Cryogenic solid state detectors: SuperCDMS and beyond

Ziqing Hong, Miriam Diamond, University of Toronto

2025 SNOLAB Future Project Workshop

The Super Cryogenic Dark Matter Search

A direct detection search experiment which employs an array of ultra-pure silicon and germanium detectors to search for low-mass (< 10 GeV/c²) dark matter candidates.

~ 100 researchers at 28 institutes across 6 countries.

US Cosmic vision ArXiv:1707.04591

SuperCDMS @ SNOLAB **CUTE SuperCDMS SNOLAB Clean room** 2 km SuperCDMS Experiment **Cryogenics plant** 4

Radon filter plant

The SuperCDMS SNOLAB Experiment

Electron Recoil Backgrounds:

- External and facility: O(0.1 /keV/kg/d)
- Det. setup: O(0.1(Ge)-1(Si) /keV/kg/d)
- Total: O(0.1-1 /keV/kg/d)

Facility designed to be dominated by solar neutrinos in NR background

Facility:

- 6000 m.w.e. overburden
- 15 mK base temperature
- Initial Payload: ~30 kg total
 - 4 stacks of six detectors ("towers")
 - o 2 iZIP: 10 Ge / 2 Si
 - 2 HV: 8 Ge / 4 Si

Vibration isolation:

- Seismic: spring loaded platform
- Fridge on active vibration damper
- Cryo coolers: soft couplings
 - $\circ \quad \text{Braids, bellows} \\$
- Copper cans: hanging on Kevlar ropes

SuperCDMS Detector Technology

Discriminating

iZIP Detector:

- Prompt phonon and ionization signals allow for discrimination between nuclear and electron recoil events
 Low Threshold
 Low Here detector:
 - Drifting electrons/holes across a potential (V_b) generates a large number of phonons (Luke phonons).
 - Enables very low thresholds!
 - Trade-off: No event-by-event NR/ER discrimination

Sensors measure Et, and neh

SuperCDMS Detectors: Posing for the Cameras

- Detectors made of high-purity Ge and Si Crystals
 - Si (0.6 kg each) provides sensitivity to lower dark matter masses
 - Ge (1.4 kg each) provides sensitivity to lower dark matter cross-sections
- Low operation temperature: ~15mK
 - Athermal phonon measurement with **TESs**
 - Ionization measurement (iZIP) with **HEMTs**
- Multiple channels per detector to identify event position
- Initial payload will consist of 4 stacks of six detectors ("towers")
 - 2 iZIP: 10 Ge / 2 Si
 - 2 HV: 8 Ge / 4 Si

SuperCDMS Installation Status

Dilution refrigerator near C-stem

Shield assembly ²/₃ complete E-tank assembling in progress

Detector towers installed in SNOBOX ⁹

Background control: large scale copper etching

Gingerbread credit: Deena, Stephanie, Sharayah & Sahima¹⁰

SuperCDMS Schedule

NSERC 2024-2025					NSERC 2	025-2026		NSERC 2026-2027			NSERC 2027-2028				NSERC 2028-2029				
1 1			DOE F	Y 2025			DOE F	Y 2026			DOE F	Y 2027			DOE F	Y 2028	-		
NSF AY			Y 24-25			Y 25-26	26		NSF AY 26-27			NSF AY 27-28		27-28	2 - 20 - 21				
CY 2024				CY	2025		CY 2		2026			CY 2027				CY 2028			
Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
							Start	Full-Exp	eriment Se	cience									
Detec	tor Tes	sting &	Respon	nse			, —												
Preparati	ion for NE	xus																	
			Pre-test	@ NEXUS	Nucle	ear-recoil	ionizatio	n yield @	NEXUS										
								Fie	ducial Resp	oonse @	NEXUS								
Installation & Integration				TEnd (1	orecast)	(I&I End (late)													
	Pre-com	missionir	ng																
	Scienc	e Ope	rations																
					Comm	nissionin	g												
							Run 1	*	Science Dat	ta Set		Mainte	nan <mark>ce</mark>	Run					
Comp	outing	& Soft	ware																
	-				Da	ta Chall 4	4 Prom	pt Data I	Processing	and Rep	rocessing	g							

Cryogenic Underground TEst facility (CUTE)

- Friendly neighbour
- Taking on critical mission of detector testing
 - Exercise and debug detectors
 before SuperCDMS cryostat is in
 place
- Same environment, same electronics
 → similar challenges expected
- A small science exposure, mostly to exercise the analysis tools

Tower 3 installation into CUTE

Tower-3 (HV detectors) was installed and operated at CUTE from Oct '23 to March '24.

First time operating HV detectors in deep underground low-background facility.

SuperCDMS tower testing at CUTE

- 151 days of operation:
 - \circ ~ 2 months of calibration data
 - $\circ~$ ~ 2 months of low background data
 - Several weeks dedicated for detector characterization such as noise performance, HV testing

Understanding the detectors: Simulation

- GEANT4 + G4CMP based simulation
 - GEANT4 for energy depositions
 - G4CMP for charge and phonon propagations in crystals (NIM A 1055 168473 (2023))
- Deriving detector response modeling from first principle
- Validation with existing calibration data ongoing

https://github.com/bloer/bgexplorer-demo

Background modeling

- Background: extensive material cleaning, tracking and screening
- eTraveller: Bookkeeping tool to keep track of material movement
 - Precision accounting for cosmogenic activations
- BGExplorer: Background estimate based on material assay results

Exploring the sensor limit: $HV \rightarrow HVeV$ Detectors

HVeV: Prototype HV detector

- Gram scale
- eV level resolution

Low mass dark matter search background challenges

Latest attempt: HVeV @ CUTE

- New light tightness standard
- More sensitive TES sensors
 - Lower Tc, requires lower noise
- Quieter electronics
- SiO₂ insulating layer for charge injection
- Lower background
- Operating detector at multiple voltages to model non-ionizing backgrounds

QETs

SiO₂ HVeV achieved 0.573 eV baseline resolution!

0V data in hand to help model this

Detector response model fit to LED calibration data

10²

10

Counts

Residuals [σ]

3

0.0

25.0

Sample Spectrum from

80

100

20

40

60

Energy [eV]

120

HVeV with more targets

- HVeV now comes with different targets
- Germanium, SiC, Diamond, maybe others
- Better low-mass WIMP sensitivity with **Carbon**
- Exploring arts of fabrication
- Coming to SNOLAB soon!

HONEYCOMB

- Scaling up HVeV concept
- A few grams each
- "Dicing" wafer with Deep Reactive Ion Etching trenches
 - Leave a small "bridge" for thermal conduction
 - Smooth dicing reduces sidewall charge injection
 - Stress-free mounting, hope to reduce/remove low energy excess
- Multiplexing readout with uMUX
 - With multi-stage cryogenic amplifiers

HONEYCOMB

- Stacking multiple wafers for O(10 kg) payload
- Aiming for eV level threshold
- Multiple chips serve as active veto for each other
- Perfect match for recent RF readout upgrades for the CUTE facility

Slides from Taylor Aralis Questions should be directed to Yoni

narrow bandgap materials

$Eu_5In_2Sb_6$

 $EuZn_2P_2$

~40 meV indirect band gap

• ~10-100 meV indirect band gap

- Both have anisotropic crystal structures, making directional discrimination possible
- Both have low dark current, which is pure background for an ionization detector
- Both grown by SPLENDOR collaboration for this purpose

Slides from Taylor Aralis Questions should be directed to Yoni

Splendor Two-stage charge readout

SuperCDMS sensitivity projection : NRDM

Pushing the sensitivity into the neutrino-fog : three avenues

- \succ HV-SNOLAB-sized detectors : improved $\sigma_{\rm phonon} \rightarrow$ spectral discrimination
- > 10 cm³ iZIP detectors: improved $\sigma_{ionization} \rightarrow$ better ER/NR discrimination
- > 10 cm³ piZIP detectors: measure phonons from E_R and N_{eh} separately \rightarrow ionization-yield discrimination

Far future: underground detector fabrication

- With all detectors/technology under control, circle back to backgrounds
- Background budget dominated by Tritium, caused by cosmogenic activation
- Solution: Keep the whole detector fabrication cycle underground!
- Also benefit from electroformed copper underground

Conclusions

- SuperCDMS is well suited for low mass DM searches
- Low threshold enables low mass NR searches
 - iZIP provides background rejection
 - HV pushes down threshold further
- SNOLAB commissioning well underway
 - Lab provides critical resources for all aspects of the experiment
- HVeV detectors achieve sub-1 eV resolution
 - More variety of HVeV coming soon!
- Two more future experiments on the horizon
 - HONEYCOMB -- extreme phonon sensor
 - SPLENDOR -- charge readout with nano-gap materials

Eue In-Sb

EuZn B

Bonus Slides

QET Design and Transport

SuperCDMS Detectors & Dark Matter Mass Scales

- Dark Matter Mass Ranges
 - "Traditional" Nuclear Recoil:
 - Low Threshold NR:
 - HV Detector:
 - Migdal & Bremsstrahlung:
 - Electron recoil:
 - Absorption (Dark Photons, ALPs): HV, no discrimination,

Full discrimination,≥Limited discrimination,≥HV, no discrimination,~no discrimination,~HV, no discrimination,~HV, no discrimination,~

≥ 5 GeV
≥ 1 GeV
~0.3 - 10 GeV
~0.01 - 10 GeV
~0.5 MeV - 10 GeV
~1 eV - 500 keV ("peak search")

