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• Research scientist at LIP - Laboratório de Instrumentação e Física Experimental de 
Partículas (www.lip.pt), Portugal. Adjunct professor at Univ. of  Lisbon (2011-2019) 

• Head and founder of  the LIP Neutrino Physics group 
• Research in Neutrino Physics since 1996, HEP 2004 - 2017 

• Borexino @ Gran Sasso, Italy (1996-2003) 
• SNO (since 2002) 
• SNO+ (since 2004) 
• ATLAS (2004-2017) 
• DUNE (since 2018)

M A N Y  T H A N K S  F O R  T H E  I N V I TAT I O N  T O  S U S I  
I T ’ S  G R E AT  T O  B E  H E R E !
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1.Neutrinos in the Standard Model.  
2.Neutrino interactions, detectors. Solar and atmospheric neutrino problems. 
3.Neutrino oscillations in 2 flavors. SNO and SK.  
4.Neutrino oscillations in 3 flavors. Future experiments.  
5.Theory and search for neutrino masses. Neutrinoless double-beta decay. Neutrinos in 
Cosmology and Astrophysics.

• Theory and experiment will be strongly mingled.  
• Every lecture will have some of  both.
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• Intro and basic properties 
• Neutrinos in the Standard Model 

• The key experiments 
• Cowan/Reines, Davis, Wu, helicity 
• Steinberger, neutral currents 
• LEP Z decay, Donut 

• Recap of  the SM, electroweak side 
• Parity, helicity, chirality 
• Massive bosons



I N T R O D U C T I O N
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• Spin 1/2 → Fermions. 
• Electrically neutral.  

• In fact, the only neutral fermions. 
• “Strongly” neutral, like the other leptons. 
• “Weakly” charged, interact via W, Z bosons. 

• Three active flavours. Full parity violation. 
• “Gravitationally” charged (presumably). 

• Their “inertial” mass is small, gravitational effects are 
expected but no evidence yet.
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• Multiple natural and human-made sources. Second most abundant particle. 
• Span over 20 orders of  magnitude in energy and cross-section. Over 40 in flux!
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• Solving the puzzles of  solar (SNO) 
and atmospheric (SuperK) 
neutrinos 

• Neutrino oscilations, one of  the 
two biggest discoveries in particle 
physics in the last decades!
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Mass directly related to Higgs 
interaction, confirmed > 100 MeV

Fermion masses

Why this 
huge gap?

A .  D E  G O U V Ê A ,  C E R N  C O U R I E R
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Do neutrinos 
couple to Higgs in 

the same way as 
charged fermions?

Dirac ?

Majorana ?

E .  L I S I ,  N E U T R I N O  2 0 2 4  ( A D A P T E D )
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• Where do ultra-high energy cosmic rays come from? 
• How do Supernovae explode?  
• How does the Sun shine? 
• How does the Earth heat? 
• Is that nuclear reactor on?
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• Papers with the word “neutrino” in the title*

* surpassed “electron”, “proton”, “LHC”



T H E  K E Y  E X P E R I M E N T S



H I P O T H E S I S  A N D  
D I S C O V E RY
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James Chadwick 
[Nobel 1935, for  

neutron discovery]

Letter to Rutherford, 1914: 
“There is probably some silly 

mistake somewhere.” 
Niels Bohr: energy may not be 
conserved, or only on average

• Energy-momentum conservation for two-body 
decay leads to fixed lines, like in α and γ decays 

• Key measurements by Chadwick in Berlin, 1914, 
using magnetic deflection and a Geiger counter.

Mostly 
continuous 
spectrum

Lines from internal 
conversion of  

gammas
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Wolfgang Pauli 
[Nobel 1945, for the  
exclusion principle]

• Dear Radioactive Ladies and Gentlemen 

• The continuous beta spectrum would then become 
understandable by the assumption that in beta decay a 
neutron is emitted in addition to the electron such that 
the sum of  the energies of  the neutron and the electron 
is constant… 

• Unfortunately, I cannot personally appear in Tübingen 
since I am indispensable here in Zürich because of  a 
ball on the night from December 6 to 7.

alpha decay
beta decay
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• Contact interaction betwen four fermions: n, p, e and ν 
• first inclusion of  neutrino in a physics theory 
• neutron and proton as isospin states 
• spin considered for all, but not parity violation (yet) 

• Intensity given by coupling “Fermi constant”, determined from 
experimental decay rates 

• Main problem: cross sections grow with energy “forever” 
• This is a  problem at high energies, solved later by the presence of  the 

massive W and Z bosons

Enrico Fermi 
[Nobel 1938, for  

induced radioactivity]

.
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• Measurement of  nuclear recoil T in electron capture decay 

• Two-body final state, TCl well-defined (Q=816 keV, TCl = 9.67 eV): 

• Recoil experimentally measured, so there must be a second particle in final state 
• Still, not direct evidence …

37Ar + e− →37 Cl + νe

TCl =
E2

ν

2mCL
≈

Q2

2mCL

R O D E B A C K ,  A L L E N ,  P R  8 6 ,  4 4 6  ( 1 9 5 2 )
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• How to actually be sure? 
• “Direct proof  of  the existence of  the neutrino […], must 

be based on [a process] produced by free neutrinos […]” 
• He described the generic features of  “Inverse β 

Processes”, and suggested a specific one: 

• giving details on radiochemical method (later used by 
Davis), backgrounds, cross sections, etc 

• Assumed Sun and nuclear reactors as sources (no 
distinction between neutrinos and antineutrinos)

νe +37 Cl →37 Ar + e−

• Chalk River, early connection of  Canada to neutrino physics!
B .  P O N T E C O R V O ,  I N V E R S E  B E TA  P R O C E S S ,  C H A L K  R I V E R  R E P O R T  ( 1 9 4 6 )

Bruno Pontecorvo 
[no Nobel] 

life is very unfair! 
more on him later…
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• Are neutrinos and antineutrinos different ? 
• If  so:        
•                                                    and                              
•                                                    are different reactions 

• Ray Davis used Pontecorvo’s radiochemical method to search for 
37Ar production in a large tank of  CCl4 close to a nuclear reactor 
(emitting antineutrinos but not neutrinos). 

• No excess over background was observed. Upper limit on antinu 
cross section. 

• Conclusion: (if  they exist…) Antineutrinos ≠ Neutrinos !

ν̄e +37 Cl →37 Ar + e−
νe +37 Cl →37 Ar + e−

Ray Davis Jr 
[Nobel 2002] 

solar neutrinos 
more on him laterR .  D AV I S  J R . ,  P R  9 7 ,  3 ,  7 4 6  ( 1 9 5 5 )
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• Inverse beta decay process 
• sensitive to antineutrinos from reactors 
• delayed time coincidence between positron and neutron allows 

background suppression 
• Detector: 

• Target: water (provides many free protons) loaded with 
Gadolinium (captures neutrons) 

• Surrounded by liquid scintillator modules observed by PMTS 
• Cosmic ray shielding 

• @Hanford: none (too much background) 
• @Savannah River: 12 m was enough…

ν̄e + p → n + e+

Fred Reines [Nobel 1995] 
& Clyde Cowan



H A N F O R D  R E A C T O R ,  W A S H I N G T O N  S TAT E  
( P R O D U C E D  P L U T O N I U M  F O R  M A N H AT TA N  P R O J E C T )

S AVA N N A H  R I V E R  R E A C T O R ,  S O U T H  
C A R O L I N A  ( S I T E  A L L O W E D  1 2  M  S H I E L D I N G )



PA R I T Y  A N D  H E L I C I T Y
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• Electromagnetic and strong interactions are invariant with 
respect to parity, i.e., the inversion of  spatial coordinates 

• Are weak interactions invariant too, or not ? 
• Lee and Yang proposed a test based on comparing rates of  

parity-reversed configurations of  beta decays 
• Vectors change sign (e.g. position, momentum) 

• Axial vectors remain unchanged (e.g., angular momentum)

C. Yang, T. Lee  
[Nobel 1957]

electrons

electrons

If  parity is conserved in weak decays, 
rate should be the same for electrons in 
the same direction and opposite the 
nuclear spin (magnetic field)
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• Cobalt nuclei spin aligned with 
strong magnetic fields 

• Cryo-cooled to keep it so 
• Checked by measuring 

asymmetric gamma distribution  
• Measured beta decay asymmetry 

• correlated to gamma asymmetry 
• changes sign according to B field 

polarityC. Wu  
[no Nobel]  

unfair!

60Co →60 Ni* + ν̄e + e−

→60 Ni + γ + γ
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• Helicity = projection of  spin on momentum 
• Observe electron capture decay of  a spin 0 nucleus

Spin

Momentum          0           ↓    ↑          ↓   ?   ↑

Are both  
these spin  

states possible?

• Photon direction: if  aligned with 152Sm*, extra recoil energy, can resonantly excite 
another 152Sm nucleus; opposite direction, not enough energy for excitation 

• So, if  we observe the production (and decay) of  the second 152Sm nucleus, we know 
that the photon and the 152Sm* are aligned. In this case H(ν)= H(γ)  

• And the photon helicity? Photon absorption in magnetized iron depends on their 
helicity. Use this to select left (H=-1) and right-handed (H=+1) photons 

H(ν)= H(152Sm*)
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Maurice 
Goldhaber, 1957

Neutrino

152Sm*

Gamma with  
E> Eexc.

Magnet allows selection 
of  γ helicity

• Result: higher count rate with 
magnetic field down. 

• Similar (opposite) results for 
antineutrino experiments

N E U T R I N O S  A R E  L E F T- H A N D E D  
A N D  A N T I N E U T R I N O S  A R E  

R I G H T- H A N D E D !



F L AV O U R
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• Measurement of  the energy spectrum of  the electrons from muon decay 
• Fixed energy: two-body decay 
• Continuous energy: three-body decay

J .  S T E I N B E R G E R ,  P H D  T H E S I S ,  1 9 4 9

μ− → e− + ν μ− → e− + ν̄e + νμor ?

electron range

Solid lines = 
 expected range

fixed 50 MeV

fixed  
25 MeV continuous

• Only one neutrino emitted 
in beta decay 

• Not one, but two neutrinos 
emitted in muon decay
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• Almost all produce muon 
neutrinos from pion decay 
(from protons hitting target) 

• Can switch between 
neutrinos and antineutrino 
by flipping the magnetic 
field polarity 

• Energy can be tuned by 
tuning proton energy and 
magnetic field intensity

⇡+ ! µ+ + ⌫µ

Protons hit  
Berylium target

Pions decay  
in flight → 
 neutrino beam!

Hadrons absorbed  
by shielding

F I R S T  E X P E R I M E N T  W I T H  A  
N E U T R I N O  B E A M ,   

A G S ,  B R O O K H AV E N  ( 1 9 6 2 )
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• Are the neutrinos produced with muons the same as those 
produced with electrons? I.e. are νμ = νe ?

Melvin Schwartz 
(Leon Lederman, 
Jack Steinberger) 

[Nobel 1988]

⇡+ ! µ+ + ⌫µ

Spark chamber tracks:

single muon

electron

Expected electron 
tracks if  are νμ = νe

Observed electron 
tracks → νμ ≠ νe
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• DONUT experiment@Fermilab  (2000) 
• High energy needed to produce DS meson 

• Beam with same amounts of  ντ, νμ, νe 

• Tau leptons very short lived (0.29 ps) 
• Sub-mm resolution needed to identify decay kink 
• Emulsion technique

Ds → τ− + ντ

τ− → π− + ντ

ντ + X → τ− + X′￼



J. Maneira (LIP)                                                  Neutrino Science 1 - Susi 2024 - Sudbury

L E P T O N  U N I V E R S A L I T Y

33

• Is the weak coupling constant the same for all three lepton families ? 
•

GF(e)GF(μ) GF(τ)

GF(e) and similarly for GF(e) 

Identical vertices for Wτντ, Wμνμ, Weνe 
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• Neutrino reactions with no charge exchange, a key 
prediction of  the electroweak model (late 60’s) 

• Observed at CERN in 1973 with the magnetized 
bubble chamber Gargamelle

ν + X → ν + X′￼
(no leptons!)

νμ + e− → νμ + e−

Long track= muon 3 hadrons

Charged Current Neutral Current

Neutrino beam

• Rate as expected for νμ 
and νμ. 

• Measured Weinberg 
angle.
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• LEP collider produced vast amounts of  Z 
bosons at cm energies close to pole 

• Total width Γ from Z→qq resonance, 
partial widths from specific decays 

• Nν = number of  light neutrino families

DELPHI
Z→qq Z→µµ Z→ττ



N E U T R I N O S  I N  T H E  
S TA N DA R D  M O D E L
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• The SM was built from experiment (and some assumptions…) 
• Fermi’s beta decay theory should be its low energy limit 
• Neutrinos are neutral, spin 1/2, massless (a widely shared assumption, at the time) 
• Complete parity violation 
• Neutrinos are left-handed, antineutrinos are right-handed fermions 
• There is one (light) neutrino associated to each charged lepton, and no more 
• They have the same fundamental coupling constant 

• Key aspects of  the electroweak theory 
• SU(2)L×U(1)Y gauge principle; weak isospin I3 and hypercharge Y, broken by the scalar 

Higgs boson 
• Neutrinos are described by spinor fields. L neutrino fields are part of  an isospin doublet, 

R neutrino fields are absent from theory. 
• Interaction terms only with W and Z bosons (massive) 
• From these one can obtain a “prescription” for Feynman rules
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• Start by drawing all possible Feynman diagrams for the process 
• Prescription to calculate Lorentz-invariant matrix element Mfi 

µ ν

e– µ–

e+ µ+
γ

• incoming particle 
• outgoing particle 
• incoming antiparticle 
• outgoing antiparticle 
• incoming photon 
• outgoing photon 

• photon 
• fermion 

• fermion 

External lines

Internal lines (propagators)

Vertices

spin 1/2

spin 1

spin 1/2
spin 1

• Matrix element  
−i Mfi = product of  all factors

Decay rate: a → 1+2

Scattering differential cross  
section: a + b → c + d
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• Parity violation needs to come out naturally from theory 
• Particles are eigentates of  parity operator with +/- 1 eigenvalues 
• Gauge bosons have negative parity 
• Parity of  fermion particles opposite antiparticles                                             (convention) 
• For Dirac spinors parity operator = γ0 matrix 

• Vertex + fermion lines form bilinear “currents” 

• Only 16 respect Lorentz invariance. Of  those, only vector           or axial vector                
can couple to spin 1 bosons. From γ matrices properties: product of  two currents is 
invariant for pure vector or pure axial vector. General form for vertex: gV γμ + gA γμ γ5 

• From experiment: gV = 1, gA = -1. Charged current vertex:

       Type          Form           Components        “Boson Spin”
 1  
 1    
 4 
 4 
 6

 0  
 0    
 1 
 1 
 2

QED

 SCALAR  
 PSEUDOSCALAR    

 VECTOR 
 AXIAL VECTOR 

 TENSOR
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• Eigenstates of  the γ5 matrix are the L and R chiral states 
• Projection operators 
• CC weak vertex 

• includes PL! 
• PL projects left component in weak current: 

• Only left-handed chiral components participate in charged weak interactions! 
• From properties of  Dirac spinors, the helicity eigenstate is 

• In the relativistic case E >> m: k~1, so chiral states are helicity eigenstates 
• Recover the experimental result that neutrinos are left-handed !

u↑ ∝
1
2

(1 + k)uR +
1
2

(1 − k)uL k =
p

E + m
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• Relation between Fermi and gW 

• Obtain gW, αW 

• Compare to αEM = 1/137 

• Weakness of  weak interactions due to 
massive bosons (not true @ high energies!)

Fermi SM Unlike the photon, W and Z are heavy 
bosons. They are short-lived and the 

interaction has a short range. 

Propagators

EM Weak

When q2 << mW2, becomes constant



J. Maneira (LIP)                                                  Neutrino Science 1 - Susi 2024 - Sudbury

E L E C T R O W E A K  S Y M M E T RY

42

• Similarities between weak and EM interaction 
• W boson has EM charge 
• If  chirality is “absorbed” in definition of  states, vertex is similar 
• Considering effect of  massive propagator, coupling constant also similar 

• Unification of  EM and weak interactions 
• Quantum Field Theories based on imposing local symmetries on Lagrangian 
• From Noether’s theorem, to each symmetry corresponds a conservation law 

• EM: U(1) symmetry, conservation of  charge 
• QCD: SU(3) symmetry, conservation of  color 
• Electroweak; SU(2)xU(1), conservation of  weak isospin and hypercharge 

• Consequences of  unification 
• Predict neutral Z boson 
• Masses of  W and Z bosons, weak/EM coupling constants are all related (via Weinberg angle)
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• Major problem of  Higgs-less electroweak unification: mass 
• Mass terms in Lagrangian are not gauge-invariant  
• Need to introduce a scalar (spin-0) field 
• Higgs field symmetry broken at “low” energies 
• Interaction wth Higgs field gives mass 

• to W and Z bosons 
• to fermions, via terms like 

N O T E :  M U C H  M O R E  A B O U T  L A G R A N G I A N S ,  G A U G E ,  M A S S  T E R M S  I N  L E C T U R E  4 .

• But there are no right-handed neutrino fields (νR) in the 
theory! No νR interactions (weak, EM or strong). 

• Neutrinos are massless in the Standard model! 
• How can we extend it? Tune in for Lecture 4!


