics results
- $0\nu\beta\beta$ search in multiple modes
- nuclear physics of $2\nu\beta\beta$
- search for BSM $2\nu\beta\beta$ decays

The SuperNEMO double-beta-decay experiment – Summary

- Introduction on $0\nu\beta\beta$ physics and SuperNEMO
- Status of SuperNEMO as a technology demonstrator
- Physics goal of SuperNEMO demonstrator

SuperNEMO = **Successor** of **NEMO**-3

NEMO-3 (2003-2011 at LSM)

0vββ search with NEMO-3 [Phys. Rev. D89, 111101 (2014)]

- NEMO-3 still has 20 world's-best $0\nu\beta\beta$ and $2\nu\beta\beta$ results [PDG 2025]
- 0 background event above $0\nu\beta\beta$ region (with 7 kg × 5 years of 100 Mo)
- \blacksquare SuperNEMO improves NEMO-3 design for next-generation sensitivities: initial goal = $T_{1/2}^{0\nu}>10^{26}$ year with 100 kg of 82 Se (NEMO-3: $T_{1/2}^{0\nu}>1.1\times10^{24}$ year)

Technology demonstrator: source foil radiopurity

- 6.11 kg of ⁸²Se (96-99 % enriched) over 34 source foils
- lacksquare Radiopurity goal: A(208 TI) $< 2~\mu$ Bq/kg and A(214 Bi) $< 10~\mu$ Bq/kg
- Tested different powder-production, purification technique and foil geometries
- Final validation of technique(s) can be done only by the analysis of SuperNEMO data...
- Enrichment possibility demonstrated for ⁹⁶Zr* (attempts with ¹⁵⁰Nd* too)
 - * in terms of $m_{\beta\beta}$ sensitivity, 1 ton of $^{76}{\rm Ge}$ would be equivalent to 74 kg (145 kg) of $^{150}{\rm Nd}$ ($^{96}{\rm Zr}$)

Technology demonstrator: tracker operation

- 2034 drift cells (14970 wires) operating in Geiger regime
- Improved geometry: larger and taller cells (more transparent) with same performances as NEMO-3
- lacktriangle Gas-mixture optimisation: 95.5% He + 3.5% ethanol + 1% Argon

Technology demonstrator: tracker operation

- 2034 drift cells (14970 wires) operating in Geiger regime
- Improved geometry: larger and taller cells (more transparent) with same performances as NEMO-3
- Gas-mixture optimisation: 95.5% He + 3.5% ethanol + 1% Argon
- 98.4 % of cells operational

Technology demonstrator: calorimeter performance

- 712 plastic scintillator coupled to 8" PMTs (×440) and 5" PMTs (×272)
- Target energy resolution 8% FWHM/ \sqrt{E} (was 14 % in NEMO-3)
- Time resolution measured to 250 ps for 1 MeV electrons
- Spectral modeling with optical simulation (energy non-linearity and photoelectron collection non-uniformity in scintillators)
- 97.4% of calorimeter channels operational

Optical simulations of scintillation light

Technology demonstrator: radon contamination level

- Emanation/diffusion of ²²²Rn can introduce continuous deposit of ²¹⁴Bi on source foils
- ²²²Rn background level measured/monitored through dedicated channel ("BiPo")
- Strategies: material selection, tracker sealing, gas purification, anti-radon tent, LSM radon-free air facility
- SuperNEMO target $< 150 \text{ uBq/m}^3$ ($\approx 20 \text{ mBq/m}^3$ measured **without** radon trap and radon-free air)

Technology demonstrator: radon contamination level

- Emanation/diffusion of ²²²Rn can introduce continuous deposit of ²¹⁴Bi on source foils
- ²²²Rn background level measured/monitored through dedicated channel ("BiPo")
- Strategies: material selection, tracker sealing, gas purification, anti-radon tent, LSM radon-free air facility
- SuperNEMO target $< 150 \text{ uBq/m}^3$ ($\approx 20 \text{ mBq/m}^3$ measured without radon trap and radon-free air)

Technology demonstrator: radon contamination level

- Emanation/diffusion of ²²²Rn can introduce continuous deposit of ²¹⁴Bi on source foils
- ²²²Rn background level measured/monitored through dedicated channel ("BiPo")
- Strategies: material selection, tracker sealing, gas purification, anti-radon tent, LSM radon-free air facility
- lacktriangle SuperNEMO target < 150 uBq/m 3 (pprox 20 mBq/m 3 measured **without** radon trap and radon-free air)

Technology demonstrator: helium recycling system

- Motivated by: high He prices*, environmental concerns (finite He supply), scalability to large system
 * SuperNEMO consumption range 7-30 m³/day ⇒ 0.3-1.2 keuros/day without recycling
- Home made system: ethanol condensation \rightarrow gas control with mass spectrometer \rightarrow temporary balloon storage \rightarrow compression \rightarrow 200-bars storage \rightarrow re-mixing with fresh gas

Technology demonstrator: calibration systems

- $lue{}$ Absolute calibration (\sim weekly): automated deployment system with 42x 207 Bi calibration sources
- lacktriangle Relative calibration (\sim daily): Light Injection system (LI) = flashing LEDs + optical fibers

Technology demonstrator: novel electronics

- Calorimeter (712 channels): PMT waveform digitisation using 52x Wavecatcher boards
- Tracker (6102 channels): reconstruct cathode activation time from anode signal (-33% channels)
- lacktriangle Trigger: live pattern recognition to record only useful data (electron, delayed lpha identification)

Technology demonstrator: new software

- Falaise = main software for simulation, reconstruction and analysis of SuperNEMO data https://github.com/SuperNEMO-DBD/Falaise
- Falaise based on generic library Bayeux providing a coherent framework for any HEP data analysis https://github.com/BxCppDev/Bayeux
- new tracking (Legendre transform + polyline fit) recently developed to enhance signal efficiency

The SuperNEMO double-beta-decay experiment – Summary

- Introduction on $0\nu\beta\beta$ physics and SuperNEMO
- Status of SuperNEMO as a technology demonstrator
- Physics goal of SuperNEMO demonstrator

$0\nu\beta\beta$ with light neutrino exchange (V-A current)

- V-A current: model assumed by most experiments
- Expected background index in ROI = 2.7 x 10⁻⁴ event/kev/kg/year → can reach best limit with sufficient runtime

$0\nu\beta\beta$ with light neutrino exchange (V+A current)

- Letonic (η) and leptonic+hadronic (λ) V+A gives one electron with right-handed helicity: V+A favors **asymmetric** electron energies with **small angle** (while V-A favors **similar** energies and **back-to back**) \rightarrow only SuperNEMO can identify both of these differences
- World's best limits reached within few months (82Se) or in 2–4 years (all isotopes)

$0\nu\beta\beta$ with light neutrino exchange (V+A current)

- Letonic (η) and leptonic+hadronic (λ) V+A gives one electron with right-handed helicity:
 V+A favors asymmetric electron energies with small angle (while V-A favors similar energies and back-to back)
 → only SuperNEMO can identify both of these differences
- World's best limits reached within few months (82Se) or in 2–4 years (all isotopes)

$0\nu\beta\beta$ with Majoron(s) emission

- Some $0\nu\beta\beta$ theories involves emission of one, or more, Majorons (Goldstone bosons χ^0)
- SuperNEMO expect to surpass 82 Se world's best limits in ≈ 2 years $(0\nu\beta\beta\chi^0)$ and ≈ 1 year $(0\nu\beta\beta\chi^0\chi^0)$

$0\nu\beta\beta$ with Majoron(s) emission

- Some $0\nu\beta\beta$ theories involves emission of one, or more, Majorons (Goldstone bosons χ^0)
- SuperNEMO expect to surpass 82 Se world's best limits in ≈ 2 years $(0\nu\beta\beta\chi^0)$ and ≈ 1 year $(0\nu\beta\beta\chi^0\chi^0)$

$\beta\beta$ decay to excited states

- Unique ability to see each individual electron and to perform gamma tracking
- Preliminary study: demonstrator can surpass world's best limit for $2\nu\beta\beta$ to 2^+_2 state of 82 Kr with a sensitivity on half-life of 1.9×10^{22} years (90% CL) for a 17.5 kg.y exposure

$2\nu\beta\beta$ vectoriel axial coupling constant g_A

 g_A constraint with ξ_{31} parameter [Phys. Rev. Lett. 122, 192501 (2019)]

- (Mis)knowledge of g_A impacts interpretation of $m_{\beta\beta}$: $(T_{1/2}^{0\nu})^{-1} = g_A^4 G^{0\nu} |M^{0\nu}| |m_{\beta\beta}|^2$
- Shape of $2\nu\beta\beta$ spectrum can be used to constraint quenching of g_A [Phys. Rev. C 97, 034315 (2018)]
- Effect is stronger in individual energy spectrum, and only SuperNEMO can see this!
- Sensitivity will depend on background level at low energy and energy scale systematics (under estimation) \Rightarrow SuperNEMO demonstrator will record $\approx 35 \text{k} \ 2\nu\beta\beta/\text{year}$

Summary

- SuperNEMO demonstrator is running after almost 20 years of R&D, construction and commissioning
- Expected leading results on wide range of $\beta\beta$ processes:
 - $-0\nu\beta\beta$ V+A, $0\nu\beta\beta\chi^0$, $0\nu\beta\beta\chi^0\chi^0$
 - -2
 uetaeta detailed nuclear structure insights: NME and g_A
 - other BSM process searches: massive sterile neutrino, bosonic neutrinos, Lorentz violation, ...
- lacktriangle Key technology to understand a possible future 0
 uetaeta signal

Thanks a lot for listening ... and see you may be inside above LSM?

Backup slides

$0\nu\beta\beta$ background budget of SuperNEMO demonstrator

Background	Events for 17.5 kg.year
2νββ	0.98 ± 0.13
²⁰⁸ TI	0.04 ± 0.01
²¹⁴ Bi	0.09 ± 0.01
radon	0.23 ± 0.04
neutrons	0.60 ± 0.30
total	1.9 ± 0.4

0νββ efficiency	16.5 %
-----------------	--------

in ROI = [2.7-3.1] MeV

■ Expected background index in ROI = 2.7×10^{-4} event/kev/kg/year (NEMO-3 100 Mo: 10^{-3} event/kev/kg/year)

$0\nu\beta\beta$ V-A vs V+A kinematics

Eur. Phys. J. C 70, 927-943 (2010)

Magnetic field or not?

- Magnetic coil as an optional extra protection to neutron background pros: particle's charge identification for extra background rejection cons: reduce also detection/reconstruction efficiency on $\beta\beta$ signal
- Turning ON is irreversible (magnetisation of demonstrator's metals)
- Balanced decision to be taken depending of neutron background level

