

KM3NeT is a Mediterranean research infrastructure hosting two neutrino detectors and instrumentation for Earth and sea sciences

More than 65 institutes in 22 countries in 5 continents

Same technology for:

KM3NeT/ARCA (Astroparticle Research with Cosmics in the Abyss) - Observation of high energy (GeV ÷ PeV) neutrino sources with a telescope offshore Capo Passero (Sicily-Italy) at a depth of ~3500 m

KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss) - Determination of the neutrino mass hierarchy with a detector offshore Toulon (France) able to detect neutrinos of tens of GeV at a depth of ~ 2500 m

KM3NeT vs. the other neutrino astronomy initiatives in the Mediterranean

ANTARES – first undersea neutrino telescope ever built – operated from 2006 to 2022 (see <u>Sara Rebecca Gozzini's talk</u>)

NEMO and NESTOR – extensive R&D programs carried out in Italy and Greece

KM3NeT – based on the experience from those three pilot projects - construction of ARCA and ORCA ongoing

Assembly of one ANTARES 'storey'

A NEMO 'tower'

A NESTOR 'tower'

A game changer: the KM3NeT DOM

Principles of the KM3NeT design (to scale up the ANTARES size):

- Push performance and reliability
- Simplify the mechanics: reduce the number of containers and interfaces
- Go for a lean detection unit structure, easy to transport and deploy

The multi-PMT Digital Optical Module (DOM) of KM3NeT – bottom view

KM3NeT blooming on ANTARES...

Deployment of a KM3NeT Detection Unit (DU)

Main features of the DOMs

- Each DOM is equipped with 31 PMTs (3" photocathode): Hamamatsu R12199 and R14374
- Each DOM includes the opto-electronics for data collection and transmission + all needed calibration devices
- Each DOM works as an autonomous detection node

Advantages compared to single-PMT modules:

- Maximal sensor area (equivalent to 3 PMTs of 10" photocathode)
- Improved photon counting
- Directional sensitivity
- Possibility of local triggers, cross-calibration and background suppression
- Large angular acceptance
- Cost-effectiveness!
- It allows to simplify the detection unit structure

(Ref.: Eur. Phys. J. C (2014) 74: 3056 & JINST (2022) **17** P0703)

In a summary:

Multi-PMT DOM (Digital Optical Module)

- 31 PMTs (3" photocathode)
- Maximal sensor area
- Photon counting
- Directional sensitivity

Several DUs can be installed in the same sea operation

18 DOMs are installed in a DU (Detection Unit)

The DU is packed on a spherical launcher vehicle for installation, from which it will unfurl after deployment on sea bottom

(Ref.: JINST (2020) 15, P11027)

	ARCA	ORCA
Location	Sicily (IT)	Toulon (FR)
Depth	3450m	2450m
No. of DUs	2 x 115	115
DU horizontal spacing	90 m	20 m
DOM Vertical Spacing	36 m	9 m
DOMs/DU	18	18
PMTs/DOM	31	31
Instrumented water mass	1 Gton	7 Mton
DUs deployed	51	28

DU height is ~700 m in ARCA, ~200 m in ORCA

(Ref.: LoI, J. Phys. G:43 (2016) 084001)

Equipped for detection of all neutrino flavours!

Tracks: @E_v>100 TeV Angular resolution below 0.1° - Energy resolution ~ factor 2

Shower: @E_v>100 TeV Angular resolution below 2° - Energy resolution ~6%

Calibration

⁴⁰K decays: correlated photons

Detector Timing PMT efficiency

Comparison static/dynamical positioning

KM3NeT/ARCA30, preliminary

Cross-check: stopping cosmic muons, cosmic ray shadow sun/moon)

How KM3NeT (ARCA+ORCA) compares to ANTARES

Improvement in effective area and angular resolution over full energy range

Core-Collapse Supernova neutrinos

Based on detection of collective increase of signal rates in DOMs

PMT multiplicity plot

Expected signal

Significance

On-line alert system for CCSN Integrated in SNEWS2.0

voscillation patterns in ORCA

3 classes of events

(see <u>Jürgen Brunner's talk</u> for more details)

Neutrino oscillation results

Already providing relevant information with reduced exposure (715 kt-y analyzed, with 3 Mt-y on disk)

Slight IO preference

Neutrino oscillation and BSM investigations

Thanks to large data sample we can investigate:

- Oscillation parameters (Δm_{31}^2 $\sin^2\theta_{23}$) & neutrino mass ordering
- Tau appearance and unitarity of the neutrino mixing matrix (Ref. <u>J. High Energ. Phys. 2025, 213</u> /2025))
- Sterile neutrinos
- Non-standard neutrino interactions (Ref. <u>JCAP 02 (2025) 073</u>)
- Quantum decoherence and invisible decay (Ref. <u>JCAP 03 (2025) 039</u> & <u>JCAP 02 (2025) 073</u>)
- Lorentz invariance violation (Ref. arXiv: 2502.12070)

Measurements of atmospheric particles

The very large data sample allows to:

- Measure the muon spectrum, studying anisotropies and seasonal variations, and searching for prompt component
- Measure the atmospheric neutrino spectrum (Ref. <u>Eur. Phys. J. C 85</u>, 871 (2025))
- Improve calibration
- Infer the water properties through detection of stopping muons

Search for dark matter in the Sun and the Galactic Center

No evidence found yet, but... already competitive with ANTARES and IceCube

Search for a cosmic diffuse neutrino flux

Galactic ridge

No signal found yet, but rapidly approaching the ANTARES sensitivity

Search for cosmic (point) sources of neutrinos

- Best source: MG3 J225517+2409 (as in ANTARES): Fermi 3LAC Blazar
- Pre-trial p-value: 4.0 10⁻⁵ (0.03 with ARCA) (Gain compared to ANTARES only)
- Post trial calculation under evaluation

- Accumulating more and more data
- Angular resolution improves as detector grows
- Combined search of ANTARES+KM3NeT improves the ANTARES sensitivity by 20%

KM3NeT perspectives

ARCA - Sensitivity for point-like searches

ORCA - Neutrino mass ordering

https://arxiv.org/abs/2402.08363

2020 2021 2022 2023 2024 2025 2026 2027 2028 202

ANTARES decommissioning

ARCA 51 DUs ORCA 28 DUs ARCA & ORCA completion

KM3-230213A: the first UHE neutrino!

Single muon crossing almost horizontally the entire ARCA21 detector, releasing a never-observed-before amount of signal (photons detected by more than 1/3 of the PMTs, 25% of which reached saturation!)

The almost horizontal direction, crossing the Malta escarpment, combined with the enormous signal released allowed to identify the highest-energy neutrino ever detected (220 PeV)

- More than 28,000 photons detected by 3,742 PMTs
- Evidence for three localized energy releases

(Ref. Nature 638, 376-382 (2025))

0 100 200 300 400 500 600 700 800 distance along track (m)

Quest for origin of KM3-230213A is continuing

Not incompatible with expectations from existing measurements and limits

Phys. Rev. X 15, 031016 (2025)

No obvious source found, either in Galaxy or beyond

https://arxiv.org/abs/2502.08387

Cosmogenic hypothesis scrutinized

ApJL 984, L41 (2025)

https://arxiv.org/abs/2502.08484

Working on improving the direction accuracy

Multi-messenger approach

Multi-messenger astronomy is becoming the most sensitive approach to astrophysical event

detection, especially for transient events

Multi-messenger framework developed in KM3NeT

KM3NeT actively monitors and analyses a variety of external triggers in real-time, including alerts due to IceCube neutrinos, Fermi/Swift GRB, HAWC gamma-ray transients, LIGO-Virgo-KAGRA gravitational waves, SNEWS neutrino alerts, and others

- Receiving alert system operative
 Real Time Analysis platform active since Nov. 2022 in ARCA & ORCA
- Several thousands of alerts received and analyzed in real time
 no significant excess found in any such alert so far
- Sending alert system being set up

 High-energy neutrino alerts will be sent in real-time by end of 2025

Outlook and conclusions

The KM3NeT detectors ARCA and ORCA exploit a novel multi-PMT Optical Module design to explore from the deep sea the frontiers of the cosmos and to investigate the neutrino properties

KM3NeT has been taking high-quality data already during its construction phase

New results available about neutrino oscillations, search for cosmic neutrinos and a variety of other topics (atmospheric muons and neutrinos, search for new physics, etc.) – with much more to come!

Highest-ever-energy event, KM3-230213A, observed in rich details

Detector construction is well proceeding:

- effective integration and deployment procedures are in place
- integration facilities are being further extended
- funding secured for ~2/3 ARCA and ~1/2 ORCA, new requests for funds submitted

Aiming at completing both ARCA and ORCA during this decade

