SNO+: Progress and Prospects

Queen's University

NNN 2025 October 1, 2025

Introduction to SNO+

- SNO+ is a multipurpose neutrino detector
 - Primary mission: $0\nu\beta\beta$
 - Additional measurements
 - **★** Solar,
 - * Reactor.
 - ★ Geo,
 - Supernova
- Sensitive to

$$\qquad \qquad \nu_e + e^- \rightarrow e^- + \nu_e$$

- $\bar{\nu}_e + p \rightarrow e^+ + n$
- Other channels...

The SNO+ Detector

- JINST 16 P08059
- 2 km underground
- 12 m diameter acrylic vessel
 - ▶ 780 tonnes liquid scintillator
- 9362 inward facing PMTs
- ≈ 17 m diameter geodesic support structure
- UPW shielding fills surrounding cavity (external veto)

- May 2017; Water fill complete: Start water data collection
- July 2019; Started replacing 908 t of UPW with LAB;
- March 2020 to Oct 2020:
 - Fill paused for pandemic (364 t)
- Fill Completed April 2021
- Added PPO to April 2022
- BisMSB added July to Dec 2023

- May 2017; Water fill complete: Start water data collection
- July 2019; Started replacing 908 t of UPW with LAB;
- March 2020 to Oct 2020:
 - ► Fill paused for pandemic (364 t)
- Fill Completed April 2021
- Added PPO to April 2022
- BisMSB added July to Dec 2023

- May 2017; Water fill complete:
 Start water data collection
- July 2019; Started replacing 908 t of UPW with LAB;
- March 2020 to Oct 2020:
 - ► Fill paused for pandemic (364 t)
- Fill Completed April 2021
- Added PPO to April 2022
- BisMSB added July to Dec 2023

- May 2017; Water fill complete: Start water data collection
- July 2019; Started replacing 908 t of UPW with LAB;
- March 2020 to Oct 2020:
 - Fill paused for pandemic (364 t)
- Fill Completed April 2021
- Added PPO to April 2022
- BisMSB added July to Dec 2023

Calibration Systems

- Compatible with Scintillator
- Suppress radon incursion
- Now online: deployed sources in addition to embedded systems
- Optical sources
- AmBe source

Anti-Neutrino Spectrum in SNO+

- $2 \times 10^{20} \ \bar{\nu}$ per second per GW of thermal power
- CANDU reactor rates estimated from hourly IESO data
- Other reactor rates estimated from IAEA monthly averages

Reactor $\bar{\nu}$ in Full Scintillator Detector

- Used data collected between April 2022 March 2023
 - Stable running period following PPO addition
- Reduced (α, n) specific activity
 - ▶ ²¹⁰Po decays with 138 day half-life
 - Improved senstitivity compared to partial-fill $\bar{\nu}$ analysis
 - ► Eur Phys J C 85, 17 (2025).

Oscillation Measurements

- Phys Rev Lett 135, 121801
- Allows Δm_{12}^2 , $\sin^2 2\theta_{12}$ fit
- Best fit at $\Delta m^2_{12} = (7.96^{+0.48}_{-0.42}) \times 10^{-5} \text{ eV}^2$

8/23

Solar Neutrino Measurements In Scintillator

- Measurement of solar neutrinos in progress
- Elastic electron-neutrino scattering signal

- Complementary oscillation measurement
 - ▶ More sensitive to θ_{12}

Combination with of Reactor and Solar neutrino results

- Adding solar data better constrains θ_{12} in addition to Δm_{12}^2
- Ease tension in measurements to be consistent with KAMLAND
 - lacktriangle KAMLAND + global solar $\Delta m^2_{12} = (7.53 \pm 0.18) imes 10^{-5} \; \mathrm{eV^2}$
 - ▶ **But:** SK+SNO global solar $\Delta m_{12}^{-2} = (4.8^{+1.3}_{-0.6}) \times 10^{-5} \text{ eV}^2$

Combination with of Reactor and Solar neutrino results

- ullet Adding solar data better constrains $heta_{12}$ in addition to Δm_{12}^2
- Ease tension in measurements to be consistent with KAMLAND
 - lacksquare KAMLAND + global solar $\Delta m_{12}^2 = (7.53 \pm 0.18) imes 10^{-5} \; \mathrm{eV}^2$
 - ▶ **But:** SK+SNO global solar $\Delta m_{12}^2 = (4.8^{+1.3}_{-0.6}) \times 10^{-5} \text{ eV}^2$

CC Interactions between ¹³C and ⁸B Solar Neutrinos

C13 Solar Neutrino Charge Current Detection

- Null hypothesis rejected at 4.2σ
- Measure rate of $1.6^{+0.82}_{-0.65}$ ev/year/tonne of $^{13}\mathrm{C}$
- Flux-weighted average cross-section:
 - $ightharpoonup (16^{+8.5}_{-6.7}(stat)^{+1.6}_{-2.7}(sys)) imes 10^{-43} \ {\rm cm}^2$

(ロ) (型) (型) (型) (型) (型) (の)

Geo-Neutrinos

- Parallel measurement with reactor neutrinos
- Sensitivity will improve with livetime

- Measured IBD rate of 73 $^{+47}_{-43}$ TNU
- Probe the abundance of heat-producing elements; U and Th
 - Result to be combinated with KamLAND and Borexino
- ullet Improvements in (α, n) discrimination will improve sensitivity

Pre-supernova neutrinos

- IBDs provide early Supernova signal
 - Rate expected to increase on the days in advance of a CCSN
 - Online monitoring systems currently functional
- Evaluation made assuming Partial Fill (α, n) rates
 - Expect to improve sensitivity given reduced background

Sensitivity to Supernovae

- SNO+ will saturate for close Supernova
 - Saturation limit determined by stress testing detector
 - Improved stress test in planning for coming year
- Limits are highly model dependent
- Study of IBD/ES in surrounding water could double the target mass and extend sensitivity

Neutrinoless Double Beta Decay Outlook

- Will deploy ¹³⁰Te in scintillator
 - ▶ Natural abundance of ¹³⁰Te is 34%
 - Enrichment not required
- Studies of background and light yield underway

Cosmogenic

2νββ

 (α, n)

External

1000

| Compared to the control of t

1013

ROI: 2.42 - 2.56 MeV [-0.5σ - 1.5σ] Counts/Year: 9.47

⁸B v ES

 10^{12}

1011

Tellurium Deployment

- Dissolved as Tellurium Butanediol
 - Synthesized from TeA and ButaneDiol
 - Stablized using DDA
 - ► See NIM A 795 (2015) 132-139
- Staged deployment being prepared
 - ▶ 1.3 tonnes ¹³⁰Te Planned
- Full-scale test batch of tellurium purification has been completed
- Further tests of purification and synthesis underway
- Planning 2026 deployment

Summary

- SNO+ has a rich physics program in process
- Results have been published for
 - Solar neutrino detection in water
 - Reactor neutrino detection in water and scintillator fill
 - lacktriangleright Reactor $ar{
 u}$ oscillations and observations of geoneutrinos
- New results on their way to publication
 - Solar neutrinos in scintillator
 - ▶ First detection of Solar neutrino interactions with Carbon-13
- Efforts for monitoring Supernova under way
- Progressing toward deployment of 130 Te for $0\nu\beta\beta$

Thank you

19 / 23

Backup Slides

$\bar{\nu}$ Oscillations

General representation of neutrino oscillations

$$\bar{\nu}_{\alpha} = \sum_{i=1}^{3} V_{i\alpha} \bar{\nu}_{i}$$

- $\alpha \in \{e, \mu, \tau\}$
- Probability of electron survival in the limit pertinent to SNO+

$$P_{ee} \approx (1 - \sin^2 2\theta_{12} \sin^2 \Delta_{21}) \cos^4 \theta_{13} + \sin^4 \theta_{13}$$

- $\Delta_{21}=1.267\Delta m_{12}^2L/E$ where E [MeV] is the $\bar{\nu}$ energy and L [m] is the distance travelled
- $\Delta m_{12}^2 = m_1^2 m_2^2 \text{ [eV}^2\text{]}$
- Current averages:
 - $\sin^2 \theta_{12} = 0.307 \pm 0.013$
 - lacksquare $\Delta m_{12}^2 = (7.53 \pm 0.18) imes 10^{-5} \ ext{eV}^2 \ ext{(KAMLAND} + ext{global solar)}$
 - ▶ **But:** SK+SNO global solar $\Delta m_{12}^2 = (4.8^{1.3}_{-0.6}) \times 10^{-5} \text{ eV}^2$
- SNO+ can measure both solar and reactor neutrino spectra
 - Resolve the existing tension

First observations of reactor neutrinos in water

PhysRevLett.130.091801

- Parallel analyses conducted
 - ▶ Likelihood Ratio
 - ▶ Boosted Decision Tree
- Demonstrated 3.5σ evidence of rector $\bar{\nu}$ events in water

Final SNO+ Solar Neutrino Measurements in Water

- Phys.Rev.D 110 (2024) 12, 122003
- Measure ⁸B solar neutrino flux from 282.4 live days
 - ▶ $2.32^{+0.18}_{-0.17}(stat.)^{+0.07}_{-0.05}(syst.) \times 10^6 cm^{-2} s^{-1}$ assuming no ν oscillations
 - ▶ $5.36^{0.41}_{0.39}(stat.)^{0.17}_{-0.16}(syst.)) \times 10^6 cm^{-2} s^{-1}$ assuming standard ν oscillations