Next-generation Hybrid Cherenkov-Scintillation Detector THEIA at SNOLAB

μ

+++ Future Projects Workshop ++ SNOLAB, 29 Apr 2025 +++ ++ Michael Wurm (JGU Mainz) for the THEIA consortium ++

Hybrid Cherenkov/Scintillation Detector

\rightarrow Enhanced sensitivity to broad physics program

Michael Wurm (Mainz)

Hybrid Cherenkov-scintillation detection

MeV-GeV neutrino experiments use

- → Scintillation: enables good energy resolution and low thresholds
- → Cherenkov effect: particularly useful for reconstruction of direction and (multiple) tracks
- → Cherenkov photons are produced in liquid scintillators (~5%), but the majority is scattered or absorbed before reaching PMTs

How to extract the Cherenkov signal?

- \rightarrow enhance liquid transparency and/or
- ightarrow slow down scintillation emission
- → Water-based liquid scintillators and slow scintillators

Michael Wurm (Mainz)

Water-based liquid scintillators (WbLS)

Minfang Yeh, BNL

 \rightarrow properties of target medium can be adjusted to physics goal \rightarrow water content offers additional options for metal loading

Photo Sensors for Separating Chertons and Scintons

Scintillation

LAPPDs tts~60ps

Dichroicons spectral sorting

PMT granularity

180° angle

50°

90°

THEIA's Phased Physics Program

scintillator properties will be adjusted to physics requirements,

e.g. 1% WbLS \rightarrow 10% WbLS \rightarrow slow scintillator

	Primary physics goal	Reach	Exposure	
only if located	Long-baseline oscillations	>5 σ for 30% of δ_{CP}	524kt-MW-year	
at SURF start at	Nucleon decay p→⊽K+	T>3.8 x 10 ³⁴ year	800 kt-year	
SNOLAB from Phase II	Supernova burst	<1(2)° pointing 20K(5K) events	100(25)kt, 10kpc SN	
	Diffuse Supernova Neutrino	5σ	l 25kt-year	
П	CNO neutrinos	<5(10)%	300(62.5)kt-year	
	Geoneutrinos	< 7 %	25 kt-year	
Ш	Ονυβ	T _{1/2} > 1.1 x 10 ²⁸ year (90%C.L.)	800 kt-year (Multi-tonne loaded LS in suspended vessel search)	

16 m

THEIA Detector at SNOLAB

THEIA Detector Specifications

- Detector mass: baseline 25 kt \rightarrow ideal 100 kt
- **Dimensions:** 20m x 20m x 80m → 32,000 m³
- **Target medium:** WbLS with organic fraction 5-10%
- Photosensors: fast PMT array aiming at 40% optical coverage, e.g. 25,000 10"-PMTs, potentially adding LAPPDs/dichroicons
- ββ phase: balloon (2,000 m³) of slow scintillator, re-arrange PMTs to increase coverage

PMT array with interspaced LAPPDs

Advantages of SNOLAB as detector site

- Depth and rock shielding
 - \rightarrow suppression of muon-induced C/Te spallation isotopes
 - \rightarrow excellent performance for astro- ν & $\beta\beta$ program
- Infrastructure and experience
 - \rightarrow existing infrastructure for low-BG experiments
 - \rightarrow ample experience from SNO+

Astrophysical neutrinos at low energies

Solar Neutrinos precision measurements of CNO neutrinos and P_{ee}(E) with Li/Cl loading Supernova Neutrinos high statistics and flavor-resolved observation of neutrino burst

Diffuse Supernova Neutrinos average SN neutrino spectrum fraction of dark/BH-forming SNe

Geoneutrinos crust/mantle contributions U/Th ratio

Astrophysical neutrinos at low energies

Solar Neutrinos precision measurements of CNO neutrinos and P_{ee}(E) with Li/Cl loading

Geoneutrinos crust/mantle contributions U/Th ratio Supernova Neutrinos high statistics and flavor-resolved observation of neutrino burst

Diffuse Supernova Neutrinos average SN neutrino spectrum fraction of dark/BH-forming SNe

Hybrid detectors offer

Cherenkov: particle ID, discriminating isotropic BGs

Scintillation:

good energy resolution, low threshold, pulse shape discrimination

 C/S ratio: BG discrimination for particles with low/no Cherenkov light output

Michael Wurm (Mainz)

Supernova Neutrinos in THEIA

Event rates for THEIA-25 GVKM SN model @ 10kpc

	- I	
Reactio	Rate	
(IBD)	$\bar{\nu}_e + p \to n + e^+$	4,950
(ES)	$\nu + e \rightarrow e + \nu$	240
$(\nu_e O)$	${}^{16}{ m O}(\nu_e,e^-){}^{16}{ m F}$	85
$(\bar{\nu}_e O)$	${}^{16}\mathrm{O}(\bar{\nu}_e,e^+){}^{16}\mathrm{N}$	110
(NCO)	${ m ^{16}O}(u, u){ m ^{16}O^{*}}$,275

(Prompt) event energy spectra assuming 10% of WbLS (200p.e./MeV)

THEIA: High-statistics (~5k events) flavorresolved information on core-collapse SNe with complementarity to SK, JUNO and DUNE

Note: unlike pure Cherenkov detectors, channels separated based on event signature!

- signal is dominated by IBDs ($\bar{\nu_e}$'s)
- Electron Scattering (ES) and CC on oxygen provide v_e-specific information
- ES signal: excellent pointing capability, ~2° due to IBD background suppression

• NC on oxygen \rightarrow all-flavor ($\nu_e + \nu_\mu + \nu_\tau$) rate

Diffuse Supernova Neutrino Background

THEIA: Excellent background discrimination and conditions means rapid collection of DSNB statistics and first go at spectroscopy

- In THEIA, v
 _e component detectable via IBD,
 ~5 ev. for 25 kt·yrs on hydrogen
 → en par with SK-Gd, HK and JUNO
- THEIA combines discrimination capabilities of Cherenkov and scintillator detectors
- For atmospheric neutrino backgrounds, Cherenkov/scintillation ratio as powerful tool
 → signal efficiency: 80%
 → residual background: 1.3%
 - \rightarrow will improve BG estimates for water/LS
- THEIA-100: 5σ observation of DSNB in 5 yrs
- With other experiments, DSNB spectroscopy:
 - \rightarrow average SN neutrino spectrum
 - \rightarrow fraction of dark (black hole-forming) SNe

Michael Wurm (Mainz)

2020

2025

2030

2035

2040

2045 year

Solar Neutrinos in THEIA

THEIA: Low-energy threshold combined with directionality and/or isotope loading (Li) to perform precision spectroscopy of low-energy solar neutrinos

- Precise measurement of CNO neutrino flux stellar physics, solar metallicity
- Spectral upturn of low-energy ⁸B neutrinos

matter effects, BSM physics? → require efficient BG discrimination and sufficient light yield in 1-3 MeV range

THEIA25: 2D directional & spectral fit \rightarrow CNO flux at 10% level after 5 yrs

ີ G.D.

Orebi

Second Phase: **β**β Search with Theia

Neutrinoless Double-Beta Decay Sensitivity

compared to current scintillator-based double-beta experiments

- \rightarrow substantially larger isotope mass
- ightarrow better energy resolution
- ightarrow enhanced background discrimination

compared to other experimental techniques

 \rightarrow sensitivity sufficient to reach into the m_{ββ} mass range of normal ordering

Assumptions

- 2,000 m³ of LS
 mass: ~50t
- mass. Suc
- 1,200 pe/MeV
- $\Delta E/Q_{\beta\beta} \simeq 1.8\%$
- ROI BG count: 0.03 events/yr

Plot by Yu. G. Kolomensky using methodology from Agostini, Benato, Detwiler: PhysRevD.96.053001

Current Status of Hybrid Scintillator Program

THEIA Community

- THEIA consortium: 117 authors, 48 institutions, many groups from US/Germany, 3 Canadian institutes
- main experimental effort in demonstrator development
 - ANNIE WbLS+LAPPDs, GeV reco
 - BNL-1T/30T WbLS circulation/purification
 - EOS MeV reco with WbLS/slow LS
 - BUTTON low-background WbLS
- plus large international community working on bench-top experiments for both water-based and slow scintillators
- effort embedded in international R&D programs like DRD2

Authors of Theia White Paper: groups from 35+ institutions and eight countries (CA, CN, DE, FI, IT, KR, UK, US)

↑ BUTTON (UK): WbLS with low background levels

↓ BNL-30T facility Large-scale WbLS purification

Estimated Timeline for THEIA

 US/German groups funded for demonstrators but no dedicated funding for a THEIA design

from start of preparative funding

○ conceptual design : 3 yrs
○ technical design : 2 yrs
○ detector construction : 5 yrs
→ 10 years until start of data taking

most relevant additional time scales

0	preparation of cavern	•	5 yrs
0	delivery of 25 kPMTs	•	5 yrs

duration of operation

- o astroneutrino program : 10 yrs
- \circ $\beta\beta$ -search : 5 yrs

Potential SNOLAB support

- current phase: general information
- design phase: input from lab scientists and significant involvement of lab engineers
- realization phase: access for construction crew and scientists for detector installation (25-50)

operation phase:

less than 10 people underground

Conclusions

 hybrid Cherenkov/scintillation detectors offer a large dynamic range, enhanced event reconstruction and new background discrimination capabilities

- several ton-scale WbLS demonstrators running and providing first physics data
- strong international team with track record from various scintillator experiments ready to start into the design phase for a full-scale detector
- SNOLAB is ideal location in terms of background levels, infrastructure and expertise
- THEIA can be in many respects the continuation of the SNO(+) program at SNOLAB

Thank you!

EPJC 80, 416 (2020), arXiv:1911.03501

Eur. Phys. J. C (2020) 80:416 https://doi.org/10.1140/epjc/s10052-020-7977-8 THE EURC PHYSICAL

Regular Article - Experimental Physics

THEIA: an advanced optical neutrino detector

M. Askins^{1,2}, Z. Bagdasarian³, N. Barros^{4,5,6}, E. W. Beier⁴, E. Blucher⁷, R. Bonventre², E. Bourret², E. J. Callaghan^{1,2}, J. Caravaca^{1,2}, M. Diwan⁸, S. T. Dye⁹, J. Eisch¹⁰, A. Elagin⁷, T. Enqvist¹¹, V. Fischer¹², K. Frankiewicz¹³, C. Grant¹³, D. Guffanti¹⁴, C. Hagner¹⁵, A. Hallin¹⁶, C. M. Jackson¹⁷, R. Jiang⁷, T. Kaptanoglu J. R. Klein⁴, Yu. G. Kolomensky^{1,2}, C. Kraus¹⁸, F. Krennrich¹⁰, T. Kutter¹⁹, T. Lachenmaier²⁰, B. Land^{1,2,4}, K. Lande⁴, J. G. Learned⁹, V. Lozza^{5,6}, L. Ludhova³, M. Malek²¹, S. Manecki^{18,22,23}, J. Maneira^{5,6}, J. Maricic⁹, J. Martyn¹⁴, A. Mastbaum²⁴, C. Mauger⁴, F. Moretti², J. Napolitano²⁵, B. Naranjo²⁶, M. Nieslony¹⁴, L. Oberauer²⁷, G. D. Orebi Gann^{1,2,a}, J. Ouellet²⁸, T. Pershing¹², S. T. Petcov^{29,30}, L. Pickard¹², R. Rosero⁸, M. C. Sanchez¹⁰, J. Sawatzki²⁷, S. H. Seo³¹, M. Smiley^{1,2}, M. Smy³², A. Stahl³³, H. Steiger²⁷, M. R. Stock²⁷, H. Sunej⁸, R. Svoboda¹², E. Tiras¹⁰, W. H. Trzaska¹¹, M. Tzanov¹⁹, M. Vagins³², C. Vilela³⁴, Z. Wang³⁵, J. Wang¹², M. Wetstein¹⁰, M. J. Wilking³⁴, L. Winslow²⁸, P. Wittich³⁶, B. Wonsak¹⁵, E. Worcester^{8,34}, M. Wurm¹⁴, G. Yang³⁴, M. Yeh⁸, E. D. Zimmerman³⁷, S. Zsoldos^{1,2}, K. Zuber³⁸

- ² Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, 8153, USA
- ³ Forschungszentrum Jülich, Institute for Nuclear Physics, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
- ⁴ Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396, USA
- ⁵ Faculdade de Ciências (FCUL), Departamento de Física, Campo Grande, Edifício C8, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- ⁶ Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
- ⁷ Department of Physics, The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
- ⁸ Brookhaven National Laboratory, Upton, NY 11973, USA
- ⁹ University of Hawai'i at Manoa, Honolulu, HI 96822, USA
- ¹⁰ Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- ¹¹ Department of Physics, University of Jyväskylä, Jyvaskyla, Finland
- ¹² University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
- ¹³ Department of Physics, Boston University, Boston, MA 02215, USA ¹⁴ Institute of Physics and Excellence Cluster PRISMA, Johannes Cuterna
- ¹⁴ Institute of Physics and Excellence Cluster PRISMA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
- ¹⁵ Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany
- ¹⁶ Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, AB T6G 2E1, Canada
- ¹⁷ Pacific Northwest National Laboratory, Richland, WA 99352, USA
- ¹⁸ Department of Physics, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- ¹⁹ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
- ²⁰ Kepler Center for Astro and Particle Physics, Universität Tübingen, 72076 Tübingen, Germany
- ²¹ Physics and Astronomy, Western Bank, University of Sheffield, Sheffield S10 2TN, UK
- ²² Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L 3N6, Canada
- ²³ SNOLAB, Creighton Mine 9, 1039 Regional Road 24, Sudbury, ON P3Y 1N2, Canada
- -24 Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019,

THEIA proto-collaboration: groups from 35+ institutions and eight countries (CA, CN, DE, FI, IT, KR, UK, US)

More information on:

- Detector technology
- Long baseline sensitivity
- Low energy neutrino astronomy
- Neutrinoless ββ-decay
- Nucleon decay

....

THEIA & EOS

Backup Slides

Light propagation in organic scintillators

How to improve the (relative) Cherenkov photoelectron yield?

\rightarrow reduce fluor concentration

- impacts scintillation yield
- slows down scintillation (good! → see next slide)

→ reduce Rayleigh scattering

new transparent solvent,e.g. LAB (~20m)

and/or

dilution of solvent:
 Water-based scintillators
 Oil-diluted LS (LSND ...)

Separating Chertons and Scintons

\rightarrow how to resolve the Cherenkov/scintillation signals?

Timing

"instantaneous chertons" vs. delayed "scintons" → ns resolution or better

Large Area Picosecond Photon Detectors

- Area: 20-by-20 cm²
- Amplification of p.e. by two MCP layers
- Flat geometry: ultrafast timing ~65ps
- Strip readout: spatial resolution ~1cm
- Commercial production by Incom, Ltd.

Michael Wurm (Mainz)

Scintons

chertons

Separating Chertons and Scintons

Michael Wurm (Mainz)

Michael Wurm (Mainz)

Hybrid Detectors

LAPPD Performance

- uniformly flat light sensor, p.e. amplified by two stacked MCP layers
 → excellent timing!
- LAPPDs produced commercially by Incom (several 10s per year)

Michael Wurm (Mainz)

ANNIE Experiment

Accelerator Neutrino Nucleus Interaction Experiment

27-ton (Gd-loaded) Water Cherenkov Detector running in the Fermilab BNB neutrino beam

- measurement of GeV neutrino differential cross-sections and neutron multiplicity
- physics data taking started in early 2021
- R&D program for new technologies
 → Gd-water → LAPPDs → WbLS

ANNIE Detector Layout

ANNIE: First LAPPD installed

- major milestone: 1st LAPPD installed in March 2022, detected first light from neutrinos
- 4+ LAPPDs more are currently installed

ANNIE+SANDI: WbLS test deployment

\rightarrow next step: SANDI

acrylic vessel with 365 kg of WbLS submerged in ANNIE

- resolve scintillation light from hadronic recoils, improve neutrino energy determination
- higher light output for neutron captures on gadolinium
 → improved neutron detection efficiency & vertex reco
- first attempt of C/S separation for neutrinos with LAPPDs
- → test WbLS performance for future use in long-baseline exp.s!

water: 14.4%

water

-0.2

→WbLS: 10.6%

-0.4

Preparations are on-going

MC with idealized reco

and machine learning

Muon Range Detector

- resolution dominated by 20

• 3' x 3' vessel & WbLS (BNL, M. Yeh) already on-site

-0.6

deployment before end of November

100

SANDI vessel at Davis

ANNIE vs. SANDI WbLS vessel

Michael Wurm (Mainz)

0.2

0.0

WbLS

RMS= 0.106 µ= -0.016 wbls true

water

RMS= 0.144

0.4

0.6

µ= -0.029

EOS: WbLS performance demonstrator

- Stand-alone hybrid detector optimized for MeV energy reconstruction
- Demonstrate event reconstruction using hybrid Cherenkov + scintillation signatures
- Validate models to support large-scale detector performance predictions
- Provide a flexible testbed to demonstrate impact of novel technology: targets, photon detectors, readout, reconstruction algorithms
- ightarrow Start of installation this summer at UC Berkeley
- ightarrow Closely coupled to 30-ton demonstrator at BNL for WbLS production & stability

EOS Detector Layout

- stand-alone hybrid detector
- target mass: 4 ton of water, WbLS or slow scintillator
- 200 fast 8" PMTs: tts of 900 ps
- CAEN V1730 readout
- plus deployment of 10 dichroicons for spectral sorting

Alternative: Slow Scintillators

General idea

organic scintillators modified for slow(er) scintillation emission

Options

- reduce primary fluor (i.e. PPO) content
 → longer emission but lower light yield
 [Z. Guo et al., arXiv:1708.07781]
- slow fluors selected for long emission times, e.g. di-phenyl-antracene/hexatriene [Steve Biller et al., arXiv:2001.10825]
- use co-solvent to slow light transfer to fluor [Hans Steiger]

Consequences

- C/S separation can rely on regular PMTs
- high scintillation light yields can be maintained
- quality of vertex reconstruction (and with this indirectly C/S separation) suffers
 → effects have to be balanced

Directionality in present-day scintillator detectors

BOREXINO

- new analysis technique tested in the spectral region of sub-MeV solar ⁷Be neutrinos
- CID: use *integrated* angular distributions of early PMT hits relative to direction of the Sun
- → observation of significant (>6σ!) angular excess caused by Cherenkov photons
- \rightarrow rate: 1.13^{+0.22}_{-0.25} of (oscillated) SSM prediction

first directional detection of sub-MeV solar neutrinos!

SNO+

- partial fill of detector with 365 t of slow scintillator: LAB + 0.6 g/l PPO
- → first demonstration of event-by-event directional reconstruction of solar ⁸B neutrinos in slow scintillator
- MC/data: ~40% of events with E>5MeV are reconstructed with cosθ_{Sun}>0.8

Hybrid Detector for Long-Baseline Neutrinos

As the fourth **DUNE Module of Opportunity:** What would a **large WbLS detector** add to the existing liquid-argon modules?

Added value for a δ_{CP} measurement

- Comparable statistics
 ~1.7:1 in mass for WbLS : LAr but better active volume ratio
- Complementary systematics
 e.g. cross-sections (simpler nuclei)
- Neutron tagging/recoils in final state

 → aids energy reco of hadronic recoils
 → neutrino/antineutrino discrimination
- Improved energy resolution for low energies (2nd oscillation maximum)
- Fast timing: ν energy measurement using initial π/K time-of-flight difference _

Reconstruction with FiTQun

FiTQun: maximum likelihood reconstruction tool for final state particle types and kinematics, officially used in T2K, Super-K and Hyper-K

Current FitQun Performance

- factor 4 suppression of π^0 background compared to previous SK algorithms
- fits up to six Cherenkov rings simultaneously
- up to now: designed and used by Water Cherenkov detectors

FitQun for event reconstruction in WbLS

- expectation: scintillation light will not degrade Cherenkov ring reconstruction
- improvements in vertex resolution, sub-Cherenkov PID and neutrino energy reco [https://indico.kps.or.kr/event/30/contributions/233/]

Further development plans

- Simulation with RATPAC: tool for scintillation sim \rightarrow particle profiles for FiTQun
- Include Scintillation signal in FiTQun profile builder and fitter
- Performance evaluation: Fit for neutrino interactions in WbLS with FiTQun

[Performance in Theia: arXiv:1911.03501]