Opportunities with Tellurium Szymon Manecki, September 30th, 2025 #### **Double Beta Decay** - Are neutrinos their own anti-particles? - $2\nu\beta\beta$ (Dirac) (A, Z) \rightarrow (A, Z + 2) + $2e^{-}$ + $2\nu_{e}$ ~ 10^{18} - 10^{21} years - $0v\beta\beta$ (Majorana) (A, Z) \rightarrow (A, Z + 2) + $2e^{-}$ > 10^{25} years - We measure: $$\frac{1}{T_{1/2}} = G g_A^4 \, \mathcal{M}^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$ Nuclear matrix element Phase space factor #### **Double Beta Decay** - Are neutrinos their own anti-particles? - $2\nu\beta\beta$ (Dirac) (A, Z) \rightarrow (A, Z + 2) + $2e^{-}$ + $2\nu_{e}$ ~ 10^{18} - 10^{21} years - $0v\beta\beta$ (Majorana) (A, Z) \rightarrow (A, Z + 2) + $2e^{-}$ > 10^{25} years - We measure: $$\frac{1}{T_{1/2}} = G g_A^4 \mathcal{M}^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$ Nuclear matrix element Phase space factor # Neutrinoless Double Beta Decay #### Future Scale of Tellurium Detectors Towards the bottom of Normal Hierarchy # Tellurium Telluric Acid crystal # Tellurium #### Telluric Acid crystal | | Counts in Year I | |----------------------|------------------------| | isotope | (no purification) | | ²² Na | 7.04×10^{3} | | ²⁶ Al | 9.67×10^{-2} | | 42 K | 6.55×10^{2} | | ⁴⁴ Sc | 8.41×10^{1} | | ⁴⁶ Sc | 5.21×10^{-2} | | ⁵⁶ Co | 1.02×10^{-3} | | ⁵⁸ Co | 2.50×10^{-3} | | ⁶⁰ Co | 6.62×10^3 | | ⁶⁸ Ga | 6.20×10^{2} | | ⁸² Rb | 5.15×10^{-16} | | ⁸⁴ Rb | 8.88×10^{-12} | | 88 Y | 2.23×10^{1} | | ^{90}Y | 5.05×10^{2} | | ¹⁰² Rh | 1.33×10^{3} | | $^{102m}\mathrm{Rh}$ | 9.54×10^{4} | | ¹⁰⁶ Rh | 8.59×10^{1} | | 110m Ag | 7.96×10^{2} | | ¹¹⁰ Ag | 1.07×10^{1} | | ¹²⁴ Sb | 1.77×10^{-2} | | 126mSb | 3.06 | | ¹²⁶ Sb | 2.92×10^{-35} | #### **Process Systems** - Ultra-clean PFA Teflon - Every wet process line and vessel constructed with plastic to suppress metals leaching - Polypropylene vessels (mostly cost savings) - PFA piping - Not a good radon barrier #### **Process Systems** - Ultra-clean PFA Teflon - Every wet process line and vessel constructed with plastic to suppress metals leaching - Polypropylene vessels (mostly cost savings) - PFA piping - Not a good radon barrier #### **Process Systems** - Ultra-clean PFA Teflon - Every wet process line and vessel constructed with plastic to suppress metals leaching - Polypropylene vessels (mostly cost) - PFA piping - Not a good radon barrier | | Soa
(2 d | ak 1
ays) | | Soak 2
(4 days) | | Soak 3
(4 days) | | |----|-------------|--------------|-------|--------------------|-------|--------------------|--| | | RXT | TRXT | RXT | TRXT | RXT | TRXT | | | U | 1 | 0.2 | <0.05 | <0.05 | <0.05 | <0.05 | | | Th | 5 | 1 | 1.1 | <0.1 | <0.1 | <0.1 | | | Ca | 2700 | 2000 | 380 | 180 | <20 | <20 | | | Fe | 5600 | 5000 | 220 | 170 | 17 | 37 | | (In the case of SNO+) LAB-soluble Tellurium-Diol complexes are formed in condensation and further oligomerization reactions of Telluric Acid with 1,2-Butanediol - Telluric Acid purification (U/G plant product) - 1,2-Butanediol distillation - DDA distillation (In the case of SNO+) LAB-soluble Tellurium-Diol complexes are formed in condensation and further oligomerization reactions | a | b | c | |--|--|---| | 337.83 OH OH OH OH OH OH OH OH | 409.93
H ₃ C OH
CH ₃ CH ₃ | 657.64 H ₃ C O Te O O O O O O O O O O O O O | | d | e | f | | 747.76 OH | 819.87 OH OH CH ₃ H ₃ C | 1067.57 H ₃ C O O CH ₅ CH ₅ 1049.56 H ₃ C O O O CH ₅ O O O O CH ₅ O O O O CH ₅ O O O O O O O O O O O O O | - Other, critical considerations - Long term chemical stability - Long term optical stability - Chemical compatibility - These are critical R&D efforts that must be initiated as early as possible to establish sufficient confidence in the approach down the road - Analytical methods, chemical reaction models, material selection, reagents procurement - Other, critical considerations - Long term chemical stability - Long term optical stability - Chemical compatibility - These are critical R&D efforts that must be initiated as early as possible to establish sufficient confidence in the approach down the road - Analytical methods, chemical reaction models, material selection, reagents procurement Long term compatibility testing, e.g.: Tellurium synthesis to 'mineral-oil-soluble' complexes is relatively easily scalable Scaling of chemical processes is not 'straight forward' – a factor of 100 will carry risk. - Relies on recrystallization and requires the use of nitric acid - Filter out insoluble impurities in water - Dissolve the rest and drain away after telluric acid is recrystallized - Relies on recrystallization and requires the use of nitric acid - Filter out insoluble impurities in water - Dissolve the rest and drain away after telluric acid is recrystallized - Relies on recrystallization and requires the use of nitric acid - Filter out insoluble impurities in water - Dissolve the rest and drain away after telluric acid is recrystallized - Sufficient optimization and continues operations could give - 500 kg of telluric acid per week (~250 kg of tellurium) - Bottlenecks - Logistics: Nitric acid deliveries and waste disposal - Underground facilities in the future - Tellurium purification - Nitric acid purification - Filtration - Scavengers - Distillation In the process of tellurium purification, 70% nitric acid transitions to ~40% nitric, contaminated with 'percentage levels of tellurium' and trace metal impurities #### Conclusions Achieving normal hierarchy sensitivity requires a 100-tonne scale tellurium loading in LS Cost of isotope (high isotopic abundance) THEIA25 Synthesis from water-soluble to scintillator-soluble is scalable Purification of tellurium is now being demonstrated with SNO+ - Scaling of the purification method has room for improvement - Optimization of the process and improved logistics for reagents and waste - Future detector technology needs more refined simulations and engineering work – e.g., acrylic vessel vs nylon balloon(s) 20m # Backup