Deep Underground Biology: Past, Present, and Future

Michel R. Lapointe, Ph.D. SNOLAB Future Projects Workshop April, 2025

Overview

- Summary of current sub-NBR findings
 - Separated by biological systems
- Interpretation of the data
- Challenges in translating results
- Next Step: Global deep underground biology collaborative project

Logo design generated by AI (ChatGPT/DALL-E, OpenAI, 2025).

Summary of Current Sub-NBR Findings

Organism			Dosimetry						
		Shielding	Shielded	Shielded Contro		uctio Duration		Results	Reference
Prokaryotes									
Cyanobacteria (Synechococcus lividus)	Lead	0.27 mGy/yr	1.49 mGy/yr	6 fold	35 days	Reduction i Growth rate	in growth ra	ate with shielding baseline with introduction of thorium nitrate (1.52 mGy/yr)	Conter 1983, Planel 1987 ^{70,71}
	Lead	0.27 mGy/yr	1.49 mGy/yr	6 fold	21 days	Reduction	in growth ra	ate with shielding of media only	1987 ⁷⁰
Bacteria (Deinococcus radiodurans)	WIPP	0.018 mGy/yı	r0.27 mGy/yr	15 fold	48 hours	• Reduction i	in growth ra	ate with shielding	Smith 2011 ⁷²
	WIPP	0.0014 mGy/yr	0.62 mGy/yr	445 fold (79 fold)*	48 hours	Reduction i Growth rate Increased e Expression	in growth ra e returns to expression levels dow	ate with shielding b baseline with introduction of KCl (0.62 mGy/yr) of HSP genes (dnaK) with shielding /n regulated when background radiation reintroduced	Castillo 2015 ⁶⁴
	WIPP	0.008 mGy/yı	r0.63 mGy/yr	79 fold	48 hours	 Reduction i Growth rate Increased e Decreased shielding 	in growth ra e returns to expression expressior	ate with shielding b baseline with introduction of KCl (0.62 mGy/yr) of DNA repair genes (lexA) and HSP genes (dnaK) with shielding n of oxidative stress genes (dps) and glucose metabolism genes (gapdH) w	Castillo vith 2017 ⁷³
	WIPP	0.008 mGy/yı	r0.63 mGy/yr	79 fold	72 hours	Expression Upregulatio Downregula	n of memb tion of prot	rane transport proteins with shielding tein transport, protein folding, and protein hydrolysis with shielding	Castillo 2021 ⁶⁶
Bacteria (Shewanella oneidensis)	WIPP	0.0014 mGy/yr	0.62 mGy/yr	445 fold*	48 hours	Reduction i Growth rate Increased e pump (SOA0*	in growth ra e returns to expression 154) with sl	ate with shielding b baseline with introduction of KCl (0.62 mGy/yr) of oxidative stress genes (katB), DNA repair genes (recA) and putative effl hielding	ux Castillo 2015 ⁶⁴
	WIPP	0.008 mGy/yı	r0.63 mGy/yr	79 fold	48 hours	 Expression Increased e (dnaK), and p Expression 	expression utative effl levels retu	of oxidative stress genes (katB, oxyR), DNA repair genes (recA, lexA), HSP ux pump (SOA0154) with shielding rn to normal when background radiation reintroduced	genes Castillo 2017 ⁷³
	WIPP	0.008 mGy/yı	r0.63 mGy/yr	79 fold	24 hours	 Reduced ex shielding Increased e and reduced shielding. 	xpression o expression expression	of ribosomal protein and tRNA genes during early exponential growth with of membrane transport, oxidative phosphorylation, amino acid synthesis of ribosomal protein, protein folding genes during late exponential growth	genes 1 with Castillo

Prokaryotes

10 publications in total, dating back to 1983, as recent as 2021. Primary findings in relation to sub-NBR exposure are decreased growth rates, increased heat shock protein expression, DNA damage response protein expression, decreased glucose metabolism genes, dysregulation of protein transport and membrane transport proteins.

10.3389/fgene.2021.644292

		Dosimetry							
Organism	Shielding	Shielded	Contro	l Reduc on	Duration	Results	Reference		
Single cell eukaryotes									
	CNRS [♭] and lead	0.1 mGy/yr	1.65 mGy/yr	17 fold	10 days	 Reduction in growth rate with shielding Growth rate returns to baseline with introduction of ⁶⁰Co source 	Planel 1976, Planel 1987 ^{70,74}		
	Lead	0.3 mGy/yr	1.75 mGy/yr	6 fold	10 days	 Reduction in growth rate with shielding Growth rate returns to baseline with introduction of ²³²Th source (7 mGy/yr) 	Planel 1976, Planel 1987 ^{70,74}		
Protozoa (Paramecium tetraurelia)	Lead	0.12 mGy/yr	0.75 mGy/yr	6 fold	6 days	 Reduction in growth rate with shielding Reduction greatest post autogamy, when catalase levels are higher 	Croute 1980 75		
	Lead 0	0.36 mGy/yr <mark>1</mark> n	1 25		Lifespan (up to 75 days)	Increase in total number of fissions with shielding	Tivador 1981		
			mGy/yr	3 fold		 Fission reduced with introduction of ⁶⁰Co source (7.51 mGy/yr) 	76		
	Iron and paraffin (0.04 mGy/yr	1.03 mGy/yr	26 fold	55 days	 Reduction in growth rate with shielding Growth reduction occurs only after prolonged growth (> 35 days) 	Kawanishi 2012 ⁶²		
						• Growth rate returns to baseline with introduction of ¹³⁷ Cs source (0.87 mGy/yr)			
Protozoa (Tetrahymena pyriformis)	ANL ^c	0.54 mGy/yr	1.83 mGy/yr	3 fold	6 days	 Reduction in growth rate with shielding Further reduction in growth rate when incubated with ³⁹K instead of ⁴⁰K 	Luckey 1986 57		
Veget (Seecheromygoo eerovicios)	LNGS ^d	0.22 mGy/yr	1.46 mGy/yr	7 fold	At least 120 generations	 Increase in recombinant and aberrant frequency in low- background adapted cells when treated with methyl methanesulfonate 	Satta 1995 ⁵⁸		
reast (Saccharomyces cerevisiae)	Lead , Steel, Cadmium and Copper	0.44 mGy/yr	1.1 mGy/yr	3 fold	100 generations	 Reduction in survival in shielded cells with ⁶⁰Co challenge (100 Gy) 	Gajendiran 2002 ⁵⁹		
Desiccated Yeast (Saccharomyces cerevisiae)	SNOLAB	10.1 nGy/hr	68.0 nGy/hr	6.7 fold	152 weeks	\cdot Reduced baseline survival and post-rehydration growth and metabolic activity	Lapointe 2023		

Single cell (lower) eukaryotes

11 publications in total, dating back to 1976 and as recent as 2023. Common findings relating to sub-NBR exposure are decreased growth rates, increased mutation rates, and decreased radiation resistance. Desiccated yeast elicited significantly decreased survival.

10.1269/jrr.11145

Organism		Dosimetry					Reference
	Shielding	Shielded	Control	Reduction	Duration	Results	
Multicellular euka	ryotes						
	LNGS	0.20 mGy/yr	0.83 mGy/yr	4 fold	9 months	 Increase in lifespan with shielding No change in climbing behavior Reduction in fertility (30%) with shielding Selective pressure on ATM mutant flies 	Morciano 2018
					14 days	0.44% of total transcripts significantly altered from shielding	Zarubin 2021 ⁶⁸
Fruit flies (Drosophila melanogaster)	DULB-4900	0.14 mGy/yr 1.4	1.44 mGy/yr	10 fold		 Common low background-induced transcriptional alterations with radiation doses: 4 with low dose radiation exposure, 10 with high dose radiation exposure, and one with both 	
						 Transcriptional alterations from low background exposure common with various stressors: 9 fungal treatment, 4 spaceflight, and 6 chronic circadian misalignment 	
	LNGS	0.18 mGy/yr	0.58mGy/yr 3	3 fold	1 and 5 generations	 Two-fold increase in chromosome breaks present 4 hours after 10 Gy gamma dose from shielding 	Porrazzo 2022 ⁶⁹
						 No change in chromosome break incidence between generation 1 and generation 5 	
	WIPP	0.14 mGy/yr 0.61 mGy/yr				\cdot Increased size of young larvae (48 hours) and egg laying rate	
						 No change in egg hatch rates or adult body size 	
Nematodes (Caenorhabitis elegans)			4 fold	8 months	 Significant upregulation in genes associated with sperm proteins, collagen and cuticle related genes, non-coding RNA, and hypothetical proteins 	Van Voorhies 2020 ⁶⁷	
						 Significant downregulation of genes associated with collagen, cuticle, and hypothetical proteins 	
Lake Whitefish (Coregonus clupeaformis)	SNOLAB	11.55 nGy/hr	68.04 nGy/hr	5.89 fold	160 days	 Significant increase in embryo body mass. 	Pirkkanen 2020

Multicellular eukaryotes

Five total publications as early as 2018, as recent as 2022. Primary findings relating to sub-NBR exposure are reduction in fertility, large-scale dysregulation of protein expression, increased sensitivity post sub-NBR exposure to acute high dose ionizing radiation, increased size of offspring.

10.1371/journal.pone.0255066

Organism	Shielding	Dosimetry					Reference
		Shielded	Control	Reduction	Duration	Results	
Mammalian cell d	culture						
						\cdot Increase in cell density at plateau phase with shielding at 9 months but not at 3 months	
						No change in cell growth rate	
		0.047 mGy/yr	3.17 mGy/yr	67 fold		\cdot Increase in sensitivity to CHX induced apoptosis with shielding at 3 months but not at 9 months	Satta 2002 ⁶⁰
	LNGS				3 and 9 months	\cdot Decrease in basal levels of c-myc and p53 with shielding at 9 months but not at 3 months	
						\cdot Decrease in SOD and increase in GSH-Px, GSSG-Rx, catalase with shielding at 9 months but not at 3 months	
						\cdot Increase in mutation frequency (basal and gamma ray induced) with shielding at 9 months but not at 3 months	
	LNGS	0.039 mGy/yr 0.61				\cdot Increase in mutation frequency following x-irradiation with shielding at 10 months but not at 3 months	Antonelli 2008 78
Chinese hamster V79 lung fibroblast cells						\cdot Increase in sensitivity to CHX induced apoptosis with shielding at 3 and 10 months	
			0.612 mGy/yr	r16 fold	3 and 10 months	 No change in c-myc and p53 expression 	
						\cdot Reduced antioxidant scavenging ability with shielding at 10 months but not at 3 months	
						\cdot No change in micronuclei formation with shielding at 10 months with x-ray challenge (1 Gy)	
	LNGS	0.20 mGy/yr 0.83 mGy/		r 4 fold	10 and 16	\cdot Reduction in GPX levels with shielding at 10 and 16 months, no change in SOD or catalase	Fratini 2015 ⁶¹ n
			0.83 mGv/vr			\cdot No change in GPX, SOD, catalase or SBP1 mRNA with shielding at 10 or 16 months	
					months	 Increase in mutation frequency with shielding at 10 and 16 months 	
						 GPX levels remain low and mutation frequency remains high after return to normal background radiation environment 	
Mouse L5178Y lymphoma cells	Lead	0.16 mGy/yr	0.48 mGy/yr	3 fold		Reduction in growth rate with shielding	Takizawa 1992 ⁷⁹
	Iron and paraffin	0.04 mGy/yr	1.03 mGy/yr	26 fold	7 days	 Reduction in growth rate with shielding Growth rate returns to baseline with introduction of ¹³⁷Cs source (0.87 mGy/yr) 	Kawanishi 2012 ⁶²
Mouse M10 cells (XRCC4 deficient)	Iron and paraffin	0.04 mGy/yr	1.03 mGy/yr	26 fold	7 days	\cdot No change in growth rate with shielding	Kawanishi 2012 ⁶²

	Shielding	Dosimetry					Reference
Organism		Shielded	Control	Reduction	Duration	Results	
pKZ1 A11 mouse hybridoma cells	LNGS + Iron		-	- + 4 fold*	4 weeks	\cdot No change in growth rate in the low dose environment	Fischietti 2021 63
		-				\cdot PARP1 cleavage was reduced in overgrown cells within the low dose environment	
						\cdot The cellular response to overgrowth shifted towards autophagy in lieu of apoptosis	
	LNGS	0.033 mGy/yr 2	2.91 mGy/yr 8	87 fold	6 months	 No change in growth rate with shielding Increase in micronuclei formation with shielding and x-ray challenge (2 Gy) 	Carbone 2009 80
						 Reduction in catalase and Se-GPx with shielding 	
						\cdot No increase in Se-GPx levels with shielding and x-ray challenge (1 Gy)	
lymphoblast cells						\cdot Reduction in ROS scavenging efficiency with shielding	
	LNGS	0.033 mGy/yr 2	2.91 mGy/yr	87 fold	6 months	\cdot Reduction in spontaneous micronuclei formation with shielding	Carbone 2010 ⁸¹
						\cdot Increase in micronuclei formation with shielding and x-ray challenge (2 Gy)	
						\cdot Reduction in ROS scavenging efficiency with shielding	
Primary human lung fibroblast cells	Lead	0.3 mGy/yr	1.75 mGy/yr	6 fold	10 passages	\cdot Increase in Hsp 90B and Hsp 70 expression with shielding	2 $\frac{1}{2}$
						\cdot Further increase in Hsp expression with x-ray challenge (100 mGy)	Smith 2011 / -
Bronchial epithelial cells	Lead	0.3 mGy/yr 1.7	0 /		10 passages	\cdot Increase in Hsp 90B and Hsp 70 expression with shielding	a 111 a a a 70
			1.75 mGy/yr	6 fold		\cdot Further increase in Hsp expression with x-ray challenge (100 mGy)	Smith 2011 /2
CGL1 Human Hybrid Cell Line	SNOLAB + Lead + Rn mitigation	2.48 nGy/hr	68.04 nGy.hr	27.4 fold	16 passages	\cdot Increased iALP expression, indicative of higher neoplastic transformation	Pirkkanen 2024

Mammalian cell culture

12 publications to date as far back as 1992, as recent as 2024. Primary results from sub-NBR exposure are increased mutation frequency and sensitivity to apoptotic stimuli, reduced antioxidant and ROS scavenging capacity, altered stress protein expression, and shifts in cellular stress responses. In most cases, these effects occurred with increasing intensity and/or frequency with prolonged exposure (increased over time).

Summary of Current Sub-NBR Findings

General summary:

- Reduced growth and/or reproductive fitness,
- Increased genomic stress at baseline,
- Impaired antioxidant defenses,
- Increased sensitivity to subsequent stressors such as acute doses of ionizing radiation

These effects are often exacerbated with prolonged exposure and are apparent from molecular signaling and organismal-level outcomes.

Interpretation Of The Data

10.1007/s00018-018-2987-5

10.1007/s00018-018-2987-5

FIG. 3. Ionizing radiation survival curves of wild-type strain MJ67 after exposure to a heat shock at 38°C. Radiation survival prior to the shock, **■**; radiation survival after 20 min at the shock temperature, □; radiation survival after 60 min at the shock temperature, ×. https://doi.org/10.2307/3575853

Fig. 1. Radioprotective effect of WBH on mice given lethal doses of TBI: (\bigcirc) Mice receiving 900 cGy [TBI, (\spadesuit) Mice given WBH 20 hr before 900 cGy TBI. The data represent three separate experiments involving a total of 45 mice in each group. Statistical Analysis, TBI alone vs WBH + TBI p < 0.001.

International Journal of Radiation Oncology*Biology*Physics Volume 20, Issue 3, March 1991, Pages 525-530

Original contribution

Whole body hyperthermia: A potent radioprotector *in vivo* 🖈

WBH - 40°C for 60 minutes 20 hours prior to 9 Gy radiation

Challenges In Translating Results

Translation Issues: Dosimetric Reporting

- 1. Biologists and physicists should collaborate on study design and execution.
- Study design should indicate the accuracy and precision required to meet the expected experimental result.
- 3. A qualified radiation physicist should help to establish the methods needed to achieve the required accuracy and precision.
- The physicist should help to establish an ongoing dosimetry constancy program with traceability to National or International standards.
- Authors should include in their publications sufficient detail concerning the setup and dosimetry used for the study, including references to written standards and/or protocols used. This will require journal editors and reviewers to ensure compliance.
- 6. The radiobiology community should publish a list of the minimum dosimetry information to be included within publications (see examples in the Appendix).
- 7. The radiobiology community should determine where gaps exist in written standards and protocols and publish standards to fill those needs. The workshop participants recommended formation of 3 working groups tasked to develop protocols for routine radiobiology experiments: one each for cells, small laboratory animals, and large laboratory animals.
- 8. The radiobiology community should decide whether a formal dosimetry intercomparison program needs to be implemented for the radiobiology researchers and, if so, how will it be established and sustained.
- One suggested mechanism for implementation of many of these recommendations would be to establish continuing education venues in both the radiobiology and physics communities to foster communication and arrive at agreed upon standards.

The Importance of Dosimetry Standardization in Radiobiology

Marc Desrosiers¹, Larry DeWerd², James Deye³, Patricia Lindsay⁴, Mark K. Murphy⁵, Michael Mitch¹, Francesca Macchiarini⁶, Strahinja Stojadinovic⁷, and Helen Stone³

Translation Issues: Dosimetric Reporting

- 1. Biologists and physicists should collaborate on study design and execution.
- Study design should indicate the accuracy and precision required to meet the expected experimental result.
- 3. A qualified radiation physicist should help to establish the methods needed to achieve the required accuracy and precision.
- The physicist should help to establish an ongoing dosimetry constancy program with traceability to National or International standards.
- Authors should include in their publications sufficient detail concerning the setup and dosimetry used for the study, including references to written standards and/or protocols used. This will require journal editors and reviewers to ensure compliance.
- 6. The radiobiology community should publish a list of the minimum dosimetry information to be included within publications (see examples in the Appendix).
- 7. The radiobiology community should determine where gaps exist in written standards and protocols and publish standards to fill those needs. The workshop participants recommended formation of 3 working groups tasked to develop protocols for routine radiobiology experiments: one each for cells, small laboratory animals, and large laboratory animals.
- 8. The radiobiology community should decide whether a formal dosimetry intercomparison program needs to be implemented for the radiobiology researchers and, if so, how will it be established and sustained.
- 9. One suggested mechanism for implementation of many of these recommendations would be to establish continuing education venues in both the radiobiology and physics communities to foster communication and arrive at agreed upon standards.

The Importance of Dosimetry Standardization in Radiobiology

Marc Desrosiers¹, Larry DeWerd², James Deye³, Patricia Lindsay⁴, Mark K. Murphy⁵, Michael Mitch¹, Francesca Macchiarini⁶, Strahinja Stojadinovic⁷, and Helen Stone³

Translation Issues: Dosimetric Reporting

- 1. Biologists and physicists should collaborate on study design and execution.
- Study design should indicate the accuracy and precision required to meet the expected experimental result.
- 3. A qualified radiation physicist should help to establish the methods needed to achieve the required accuracy and precision.
- The physicist should help to establish an ongoing dosimetry constancy program with traceability to National or International standards.
- Authors should include in their publications sufficient detail concerning the setup and dosimetry used for the study, including references to written standards and/or protocols used. This will require journal editors and reviewers to ensure compliance.
- 6. The radiobiology community should publish a list of the minimum dosimetry information to be included within publications (see examples in the Appendix).
- 7. The radiobiology community should determine where gaps exist in written standards and protocols and publish standards to fill those needs. The workshop participants recommended formation of 3 working groups tasked to develop protocols for routine radiobiology experiments: one each for cells, small laboratory animals, and large laboratory animals.
- 8. The radiobiology community should decide whether a formal dosimetry intercomparison program needs to be implemented for the radiobiology researchers and, if so, how will it be established and sustained.
- 9. One suggested mechanism for implementation of many of these recommendations would be to establish continuing education venues in both the radiobiology and physics communities to foster communication and arrive at agreed upon standards.

The Importance of Dosimetry Standardization in Radiobiology

Marc Desrosiers¹, Larry DeWerd², James Deye³, Patricia Lindsay⁴, Mark K. Murphy⁵, Michael Mitch¹, Francesca Macchiarini⁶, Strahinja Stojadinovic⁷, and Helen Stone³

Has not been done well, historically.

Next Step: Multi-DUL Biology

- 6-10 Deep Underground Laboratories (DULs)
- The pilot project:
 - identical experiment
 - run in parallel

10.1016/j.envint.2018.07.031

10.1097/HP.000000000001804

Fig. 1. Survival of yeast, stored in the control (dark circles) and sub-background (light squares) environments for the wild type (A) and *rad51* Δ (B) strains. Survival was determined via plating for colony-forming units immediately after rehydration. Relative survival was calculated with respect to pre-desiccation plating controls. Data represent the mean of three independent replicates, and error bars represent the standard error of the mean, significance was determined via ANCOVA. Note: some error bars are smaller than the symbols. (** p \leq 0.01, *** p \leq 0.001).

Timeline and Key Steps:

	Responsible		
Steps	Group	Lead Time/Timepoint	Dependency
Notice of readiness	Receiving Lab	≥ 2 weeks	Lab-specific
Yeast culturing	REPAIR	7 days	Notice
Desiccation preparation	REPAIR	3 days	Complete culturing
Sample shipping	REPAIR	Variable	Desiccation completion
Receipt of desiccators with samples	Receiving Lab	-	Shipping
Travel-control sample return and data			
logger addition	Receiving Lab	Immediately upon receipt	Shipping
Long-term storage (surface & sub-			Sample reception and
surface)	Receiving Lab	16-week intervals	handling
16-week sampling and desiccant refresh	Receiving Lab	< 1 day	16-week storage period
		Up to 7 days since sample	
Post-return sample storage	REPAIR	collection	Samples return
		1-5 days, depending on	7-day post-collection period
Sample rehydration and assaying	REPAIR	assay	complete
Data sharing	REPAIR	Ongoing	Analysis completion

Visual protocol of sample collection

Return-sample testing:

- Baseline survival (CFU)
- Post-rehydration growth rate (2 ways)
- Post-rehydration metabolic activity (aB)
- CAN1-mutation/fluctuation assay
- P_{RNR3} genotoxicity assay

Events leading to canavanine-resistant diploids

https://med.nyu.edu/klein/fluctuation.html

Task Summaries by Institution

REPAIR	Receiving Group				
Yeast culturing	Provide notice of readiness				
Yeast Desiccation	Upon receipt of samples: return 2 strips				
	from each sample plate (labelled) to				
	REPAIR & add relative humidity data logger				
	to desiccators				
Sample distribution	Store desiccators in experimental				
	conditions				
Return-sample testing: survival by CFU,	In 16-week intervals: return 2 strips from				
metabolic activity by alamarBlue, growth by	each sample plate (labelled) to REPAIR &				
OD600 measurement & colony size (from	refresh/replace desiccant				
survival), CAN1 mutation assay, Optional:					
PRNR3-EGFP genotoxicity assay					
Data sharing	Maintain local storage logbooks (dates,				
	changes to conditions, handling incidents,				
	etc.)				
Data analysis and dissemination of results					

Future projects could include:

- Immune cell culture (LNGS model)
- Organoids
- Etc.

https://indico.stfc.ac.uk/event/1058/contributions/6732/attachments/2331/4169/DULIAbio%202024_Morciano.pdf

FIN

Acknowledgements

- Dr Christopher Thome (NOSM University)
- Dr Douglas Boreham (NOSM University)
- Hayden Reaume (Laurentian University and NOSM University)
- Dr Shaun Hall (SNOLAB)
- Taylor Laframboise (Laurentian University and NOSM University)
- All NOSM Radiobiology Lab Group members
- All SNOLAB staff and scientists
- All participating DUL Biology groups

Questions?

Questions?

