

All-Sky High-Energy Neutrino Source Searches with IceCube

Riya Shah for the IceCube Collaboration NNN 2025, Sudbury

Outline

- Intro to IceCube
- Potential high-energy cosmic-ray/neutrino sources
- IceCube Event Signatures
- IceCube's Background & Effects on Data Selections
- Recent results
- New Era in IceCube Neutrino Source Searches

5,160 Digital Optical Modules

86 strings with 60 DOMs each 6 denser strings for particle physics

Surface array for cosmic ray physics

Completed in December 2010

- Active Galactic Nuclei (AGN)
 - Blazars
 - Seyferts
 - X-Ray Bright

*Credit: NASA

- Active Galactic Nuclei (AGN)
 - > Blazars
 - > Seyferts
 - > X-Ray Bright
- Supernova Remnants (SNRs)

*Credit: NASA

- Active Galactic Nuclei (AGN)
 - Blazars
 - Seyferts
 - X-Ray Bright
- Supernova Remnants (SNRs)
- Gamma-ray Bursts (GRBs)

Artist Rendition of gamma-ray

*Credit: NASA

- Active Galactic Nuclei (AGN)
 - Blazars
 - Seyferts
 - X-Ray Bright
- Supernova Remnants (SNRs)
- Gamma-ray Bursts (GRBs)
- Galactic plane (Milky Way)

- Active Galactic Nuclei (AGN)
 - Blazars
 - Seyferts
 - X-Ray Bright
- Supernova Remnants (SNRs)
- Gamma-ray Bursts (GRBs)
- Galactic plane (Milky Way)

- Active Galactic Nuclei (AGN)
 - Blazars
 - Seyferts
 - X-Ray Bright
- Supernova Remnants (SNRs)
- Gamma-ray Bursts (GRBs)
- Galactic plane (Milky Way)

Tracks

Tracks

- **Tracks**
- ➤ Median angular resolution ~0.5°
- ➤ Vertex can be outside detector
- ➤ Difficult to estimate energy

- ➤ Median angular resolution ~0.5°
 Tracks
 ➤ Vertex can be outside detector
 - ➤ Difficult to estimate energy

Cascades

- ➤ Median angular resolution ~0.5°
 - ➤ Vertex can be outside detector
 - ➤ Difficult to estimate energy

Cascades

Tracks

- ➤ Median angular resolution ~0.5°
 - Vertex can be outside detector
 - ➤ Difficult to estimate energy
 - ➤ Median angular resolution ~8° at E > 100 TeV
- Vertex in or near detector
- ➤ Better energy resolution

Tracks

Cascades

20

- Cosmic rays interact with the atmosphere
 - Produces atmospheric μ (tracks)
 - Produces atmospheric v
 (tracks or cascades)

Atm. μ : ~ 10¹¹ per year

Atm. v: ~ 10^5 per year

Astro. v: ~100 per year

- Cosmic rays interact with the atmosphere
 - Produces atmospheric μ (tracks)
 - Produces atmospheric v
 (tracks or cascades)

Atm. μ : ~ 10¹¹ per year

Atm. $v: \sim 10^5$ per year

Astro. v: ~100 per year

- Cosmic rays interact with the atmosphere
 - Produces atmospheric μ (tracks)
 - Produces atmospheric v (tracks or cascades)
- Earth absorbs almost all background μ
 from Northern Sky (zenith > 85°)

 δ : Equatorial Declination

- Cosmic rays interact with the atmosphere
 - Produces **atmospheric μ (**tracks**)**
 - Produces atmospheric v
 (tracks or cascades)
- Earth absorbs almost all background μ from Northern Sky (zenith > 85°)
- Southern Sky (zenith < 85°) is filled with background μ (no Earth filter)

 δ : Equatorial Declination

Cosmic rays interact with the atmosphere

(δ < -5°)
Southern Sky
----Northern Sky

Equatorial Coord: $\delta = -5^{\circ}$

How does our background affect track-based and cascade-based datasets?

• Southern Sky (zenith < 85°) is filled with background μ (no Earth filter)

cosnic

North Pole

 δ : Equatorial Declination

Track-Based

Southern Sky background μ require harsh low-energy cuts on Southern Sky track events

Track-Based

Southern Sky background μ require harsh low-energy cuts on Southern Sky track events

Track-Based

Southern Sky background μ require harsh low-energy cuts on Southern Sky track events

Since μ do not appear as cascades, no low-energy cuts necessary in Southern Sky

Cascade-Based

Track-Based

Southern Sky background μ require harsh low-energy cuts on Southern Sky track events

Since μ do not appear as cascades, no low-energy cuts necessary in Southern Sky

Recent High-Energy Neutrino Source Search Results

Recent High-Energy Neutrino Source Search Results

- Active Galactic Nuclei (AGN)
 - Blazars
 - Sevferts
 - > X-Ray Bright
- Supernova Remnants (SNRs)
- Gamma-ray Bursts (GRBs)
- Galactic plane

Recent High-Energy Neutrino Source Search Results

- Active Galactic Nuclei (AGN)
 - Blazars
 - > Seyferts
 - > X-Ray Bright
- Supernova Remnants (SNRs)
- Gamma-ray Bursts (GRBs)
- Galactic plane

Point Sources

Recent High-Energy Neutrino Track-Based Search Results

Recent High-Energy Neutrino Track-Based Search Results

^{*} Galaxy Image Credit: NASA

Recent High-Energy Neutrino Source Search Results

- Active Galactic Nuclei (AGN)
 - Blazars
 - Sevferts
 - X-Ray Bright
- Supernova Remnants (SNRs)
- Gamma-ray Bursts (GRBs)
- Galactic plane

Extended Sources

Recent High-Energy Neutrino Cascade-Based Search Results

Recent High-Energy Neutrino Cascade-Based Search Results

Recent High-Energy Neutrino Cascade-Based Search Results

Beginning a New Era of IceCube Neutrino Source Searches

44

Beginning a New Era of IceCube Neutrino Source Searches

Recent & historical searches relied on single event-signature datasets

Beginning a New Era of IceCube Neutrino Source Searches

- → Recent & historical searches relied on single event-signature datasets
- → Previous multi-signature datasets suffered from handling track and cascade differences
 - variations in detection rates, MC simulations, & expected neutrino flavor ratios

Beginning a New Era of IceCube Neutrino Source Searches

- → Recent & historical searches relied on single event-signature datasets
- → Previous multi-signature datasets suffered from handling track and cascade differences
 - variations in detection rates, MC simulations, & expected neutrino flavor ratios
- ★ My work: Creation and implementation of simultaneous fit of different event signatures

Simultaneous Fit - Sensitivity Improvement

Simultaneous Fit - Sensitivity Improvement

- ★ Results in **best** all-sky sensitivity
- ★ Improvement in south over both single-signature datasets

Simultaneous Fit - Effective Area Improvement

- ★ Northern Sky
 - 30% avg. improvement compared to tracks

Simultaneous Fit - Effective Area Improvement

- ★ Northern Sky
 - 30% avg. improvement compared to tracks
- **★** Southern sky
 - 40% avg. improvement compared to cascades

Cascades + Tracks

Simultaneous Fit - Results: New Hotspot!

Maximum Likelihood Modification

Single Signature
$$L(\gamma,\,n_s)=\prod_i \left[rac{n_s}{N}S_i+\left(1-rac{n_s}{N}
ight)B_i
ight]$$
 Likelihood

Maximum Likelihood Modification

Single Signature
$$L(\gamma,\,n_s)=\prod_i \left[rac{n_s}{N} S_i + \left(1-rac{n_s}{N}
ight) B_i
ight]$$
 Likelihood

Multi-Signature Likelihood

$$L(\gamma,\,n_s) \ = \ \prod_j \prod_{i \in j} \left\lfloor rac{n_s^j}{N^j} S_i^j + \left(1 - rac{n_s^j}{N^j}
ight) B_i^j
ight
floor$$

Product over dataset

Product over events in dataset j

Summary

Many new and interesting IceCube results with single signatures

Summary

- Many new and interesting IceCube results with single signatures
- > New era in IceCube neutrino source searches
 - Simultaneous fit of tracks and cascades provides current best
 Southern Sky sensitivity across all IceCube datasets
 - Uncovers a new southern hotspot previously unseen in single-signature searches

Summary

- Many new and interesting IceCube results with single signatures
- > New era in IceCube neutrino source searches
 - Simultaneous fit of tracks and cascades provides current best
 Southern Sky sensitivity across all IceCube datasets
 - Uncovers a new southern hotspot previously unseen in single-signature searches
- Can combine any number of individual datasets while accounting for differences between tracks and cascades
 - Many new analyses across the IceCube Collaboration have started using my method & combined fit dataset

Supplementary Material

IceCube Event Signatures - Tau Neutrinos

Combining Datasets: Further Considerations

- Needed to retain optimal settings for tracks and cascades individually
 - Background scrambling for cascades needs to be bigger due to larger angular uncertainty
- Must remove overlapping data
 - Kept overlapping events in cascade dataset to keep it robust
- Tested overlapping MC effects on sensitivity
 - Does not affect sensitivity by an appreciable amount

Time-Integrated Likelihood

$$L(\gamma,\,n_s)=\prod_j\prod_{i\in j}\left[rac{n_s^j}{N^j}S_i^j+\left(1-rac{n_s^j}{N^j}
ight)B_i^j
ight]$$
 Spectral Index Number of signal events Total number of events

Time-Integrated Likelihood

$$L(\gamma,\,n_s)=\prod_j\prod_{i\in j}\left[rac{n_s^j}{N^j}S_i^j+\left(1-rac{n_s^j}{N^j}
ight)B_i^j
ight]$$
 Spatial Component - 2D Gaussian $S_i^j=rac{1}{2\pi\sigma_i^2}e^{-rac{|ec{x}_i-ec{x}_s|^2}{2\sigma_i^2}}$ uncertainty

Time-Integrated Likelihood

$$L(\gamma,\,n_s) \ = \ \prod_j \prod_{i \in j} \left\lceil rac{n_s^j}{N^j} S_i^j + \left(1 - rac{n_s^j}{N^j}
ight) B_i^j
ight
ceil_i$$

Test Statistic

$$TS = -2\log\left|\frac{\mathcal{L}(n_s = 0)}{\mathcal{L}(\hat{n}_s, \hat{\gamma})}\right|$$