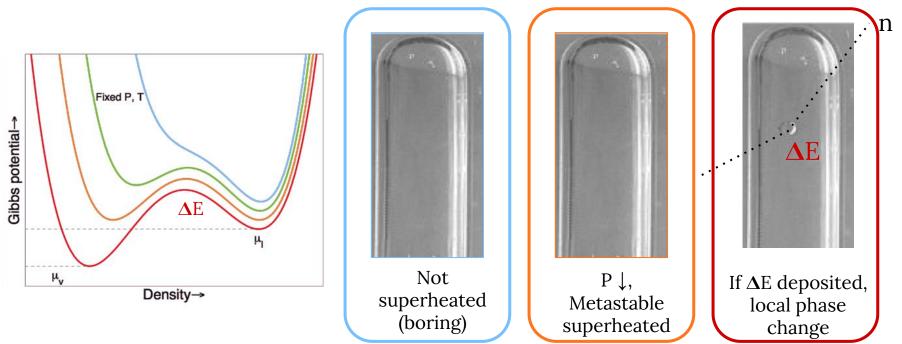
# Thoughts on a tonne-scale liquid noble bubble chamber


# B. Broerman for the SBC collaboration





# Bubble chambers, generally

- In superheated target fluids, particle interactions can create a bubble.



### Bubble chambers for DM searches

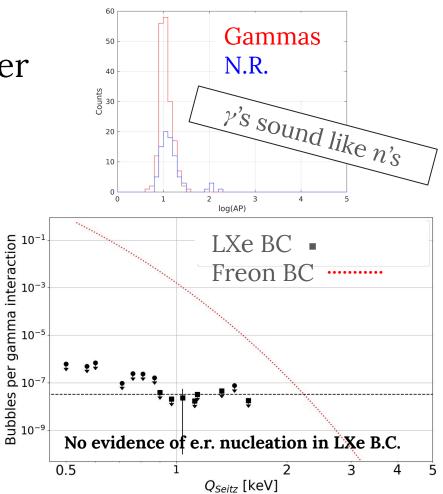
- Efficient nucleation at low n.r. thresholds
- 60 n.r. Highly  $\beta/\gamma$  insensitive — Counts 40 **M** 20 n.r./ $\alpha$  discrimination: log(AP)Observable bubble ~mm Fluorine nucleus (~50 keV) incident neutron ~50 nm ~50 µm ~50 nm Heavy daughter Helium nucleus (~5 MeV) Long radiating cylinder nucleus (~100 keV)

-1

0

1

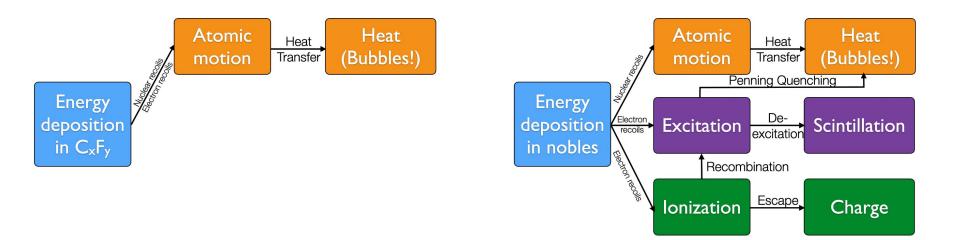
2


3

4

# A liquid-noble bubble chamber

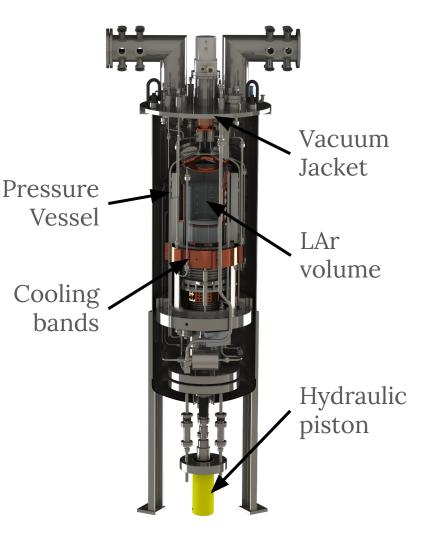
Adds in:


- Energy reconstruction
- Higher  $\beta/\gamma$  rejection than Freons
  - Lower threshold w/o e.r.
    backgrounds increases
    sensitivity to lower DM masses



Why liquid-nobles work

#### Freon-based target fluid


#### Liquid-noble target fluid



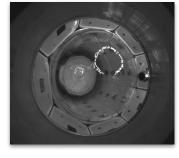
**Main point:** Liquid nobles remain  $\beta/\gamma$  blind in GeV-scale ROI  $\rightarrow$  sensitive to only nuclear recoils

# The **S**cintillating **B**ubble **C**hamber program, currently

- 10 kg LAr, doped with Xe
- Phased development
  - SBC-LAr10 at FNAL: engineering and calibration
  - SBC-SNOLAB: low-background dark matter search
- Targeting 100 eV n.r. threshold




### SBC's 10 kg detector design


|           |                                        | Design Goals                |                                               |
|-----------|----------------------------------------|-----------------------------|-----------------------------------------------|
| Viewports | Outer<br>quartz<br>vessel              | Target Volume               | 10 L (10 kg LAr @ 130 K)                      |
| Pressure  |                                        | Nucleation<br>Threshold     | 100 eV (30 psi , 130 K)                       |
| vessel    |                                        | Thermodynamic<br>Regulation | ±0.5 K, ±0.1 bar,<br>(± 5 eV Seitz threshold) |
| SiPMs     | HDPE insulation                        | Scintillation<br>Detection  | ~2% collection, 1<br>photon/ 5 keV n.r.       |
|           | -                                      | Bubble Imaging              | 100 fps, mm resolution                        |
| Piezo     | <ul><li>Inner</li><li>quartz</li></ul> | Acoustic<br>Reconstruction  | Time-of-nucleation to $\pm 25 \mu s$          |
|           | vessel                                 |                             |                                               |

# Beyond 10 kg-yr exposure

#### SBC at FNAL: final assembly/ commissioning this summer

#### To achieve tonne-yr exposures, 1 tonne superheated volume?





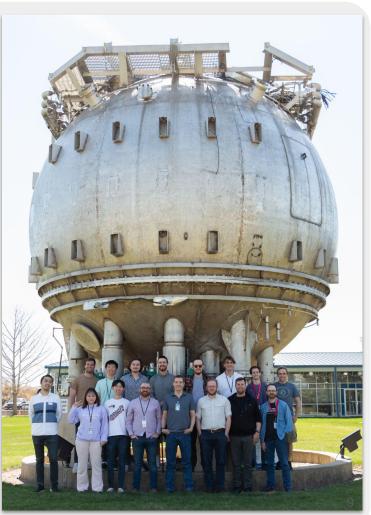
A) Soup can:

 $1-m-\varnothing \times 1.4 m$ 



SNOLAB: TDR completed, beginning surface assembly this summer

B) Tuna can:1.6-m-∅ × 0.5 m




### Big can be done



# $\begin{array}{c} \text{Gargamelle} \\ \text{18 t of } \text{CBrF}_3 \end{array}$

15' (F)NAL chamber 7 t of  $H_2$  with  $\subseteq$  the SBC collaboration



| External shielding requirements          |                            | Cavern<br>Water                       |                                                      |     |
|------------------------------------------|----------------------------|---------------------------------------|------------------------------------------------------|-----|
| Water Shielding<br>Dimensions<br>(ø & h) | Wall Neutrons<br>[nuc./yr] | Muon-Induced<br>Neutrons<br>[nuc./yr] | <b>Wall</b> γ's<br>(Thomson Scattering)<br>[nuc./yr] | LAr |
| Unshielded                               | $(7 \pm 3) \times 10^5$    | $35 \pm 4$                            | $(1.2 \pm 0.2) \times 10^5$                          | LAI |
| 3 m                                      | < 1                        | 12 ± 2                                | $1980 \pm 400$                                       |     |
| 6 m                                      | < 1                        | 3 ± 1                                 | 1.3 ± 0.3                                            |     |
| 9 m                                      | Negligible                 | Negligible                            | Negligible                                           |     |

Single scatters with energy deposit > 100 eV (no scintillation veto).

# Internal radiopurity requirements (3 t PV)

- Activity targets for < 1 event from neutrons and < 1 event from Thomson scattering
- Upper limits on Timet Ti are not so far off from these desired limits

 Do expect 1 spontaneous nucleation event/tonne year at a 40 eV threshold

|                                                  | Neutron                     | Thomson<br>Scattering       |
|--------------------------------------------------|-----------------------------|-----------------------------|
| Chain                                            | <b>Activity</b><br>[mBq/kg] | <b>Activity</b><br>[mBq/kg] |
| $^{232}$ Th : ( <i>a</i> ,n)                     | < 0.01                      | < 0.01                      |
| <sup>238</sup> U <sub>Up</sub> : S.F.            | < 0.02                      | _                           |
| <sup>238</sup> U <sub>low</sub> : ( $\alpha$ ,n) | < 0.05                      | < 0.03                      |
| $^{235}$ U : ( $\alpha$ ,n)                      | < 0.07                      | < 65                        |
| $^{210}$ Pb : ( $\alpha$ ,n)                     | < 21                        | _                           |
| <sup>40</sup> K                                  | -                           | < 34                        |

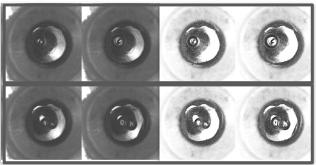
# Surface rates

To have 1 event/hour on the superheated, argon-wetted surface (radio-background + surface effects):

- Soup can:  $6 \text{ m}^2$ , needs  $4.7 \text{ nBq/cm}^2$ 

- Tuna can:  $6.5 \text{ cm}^2$ , needs  $4.2 \text{ nBq/cm}^2$ 

| Experiment | Surface rates [nBq/cm <sup>2</sup> ] |  |
|------------|--------------------------------------|--|
| PICO 60    | 200                                  |  |
| DEAP-3600  | 26                                   |  |
| SBC 1t     | ~5                                   |  |


Big question: understanding surface event mechanism

# Materials other than quartz



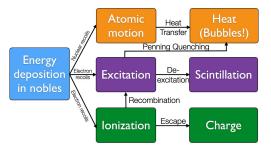
We are unable to make quartz vessels larger than 250L (fiducial)

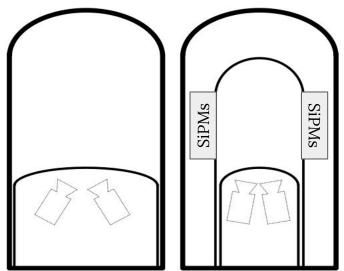
- Metals (stainless steel)
  - Demonstrated in test chambers
  - Electropolished, Ra ≤ 10 nm (low surface nucleations)
  - Could act as PV & containment
- Plastics (acrylic, Lexan)
  - Demonstrated in test chambers
    & LEBC @ CERN/NAL



Stainless steel test chamber

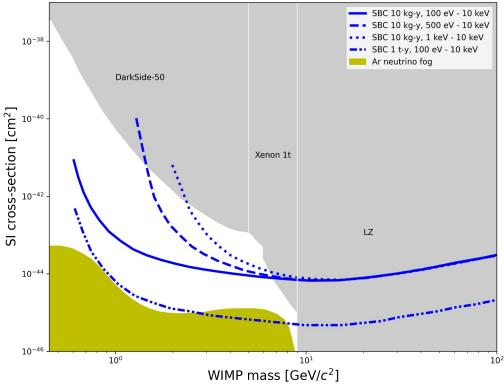



LExan Bubble Chamber




Acrylic test <sub>13</sub> chamber

# Scintillation: can we detect it, or do we need to?


- The scintillation mechanism works,
  whether we detect the γ's or not
- Having lots of SiPMs
  - Increases internal backgrounds
  - Pressure vessel becomes holey (need to get signals out)
- Something more clever?
  - Light collection within central piston
  - PEN/polymeric w.l.s. coatings on acrylic





# Conclusion

- Liquid-nobles are well suited to GeV-scale DM searches
  - Sensitive only to n.r. scattering
  - Possible to swap with Xe, N2, CF4
- Commissioning at FNAL and preparing for SNOLAB this summer
- Tonne-yr exposure can reach Ar fog
  - Could do 500 kg  $\times$  2 yr, etc.
  - Will require some R&D effort

