Opportunities with Tellurium

Szymon Manecki, September 30th, 2025

Double Beta Decay

- Are neutrinos their own anti-particles?
- $2\nu\beta\beta$ (Dirac) (A, Z) \rightarrow (A, Z + 2) + $2e^{-}$ + $2\nu_{e}$ ~ 10^{18} - 10^{21} years
- $0v\beta\beta$ (Majorana) (A, Z) \rightarrow (A, Z + 2) + $2e^{-}$ > 10^{25} years
- We measure:

$$\frac{1}{T_{1/2}} = G g_A^4 \, \mathcal{M}^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
Nuclear matrix element
Phase space factor

Double Beta Decay

- Are neutrinos their own anti-particles?
- $2\nu\beta\beta$ (Dirac) (A, Z) \rightarrow (A, Z + 2) + $2e^{-}$ + $2\nu_{e}$ ~ 10^{18} - 10^{21} years
- $0v\beta\beta$ (Majorana) (A, Z) \rightarrow (A, Z + 2) + $2e^{-}$ > 10^{25} years
- We measure:

$$\frac{1}{T_{1/2}} = G g_A^4 \mathcal{M}^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
Nuclear matrix element
Phase space factor

Neutrinoless Double Beta Decay

Future Scale of Tellurium Detectors

Towards the bottom of Normal Hierarchy

Tellurium

Telluric Acid crystal

Tellurium

Telluric Acid crystal

	Counts in Year I
isotope	(no purification)
²² Na	7.04×10^{3}
²⁶ Al	9.67×10^{-2}
42 K	6.55×10^{2}
⁴⁴ Sc	8.41×10^{1}
⁴⁶ Sc	5.21×10^{-2}
⁵⁶ Co	1.02×10^{-3}
⁵⁸ Co	2.50×10^{-3}
⁶⁰ Co	6.62×10^3
⁶⁸ Ga	6.20×10^{2}
⁸² Rb	5.15×10^{-16}
⁸⁴ Rb	8.88×10^{-12}
88 Y	2.23×10^{1}
^{90}Y	5.05×10^{2}
¹⁰² Rh	1.33×10^{3}
$^{102m}\mathrm{Rh}$	9.54×10^{4}
¹⁰⁶ Rh	8.59×10^{1}
110m Ag	7.96×10^{2}
¹¹⁰ Ag	1.07×10^{1}
¹²⁴ Sb	1.77×10^{-2}
126mSb	3.06
¹²⁶ Sb	2.92×10^{-35}

Process Systems

- Ultra-clean PFA Teflon
 - Every wet process line and vessel constructed with plastic to suppress metals leaching
 - Polypropylene vessels (mostly cost savings)
 - PFA piping
 - Not a good radon barrier

Process Systems

- Ultra-clean PFA Teflon
 - Every wet process line and vessel constructed with plastic to suppress metals leaching
 - Polypropylene vessels (mostly cost savings)
 - PFA piping
 - Not a good radon barrier

Process Systems

- Ultra-clean PFA Teflon
 - Every wet process line and vessel constructed with plastic to suppress metals leaching
 - Polypropylene vessels (mostly cost)
 - PFA piping
 - Not a good radon barrier

	Soa (2 d	ak 1 ays)		Soak 2 (4 days)		Soak 3 (4 days)	
	RXT	TRXT	RXT	TRXT	RXT	TRXT	
U	1	0.2	<0.05	<0.05	<0.05	<0.05	
Th	5	1	1.1	<0.1	<0.1	<0.1	
Ca	2700	2000	380	180	<20	<20	
Fe	5600	5000	220	170	17	37	

 (In the case of SNO+) LAB-soluble Tellurium-Diol complexes are formed in condensation and further oligomerization reactions of Telluric Acid with 1,2-Butanediol

- Telluric Acid purification (U/G plant product)
- 1,2-Butanediol distillation
- DDA distillation

 (In the case of SNO+) LAB-soluble Tellurium-Diol complexes are formed in condensation and further oligomerization reactions

a	b	c
337.83 OH OH OH OH OH OH OH OH	409.93 H ₃ C OH CH ₃ CH ₃	657.64 H ₃ C O Te O O O O O O O O O O O O O
d	e	f
747.76 OH	819.87 OH OH CH ₃ H ₃ C OH CH ₃ H	1067.57 H ₃ C O O CH ₅ CH ₅ 1049.56 H ₃ C O O O CH ₅ O O O O CH ₅ O O O O CH ₅ O O O O O O O O O O O O O

- Other, critical considerations
 - Long term chemical stability
 - Long term optical stability
 - Chemical compatibility

- These are critical R&D efforts that
 must be initiated as early as possible to establish sufficient confidence in the approach down the road
 - Analytical methods, chemical reaction models, material selection, reagents procurement

- Other, critical considerations
 - Long term chemical stability
 - Long term optical stability
 - Chemical compatibility

- These are critical R&D efforts that
 must be initiated as early as possible to establish sufficient confidence in the approach down the road
 - Analytical methods, chemical reaction models, material selection, reagents procurement

Long term compatibility testing, e.g.:

 Tellurium synthesis to 'mineral-oil-soluble' complexes is relatively easily scalable

 Scaling of chemical processes is not 'straight forward' – a factor of 100 will carry risk.

- Relies on recrystallization and requires the use of nitric acid
 - Filter out insoluble impurities in water
 - Dissolve the rest and drain away after telluric acid is recrystallized

- Relies on recrystallization and requires the use of nitric acid
 - Filter out insoluble impurities in water
 - Dissolve the rest and drain away after telluric acid is recrystallized

- Relies on recrystallization and requires the use of nitric acid
 - Filter out insoluble impurities in water
 - Dissolve the rest and drain away after telluric acid is recrystallized
- Sufficient optimization and continues operations could give
 - 500 kg of telluric acid per week (~250 kg of tellurium)
- Bottlenecks
 - Logistics: Nitric acid deliveries and waste disposal

- Underground facilities in the future
 - Tellurium purification
 - Nitric acid purification
 - Filtration
 - Scavengers
 - Distillation

 In the process of tellurium purification, 70% nitric acid transitions to ~40% nitric, contaminated with 'percentage levels of tellurium' and trace metal impurities

Conclusions

 Achieving normal hierarchy sensitivity requires a 100-tonne scale tellurium loading in LS

Cost of isotope (high isotopic abundance)
 THEIA25

Synthesis from water-soluble to scintillator-soluble is scalable

Purification of tellurium is now being demonstrated with SNO+

- Scaling of the purification method has room for improvement
 - Optimization of the process and improved logistics for reagents and waste
- Future detector technology needs more refined simulations and engineering work – e.g., acrylic vessel vs nylon balloon(s)

20m

Backup