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Neutrino Oscillations: open questions
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Super-K T2K, NOvA Daya Bay, Reno SNO, KamLAND

• Assuming three flavor neutrinos, oscillations depend on 3 

mixing angles, 2 mass splitting and 1 phase

• Open questions:

- Is the 3-flavor neutrino picture correct? Is PMNS unitary?  

- Is 𝝂𝟑 the heaviest (normal ordering) or the lightest (inverted 

ordering)? What is the sign of Δ𝑚31
2 ? 

- Do 𝝂 and 𝝂 oscillate differently? What is the value of 𝛿𝐶𝑃? 

- Does 𝝂𝟑 contain more 𝝂𝝉 or 𝝂𝝁? What Is the 𝜃23 octant? 

Current best measurements (solid) and complementary measurements (dashed)



DUNE’s motivations
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• For L = 1300 km and 𝑬𝝂 = 2.6 GeV, 

the asymmetry in the matter effect 

on 𝑷(𝝂𝝁 → 𝝂𝒆) is larger than the 

largest possible CP-violating 

difference → break parameters 

degeneracy!

Eν𝜇
(GeV)

Adapted from Harris, Ilic, Konaka, Canadian Journal of Physics (2025)

• Mixing angles are sufficiently large 

to design an experiment capable of 

measuring many oscillation 

parameters (Δ𝑚32
2 , 𝜃13, 𝜃23, 𝛿𝐶𝑃) 

without degeneracy, enabling a 

test on the validity of the three-

neutrino model!

• For L=1300 km and 𝑬𝝂=2.5 GeV, 

the asymmetry in the matter effect 

on 𝑷(𝝂𝝁 → 𝝂𝒆) is larger than the 

largest possible CP-violating 

difference → break parameters 

degeneracy!

𝑃(𝜈𝜇 → 𝜈𝑒)

−DUNE flux



Deep Underground Neutrino  Experiment 

October 2nd Gianfranco Ingratta | Presentation Title 19th November Gianfranco Ingratta | Neutrino – Hydrogen interactions in SAND
https://lbnf-dune.fnal.gov/

• Pillars of DUNE’s design: a large mass, high exposure, 

high precision, deep underground accelerator experiment 

capable of measuring neutrino and antineutrinos over a wide 

range of L/E covering two oscillations maxima

• 1500 collaborators over 35 countries (including        )

• Sited in two facilities: 

- FNAL: Beam source and Near Detector (ND)

- SURF: Far Detector (FD)
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DUNE – what we measure
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W. Dallaway

• Powerful neutrino beam of 1.2 MW 

(DUNE phase I) upgradable to 2.4 

MW (DUNE phase II)

• Unique broad band beam covering 

2 oscillation maxima

• High-energy tail above 𝝂𝝉 CC 

threshold → unique three flavor 

measurement opportunities (see 

contributions from W. Dallaway)
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https://indico.snolab.ca/event/21/contributions/514/


DUNE – what we measure
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Adapted from ArXiv:2103.13910

Backgrounds 

𝝂𝝁 Rate at ND

Ereco (GeV) 

• The Near Detector (ND) measures 

the convolution of the (unoscillated) 

flux with the cross-section and the 

detector effects.

• ND constrains the systematic 

uncertainties and predicts the 

event rate at the Far Detector (FD) 



DUNE – what we measure
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Adapted from ArXiv:2103.13910

• The Far Detector (FD) 
measures the 𝜈𝜇(𝜈𝜇) 
disappearance and the 
𝜈𝑒(𝜈𝑒) appearance over 
a wide range of energy 
using multi-kiloton 
LArTPC technology

• Repeat the 
measurement with 
antineutrino beam!

𝝂𝝁 disappearance 𝝂𝒆 appearance



DUNE bi-event plots
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• A specific set of oscillation parameters 
corresponds to a point lying on one of 
two ellipses: normal or inverted 
ordering

• DUNE’s ellipses are completely 
separated because of the long 
baseline → the matter effect is not 
degenerate with the (possible) CP 
violation effect

Plots from C. Marshall, Fermilab Colloquium (Indico here)

𝝂𝒆 

𝝂𝒆 

Plots assume DUNE Phase I 

https://indico.fnal.gov/event/68891/contributions/312748/


• The broad band beam covering two 

oscillation maxima allows DUNE to 

make bi-event plots for multiple 

energy bins:

- Test the energy dependence of these 

ellipses predicted by the 3-neutrino 

standard model 

- New physics would distort the L/E 

dependence

DUNE can do more
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Plots from C. Marshall, Fermilab Colloquium (Indico here)

Plots assume DUNE Phase I

https://indico.fnal.gov/event/68891/contributions/312748/


DUNE can do more
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• DUNE will resolve the mass ordering for any 𝛿𝐶𝑃 scenario

• In the long term, DUNE can:

- establish whether CP is violated (for a range of values)

- measure precisely the oscillation parameters, relying minimally on 
external constrains (i.e. input parameters from other experiments)

Plots assume DUNE Phase II 

Plots from C. Marshall, Fermilab Colloquium (Indico here)

https://indico.fnal.gov/event/68891/contributions/312748/


Detector technology - LArTPC
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• Particles reconstructed from 
ionization and scintillation light

• Ionization drift in electric field 
towards sensing elements 
(slow signal, v∼0.16 cm/𝜇s):

- Low threshold for ionization: 
23.6 eV/e-

• Scintillation light (128 nm) 
with: 

- fast emission (6 ns) from argon 
dimers and slow emission    
(1.3 𝜇s) from argon triplets 

- LAr is transparent to its own 
scintillation LArTPC module of DUNE 

Far Detector (17 kton)

1
7

.8
 m



DUNE’s design – Far Detector 
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• DUNE will start with 2 FD 

modules, each 17 kt total 

volume 1 mile underground with 

different configuration

- Horizontal drift (3.5 m), wire 

readout (5 mm wire spacing) 

providing high granularity 

(Canadian group heavily 

involved in the DAQ system)

- Vertical drift (6.5 m) 

Anode Cathode CathodeAnode Anode

3.6 m

Horizontal drift

e

6.5 m



DUNE’s design – Near Detector 
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SAND
TMS

ND-LAr

• Measures the unoscillated 
flux, constrains systematic 
uncertainties (xsec, flux, …) 
and predicts the far detector 
event rate 

• Located 574 m downstream of 
neutrino beam source and 
includes three components:

- ND-LAr: a 67 t LArTPC

- TMS: The Muon 
Spectrometer (muon catcher)

- SAND: System for on Axis 
Neutrino Detection, a 
multipurpose magnetized 
detector



DUNE’s design – ND-LAr
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SAND
TMS

ND-LAr

• The challenge is the 

event pileup:

- 100-150 neutrino 

interactions (inside and 

nearby materials) within 

10 𝝁𝒔 spill window

- Traditional LArTPCs with 

wire-based readout are 

slow (𝟑𝟎𝟎 𝝁𝒔 max drift in 

ND-LAr) and too many 

(2D) hits on a long wire 

→ confusion! 𝝂 / 𝝂



DUNE’s design – ND-LAr
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SAND
TMS

ND-LAr

• Detector segmented into 35 
modules 1×1×3 m3, each with 
separated light and charge readout.

• Charge readout on the anode 
plane based on pixels providing 
native 3D hits with O(4mm) 
granularity

• Light readout: light traps coupled 
with SiPMs providing <10ns single 
hit timing resolution

Top view into a small prototype 

module with the top panel removed 

(Instruments 2024 8, 41)

(Charge collection)

(light collection)

(light collection)



DUNE’s design – PRISM concept
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SAND
TMS

• Predicted rates at the Far 
Detector are affected by 
systematical uncertainties

• DUNE PRISM to make a 
robust prediction: 

- TMS and ND-LAr move 
off axis to measure the 
neutrino spectra at 
different off axis positions

- SAND permanently stays 
on axis as monitor

• Build FD oscillated spectra 
from linear combination to 
match (very minimal 
dependence on 
interaction modeling)

ND-LAr



DUNE’s – SAND opportunities
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• SAND’s design includes:

- Magnetic field 0.6 T

- Modular low-density target-tracking 

system to retain high momentum 

resolution for muons

- Existing ECAL with time resolution 

55 ps / 𝑬 (𝑮𝒆𝑽)

- C, C3H6 and Argon target materials

• SAND provides a sample of 𝝂 𝝂  - 

H interactions from subtraction of 

C from C3H6→ sample free from 

nuclear final state interactions 

(FSI) to constrain systematic 

uncertainties on cross-section! 

KLOE exp.: https://www.sciencedirect.com/science/article/pii/S0168900201015029
Solid Hydrogen technique: https://arxiv.org/html/1809.08752v3

DUNE preliminary

Selected CCQE on Hydrogen events 

in SAND assuming reverse horn 

current and 1 year data taking

https://www.sciencedirect.com/science/article/pii/S0168900201015029
https://arxiv.org/html/1809.08752v3


• Because of the long baseline,
𝜈/𝜈 asymmetry from matter 
effect is expected to be larger 
than the largest possible CP-
violating difference

• DUNE is the only experiment 
to determine the mass 
ordering to 5𝜎 (within 5 years 
for any value of 𝜹𝑪𝑷)

• DUNE MO determination is 
crucially important as input to 
experiments that measure:

- neutrino absolute mass

- 𝜹𝑪𝑷 assuming MO is known

October 1st Gianfranco Ingratta | Probing the nature of neutrinos with DUNE18

DUNE sensitivity – Mass Ordering  
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DUNE sensitivity – 𝜹𝑪𝑷 phase
• In long term, DUNE can establish 

CP violation over 75% of 𝛿𝐶𝑃 

values at >3σ

Eur. Phys. J. C 80, 978 (2020)



DUNE precise measurements
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• DUNE will also reach current 

generation sensitivity on 

mixing angles being very well 

measured by reactors (𝜃13) 

• DUNE measurements will rely 

minimally on external input 

parameters (model agnostic 

measurement)

• Comparisons with reactor 

measurements are sensitive 

to new physics 



Supernova physics at DUNE FD
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• DUNE FD is sensitive to 𝜈𝑒 from 

supernova burst (neutronization 

phase) through the dominant CC 

interaction:

𝝂𝒆 + ⁴⁰𝑨𝒓 → 𝒆− + ⁴⁰𝑲∗

• 5° pointing resolution on 

supernova location using 

𝝂𝒙 + 𝒆− → 𝝂𝒙 + 𝒆− 

• Complementary measurements 

to others experiments

DUNE 𝝂𝒆

Expected 𝝂𝒆 rate for 10 kpc distant 

supernova assuming “Garching model”1. SK Coll Astropart.Phys. 81 (2016)

2. Lu, Li & Zhou Phys.Rev.D 94 (2016)

ArXiv:2002.03005v2



Solar neutrinos in DUNE FD
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• DUNE FD will have sensitivity 

to hep neutrinos flux with 

energy above ∼ 5 MeV

• Control of background is 

crucial:

- Most challenging backgrounds 

are fast neutrons from 

cavern and gammas from 

neutron activation in rock, that 

extend well beyond 5 MeV

• Passive shielding would help 

to reduce the background 

(studies ongoing)
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LBNF/DUNE under construction



DUNE under construction
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• DUNE Phase I:

- DUNE Far Detector caverns 
completed in 2024!

- Cryostats constructed at CERN, 
shipped to South Dakota and 
ready for installation in 2026

- Far Detectors 1 and 2 
installation expected to be 
complete and starting to 
operate ~2029

- Physics in early 2030s

• DUNE Phase II:

- Far Detector Modules 3 and 4 
within ∼5 years from Phase I

- Beam power upgrade

cavern excavated  in Lead, South 

Dakota  (news.fnal.gov)



ProtoDUNEs at CERN
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• To test DUNE style horizontal and vertical drift detectors, two 

prototypes of about 700 tons have been operating in charged 

particle beam at CERN

• Horizontal drift produced the first physics publications in 2024 

and vertical drift is ready for tests this year 

𝜋0 𝜋0 → 𝛾𝛾

𝑝

𝜋+

𝜇

LAr vertical drift prototype 

(this year’s tests)

LAr horizontal drift 

prototype

ProtoDUNE hall, CERN



DUNE Near Detector Prototypes
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• Fermilab, 2x2 prototype (2.2 t) : 

smaller segmented, pixelated 

LAr TPC

- Operated in NuMI neutrino 

beam in summer 2024 DUNE has 

neutrino data!

- Longer beam run planned for 

2026

• Bern, Full Scale Demonstrator

- 70M cosmic-ray events over 

several weeks of data-taking

https://indico.cern.ch/event/152
8564/contributions/6607200/att
achments/3126924/5546411/D
UNEND2x2NuFACT.pdf

Operation of a Modular 
3D-Pixelated Liquid Argon 
Time-Projection Chamber 
in a Neutrino Beam

arXiv:2509.07012v1

https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012


DUNE Near Detector Prototypes

October 2nd Gianfranco Ingratta | Presentation Title 27

• Fermilab, 2x2 prototype (2.2 t): 

smaller segmented, pixelated 

LAr TPC

- Operated in NuMI neutrino 

beam in summer 2024

-  DUNE has neutrino data!

- Longer beam run planned for 

2026

https://indico.cern.ch/event/152
8564/contributions/6607200/att
achments/3126924/5546411/D
UNEND2x2NuFACT.pdf

Operation of a Modular 
3D-Pixelated Liquid Argon 
Time-Projection Chamber 
in a Neutrino Beam

arXiv:2509.07012v1

2x2

https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012
https://arxiv.org/pdf/2509.07012


Conclusions
• DUNE is under construction and already doing science with its 

prototypes!

• DUNE is designed to test the three-neutrino model, estabish the 

mass ordering and make precise measurement of 𝛿𝐶𝑃 phase 

and other oscillation parameters.

• If a supernova will occur nearby, DUNE will be there!

• Canada institutions are actively involved in both FD and ND!
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backup
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Detector technology - LArTPC
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• Particles are reconstructed from 
charge ionization and scintillation light

• Ionization drift in electric field towards 
sensing elements (slow signal, v∼0.16 
cm/us) 

• Scintillation light (128 nm) 

- fast emission (6 ns) from excited argon 
dimers (about ¼ of total light for mip) 
provides track t0. 

- Slow emission from argon triplets light is 
emitted with a lifetime 1.3 us 

- Different light collections exploited in 
DUNE: PMTs coated with wavelength 
shifter, flatter photon detectors 
(ARAPUCA), etc.JINST 17 P01005 (2022) 

• Low threshold for ionization: 23.6 
eV/e- and transparent to its own 
scintillation

LArTPC module 

of DUNE Far 

Detector (17 kton)

1
7

.8
 m



DUNE’s design – Far Detector 
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• DUNE will start with 2 Far Detector modules, 
each 17 kt total volume about 1 mile 
underground

• There are two different configurations 
planed: electric field is 

- Horizontal: 3.5 m drift, 500 V/cm, 180 kV 
cathode plane assembly, 5 mm wire 
spacing, fine-grained info

- Vertical: 6.5 m drift, 450 V/cm, 294 kV 
cathode plane. Instead of planes of wires, 
the sensitive elements conducting strips 
printed on 3.2 mm thick printed circuit 
boards

• Low threshold for ionization: 23.6 eV/e-

• High granularity → substantial data volume 
→ DUNE Data Acquisition System, to which 
the Canadian group is heavily contributing

Anode Cathode CathodeAnode Anode

3.6 m

Horizontal drift

e



Low energy background model
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Refer to DUNE CM 
presentation 
https://indico.fnal.gov/even
t/69307/contributions/3233
87/attachments/191141/26
4329/DUNE_LEP_CCuesta_2
509.pdf



Low Energy physics in DUNE FD
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• 𝜈𝑒 +40 𝐴𝑟 → 𝑒− +40 𝐾∗ → 𝑒− +40 𝐾 + 𝑁𝛾

Signature: short electron track + gamma 

ejected from nucleons observable via 

energy deposition from Compton 

scattering, showing up as small charge 

blips

• Elastic scattering 𝜈𝑥 + 𝑒− → 𝜈𝑥 + 𝑒−

Event counts for 40 kton detector, 10 kpc core 

collapse

Eur.Phys.J.C 81 (2021) 5, 423



Supernova trigger efficiency
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• The general strategy will be to 
record data from all channels over 
a 30-100 second period around 
every trigger

• A real-time algorithm should 
provide trigger primitives by 
searching for photomultiplier hits 
and optical clusters, where the 
latter combines several hits 
together based on their 
time/spatial information

• 1/month false trigger rate

• During the first 50 ms of a 10-kpc-
distant supernova, the mean 
interval between successive 
neutrino interactions is 0.5−1.7 ms 
depending on the model. The TPC 
alone provides a time resolution of 
0.6 ms

DUNE Coll, Eur.Phys.J.C 81 (2021) 5, 423
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• Matter effect and CP violation are degenerate

• Statistical uncertainty is large compared to allowed parameter 

space

- There will always be a combination of standard parameters that agrees with 

the data

- There will likely be many allowed combinations → degeneracies

Limitation of existing data



BSM in DUNE- proton decay 
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• DUNE will be an excellent 

detector to perform nucleon 

decay searches: 

Underground location, Very 

large fiducial mass; Millimeter 

size imaging capabilities

• Golden channel in DUNE: 

𝑝 → 𝜈 + 𝐾+
Wire number
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