DarkSide-LowMass: Sensitivity projections for a Liquid Argon Detector optimized for GeV-Scale Dark Matter

Speaker: Dr. Michela Lai,

University of California Riverside on behalf of the **Global Argon Dark Matter Collaboration** (GADMC)

Future projects workshop 29th April 2025 - SNOLAB

Drawing of DarkSide-50

- S1: PSD, Prompt signal, ~ 20 % photons detected
- S2: nearly 100 % electrons detected, multi-site event rejection, position reconstruction

- Pro: Low threshold TPC via S2-only analysis
- Cons: No PSD, no z-fiducialization, time resolution limited by the drift time

Low-Mass search with DarkSide-50

Set world-leading exclusion limits at sub-GeV candidates!

Phys. Rev. Let. 130, 101001 (2023)

DarkSide-LowMass!

DarkSide-LowMass!

Comparison with DS-20k's projected sensitivity

-20k - 1 year

OF 2023

PandaX-4T 2023 KENONnT 2023

PandaX-4T 2023

DAMIC-1K - proj

2013 Cogent 2013

DAMA/LIBRA 2008 Excluded region

LAr Neutrino fog n=2

erCDMS Ge HV- proj yr - proj. (HM)

KENON1T 2021 Pico-60 2019 CDMSlite 2018

LUX 2021

LUX 2017 CDEX-50 - proj

DarkSide-LowMass, Ne≥4, 1 tonne-year

S. Westerdale - UCLA2025

Commun.Phys. 7 (2024) 1, 422

- Assuming same energy threshold and already developed techonology, DarkSide-LowMass can prove lighter DM candidates
- Isotopic cryogenic distillation deliverable according to DS-LM time-- proj. scale (early-2030's) - 5 yr - proj. (HM)
 - Additional ongoing R&D will further decrease the background & enhance the ionization yield, allowing for even lower analysis threshold

DS-Low-Mass: A first study design

 Majority of the infrastructure requested within 2025 CFI IF application by GADMC-Canada (see M. Boulay talk)

DS-Low-Mass: A first study design

DS-Low-Mass: A first study design

• **Pixelated digital SiPMs**: Electronic noise, Dark Noise reduction and afterpulse mitigation techinques: **lower energy threshold and higher energy resolution**

Low-energy calibrations

- Ionization yield for ER well-constrained by ³⁷Ar and ³⁹Ar
- Planned additional calibrations through 2025 CFI IF fundings!
- Assumed Ziegler et al. model for the present study

12

10

8

6

0.4

ARIS

SCENE

Joshi et al

3

[e⁻/keV_{nr}]

QUR

14

60

Expected backgrounds

• Irreducible background: solar neutrinos performing CEvNS at O(1) ionization electron

- ²²²Rn daughters isotopes removal with charcoal traps or molecular sieves
- Radon suppression & essay infrastructures requested on 2025 CFI-IF proposal
- Here assumed surface backgrounds contribute <10% of the γ-ray background rate from TPC components

Phys. Rev. D 107, 112006 (2023)							
Isotope	$\mathcal{A}_{ ext{thr}}$	DarkSide-50 [mBq/m ²]	DEAP-3600				
²²² Rn	6.01 ± 0.25		$< 5 \times 10^{-3}$				
²¹⁰ Pb	2.21 ± 0.05	2.51 ± 0.01	0.26 ± 0.02				

Expected backgrounds

- y-rays rejection thanks to the **photosensor buffer veto**
- UAr from URANIA and Aria will bring the ³⁹Ar activity to **O(10) uBq/kg**
- ⁸⁵Kr expected to be negligibleafter improvements of theextraction process
- ⁴²Ar expected to be negligible in UAr to be tested in ARGOLite (see M. Boulay talk)

URANIA

• UAr extraction performed at Urania, currently under construction

- Low activity UAr found in 2009 at Southwest Colorado CO2 wells and purified at FNAL for DarkSide-50, with a rate 140 g/day
- Expected extraction rate **250 kg/day**
- Additional experiments interested in UAr from Urania: Argo, COHERENT, LEGEND
- Starting commissioning this spring/early summer

ARIA

- First application of the isotopic distillation in DSLM, before ARGO
- Need to run Seruci-1 at **10 kg/day** throughput for isotopic ³⁹Ar depletion

The UAr roadmap

19

Spurious electrons

- Unmodeled background at [1-4] Ne found in DarkSide-50 low-mass search
- Clear event rate increase when getter off
- Correlated to impurity in the detector

• Ongoing R&Ds to tackle its source, dependency on the target purity, TPC electric fields, target ionization yield, inner detector materials ...

Addressing the spurious electrons

- Promising theory: pile-ups from impurities trapping and then releasing ionization electrons
- R&Ds done by early-2030s, in time to be implemented in DS-LM

Sensitivity to WIMPs in 1 tonne-year

... for multiple analysis thresholds and impurity scaling from DarkSide-50 UAr run.

Sensitivity to WIMPs in 1 tonne-year

... as well as for DM-electron scattering

Can we reach lower threshold?

Can we reach lower threshold?

Can we reach lower threshold?

J. Phys.: Conf. Ser. 2374 012164

J. Phys.: Conf. Ser. 2374 012164

• no TPB needed, possible decrease of spurious electron backgrounds

J. Phys.: Conf. Ser. 2374 012164

- Investigation of other photosensitive dopants starting soon at UC-Riverside
- Starting 1 August 2025: I will be starting an R&D for scalable double-phase TPC in doped Argon @ Queen's University

- Ongoing: evaluation on the ionization yield vs doping percentage (CHILLAX, LLNL, California)
- Additional synergies with DRD collaboration (Europe)

Beyond xenon!

- Addition of O(10) ppm Photosensitive dopants with 7.5–9.5 eV ionization energies enhances S2!
- High-enough hydrogen in the dopants may allow for sensitivity to 40x lower WIMP masses

In a nutshell

- DSLM is the optimized tonne-scale detector for sub-GeV DM candidates in argon
- Using the analysis, hardware and UAr infrastractures already in place for DEAP, DS20k and ARGO
- Most of the infrastracture already requested within 2025 CFI-IF proposal by GADMC-Canada
- Ongoing and planned R&D to suppress and mitigate backgrounds as well as enhance the ionization yield and the energy resolution

Back up

³⁹Ar essay in DArT with ArDM: small lowbackground detector located at Laboratorio Subterràneo de Canfranc (LSC, Spain), 1400 m.w.e undergound

ArDM: 850 kg AAr

JINST 15 (2020) 02, C02044 DArT: 1.35 kg active mass

NO. 17 W 1997

Credits: D. Gahan - ICHEP 2024

Low mass searches

47

Triplet state

Search for Ovßß in DUNE FD with Xe-doped LAr!

 Is Neutrino its own antiparticle? How are neutrino masses ordered? We can get that with 2% of Xe-doping in DUNE FD (10 kton LArTPC)

Photosensors have being tested in NOA facility, Italy, while the read-out is developed at TRIUMF

TPC: 525 PDU

IV: 20 vPDU

OV: 32 vPDU

Optical fibre Optical fibre Aluminum-coated acrylic reflector

Photomultipliers tubes (PMTs) exchanged for Silicon Photomultipliers (SiPMs) customly developed by Fondazione Bruno Kessler

A. Gola et al. Sensors19(2), 308 (2019)

Nuclear recoil Electron recoils 10⁶ (DM, neutrons) (e, gammas)

Nuclear recoil Electron recoils 10⁶ (DM, neutrons) (e, gammas)

How does the data analysis look like?

LAr as veto allows for the necessary background rejection in GERDA...

Main challenge: how to purge your new target?

Xe-doped LAr for medical physics!

- Time-of-Flight PET scanner Total body
- Xenon-doped argon as scintillator medium observed by NUV-sensitive SIPMs
- Low dose or ultra-fast scanning time!

Positron emission and positron-electron annihilation

PET scanner

PoS EPS-HEP2021 (2022) 778

NSS/MIC 2021 and RTSD2021 Proceeding

DArES Single-Phase

DArES Single-Phase

Gas phase Solid phase Not Easy adsorbed Optimum

crptophane A cryptophane 2,2,2

Both Cryptophane and zeolites

Atomic Diameter

Gas

Van der Waals

		Atomic Diameter		
DArES Single-	-Phase Both Cryptophane and zeolites		Gas Van der Waals	
	have	Xe 4.10 Å Rn 4.16 Å		
086			Xe/Rn competition	
RADON 222	crptophane A	HO Si Me ⁿ⁺	$ \begin{array}{c} OH \\ Si \\ Si \\ Si \\ O \\ Me^{n+} \\ Si \\ O \\ Me^{n+} \\ Si \\ O \\ Si \\ $	
Gas phase	Adsorbent	K [m³ kg-1] in N₂ @ 30 ℃	Notes	
Solid phase	Chrypthophane	107	0.176 mmol/g adsorbed Xe	
	Activated charcoal Silcarbon K48	180	2.31 mmol/g adsorbed Xe	
Not Easy Optimun adsorbed desorbed	Ag-ETS-10 (Ag- Zeolite)	19940	0.988 Bq/Kg 226 Ra activity	
	Activated charcoal Carboact	182	0.0023 Bq/Kg 226 Ra activity	

Other photosensitive dopants

Material ^{d)}		I _g [eV] ^{a)}	Dipole moment [debyes] ^{b)}	Estimated pressure 90 K [Torr] ^{b)}	Charge collected* ^{c)} (LAr $\equiv 1$)		Concentration
					$\overline{0.1 \text{ kv mm}^{-1}}$	1.0 kV mm ⁻¹	[ppm]
TEA	$(C_2H_5)_3N$	7.50	0.66	<u> </u>	2.2	1.3	47
TMA	$(Ch_3)_3N$	7.82	0.612	3×10^{-8}	3.4	1.6	110
TMT	$(CH_3)_4Sn$	8.25/8.76	<u></u> ;	4×10^{-12}	3.0	1.6	1.5
Cyclohexene	$C_{6}H_{10}$	8.95		-	2.1	1.3	3.6
1.3-butadiene	C ₄ H ₆	9.06	0	4×10^{-7}	4.6	1.9	17
Cis & Trans 2 butene	C_4H_8	9.13	0 (trans)	5×10^{-8}	3.6	1.6	72
TMG	(CH ₃) ₄ Ge	9.2/9.29		3×10^{-10}	7.4 (9.8)	2.6 (2.7)	15
Isobutylene	C_4H_8	9.23	0.5	5×10^{-7}	4.9	1.8	16
Methyl mercaptan	CH ₃ SH	9.44	1.52	2×10^{-8}	2.0	2.0	15
Pentene (technical)	$C_{5}H_{10}$	9.5		1×10^{-9}	3.1	1.5	7
Allene	C_3H_4	9.53	0	1×10^{-5}	6.5 (8.7)	2.5 (2.7)	14
TMS	(CH ₃) ₄ Si	9.86	0.525	8×10^{-9}	4.6	1.8	5.8
DME	(CH ₃) ₂ O	10.0	1.30	5×10^{-8}	3.6	1.4	14

D. F. Anderson, NIM. A 245, 361 (1986).