

NEUTRINO SCIENCE 3

SUSI 2024 SNOLAB UNDERGROUND SCIENCE INSTITUTE J U LY 22 - AU GU ST 2, 2024 SU DBU RY, C A NA DA

J. MANEIRA

LIP, LISBON, PORTUGAL

OVERALL PLAN OF THE 5 LECTURES

- Theory and experiment will be strongly mingled.
- Every lecture will have some of both.

1.Neutrinos in the Standard Model. 2.Neutrino interactions, detectors. Solar and atmospheric neutrino problems. 3.Neutrino oscillations in 2 flavors. SNO and SK. 4.Neutrino oscillations in 3 flavors. Future experiments. Cosmology and Astrophysics.

-
-
- 5.Theory and search for neutrino masses. Neutrinoless double-beta decay. Neutrinos in

PLAN FOR LECTURE 3

- Two-neutrino oscillations
	- History of the oscillation hypothesis
	- Derivation of the 2-v vacuum oscillations formula
	- Matter effects
- Finding evidence for oscillations
	- with solar neutrinos: Sudbury Neutrino Observatory
	- … and early confirmations with terrestrial sources: KamLAND

•

OSCILLATIONS

THE DAWN OF OSCILLATIONS

- 1957 Pontecorvo suggests $\nu \leftrightarrow \bar{\nu}$ oscillations, following an analogy with $K^0 \leftrightarrow \bar{K^0}$ • apparently he heard rumors that Davis' Chlorine reactor experiment had seen events… • 1962 Maki, Nakagawa, Sakata suggest mixing between massive neutrino states $ν_1, ν_2$ and massless $ν_e$, $ν_\mu$ but without referring oscillations
	-
-
- 1967 Pontecorvo suggests $\nu_e \leftrightarrow \nu_\mu$ oscillations
	- mentions the Sun as the ideal source to test the idea
- 1969 Gribov, Pontecorvo: first survival probability calculation
- 1976 Bilenky, Pontecorvo: quark lepton analogy, "modern" formulation
- 1978 Wolfenstein describes matter effects in oscillation
- 1985 Mikheyev, Smirnov describe resonance of matter effects in media with large densities (e.g. Sun) → MSW effect

- Neutrinos only interact weakly. So our only handle to identify their states is through their weak interaction:
- By definition, ν_e is the state that is produced along with an electron • Similarly for the other flavors: ν_e , ν_μ , ν_τ are weak eigenstates
	-
- Are these fundamental states?
- Experimentally, the neutrinos produced along with a flavor produced the same flavor when detected

NEUTRINO FLAVORS

Except for the "two clouds" of solar and atmospheric neutrinos...

- Neutrino oscillations are based on the superposition of states.
	- States $ν_e, ν_μ$ that couple to the weak bosons, the weak (or flavor) eigentstates
	- States $ν_1, ν_2$ with definite masses, the eigenstates of the free Hamiltonian

MASS AND WEAK EIGENSTATES

7

- Usual techniques don't work…
- Measure their track curvature in a magnetic field
	- neutrinos are neutral, not affected by EM fields \boldsymbol{X}
- Measure energy and momentum of daughter particles ?
	- Neutrinos are the lightest particles, don't decay in others ✗
- Use quantum interference to probe neutrino mass √

NEUTRINO MASS IS HARD TO MEASURE

M2=(E1+E2)2−(**p 1**+ **p2)2** ⃗ ⃗

OSCILLATIONS IN 2 FLAVOURS

- The gist of it:
- Neutrino produced in a weak eigenstate
	- … that is a superposition of two mass eigenstates
- … but phases change with time so the mass composition may be different at detection
- Neutrino detected in a weak eigenstate that may not be the initial one

$$
\begin{pmatrix}\nV_e \\
V_\mu\n\end{pmatrix} = \begin{pmatrix}\n\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta\n\end{pmatrix} \begin{pmatrix}\nV_1 \\
V_2\n\end{pmatrix}
$$
\n
$$
\begin{aligned}\n|v_1(t)\rangle &= |v_1\rangle e^{i\vec{p}_1 \cdot \vec{x} - iE_1 t} \\
|v_2(t)\rangle &= |v_2\rangle e^{i\vec{p}_2 \cdot \vec{x} - iE_2 t}\n\end{aligned}
$$

$$
\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} v_e \\ v_\mu \end{pmatrix}
$$

OSCILLATIONS IN 2 FLAVOURS

• At time t=0, neutrino produced in a pure ν_e state along z axis • Grouping the terms for each weak state $|\psi(0)\rangle = |\nu_e\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle$ $|\psi(t)\rangle = \cos\theta|\nu_1\rangle e^{-ip_1\cdot x} + \sin\theta|\nu_2\rangle e^{-ip_2\cdot x}$

• Wave function time evolution: mass eigenstates as plane waves
 $p_i.x = E_it - \vec{p}_i.\vec{x} = E_it - |\vec{p}_i|z$ • Plugging in the mass states as a function of weak states $\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} v_e \\ v_u \end{pmatrix}$ $|\psi(t)\rangle = \cos\theta \left(\cos\theta|\nu_e\rangle - \sin\theta|\nu_\mu\rangle\right) e^{-ip_1x} + \sin\theta \left(\sin\theta|\nu_e\rangle + \cos\theta|\nu_\mu\rangle\right) e^{-ip_2x}$ $|\psi(t)\rangle = |\nu_e\rangle (\cos^2\theta e^{-ip_1\cdot x} + \sin^2\theta e^{-ip_2\cdot x}) + |\nu_\mu\rangle \sin\theta \cos\theta (-e^{-ip_1\cdot x} + e^{-ip_2\cdot x})$ if $p_1=p_2$ (i.e. if $m_1=m_2$) = 0 $\langle \cos \left| \psi(t) \right\rangle = | \nu_e \rangle e^{-ip_1 \cdot x}$

10

OSCILLATIONS IN 2 FLAVOURS

11

$$
|\psi(t)\rangle = |\nu_e\rangle \big(\cos^2\theta e^{-ip_1 \cdot x} + \sin^2\theta e^{-ip_2 \cdot x}
$$

$$
P(\nu_e \to \nu_\mu) = |\langle \nu_\mu | \psi(t) \rangle|^2
$$

= cos² θ sin² θ (-e<sup>-ip₁·x + e<sup>-ip₂·x) (-eⁱ
= $\frac{1}{4}$ sin² 2θ (2 - 2 cos (p₁ · x - p₂ · x))
= sin² 2θ sin² ($\frac{p_1 \cdot x - p_2 \cdot x}{2}$)</sup></sup>

What's the probability of seeing it? (QM recap: amplitude²)

$$
P\left(\nu_e \to \nu_\mu\right) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)
$$

$$
P\left(\nu_e \rightarrow \nu_e\right) =
$$

MATTER EFFECTS

NEUTRINO POTENTIAL IN MATTER

- -

14

• Coherent forward scattering gives rise to extra potential energy • $ν_e$ (and only $ν_e$) can exchange a W boson with electrons in matter • $V_W = \pm \sqrt{2} G_F N_e$. + for ν_e , – for $\bar{\nu}_e$, N_e is the density of electrons. • all neutrinos can exchange a Z boson with electrons, neutrons, protons • the term for electrons and protons cancels out

• $V_Z = \pm \frac{V}{2} G_F N_n$. – for ν , + for $\bar{\nu}$, N_n is the density of neutrons.

$$
V_Z = \mp \frac{\sqrt{2}}{2} G_F N_n \, .
$$

MIXING IN MATTER

$$
i\frac{d}{dx}\begin{bmatrix}v_e\\v_\mu\end{bmatrix} = \frac{1}{2E}M^2\begin{bmatrix}v_e\\v_\mu\end{bmatrix} = \frac{1}{2E}\begin{bmatrix}U\begin{bmatrix}m_1^2 & 0\\0 & m_2^2\end{bmatrix}U^{\dagger} + \begin{bmatrix}U\end{bmatrix}U^{\dagger} + \frac{1}{2E}\begin{bmatrix}U\end{bmatrix}U^{\dagger} + \frac{1}{2E}\begin{bmatrix}
$$

 $M_{2,1}^2 = \{ (\Sigma + A) \pm [(A - \Delta C_{2\theta})^2 + (\Delta S_{2\theta})^2]^{1/2} \} / 2$. $\sin^2 2\theta_m = (\Delta \sin 2\theta)^2 / [(A - \Delta \cos 2\theta)^2 + (\Delta \sin 2\theta)^2]$

Resonant for: $A = \Delta \cos 2\theta$ θ_m depends on sign of Δ

J. Maneira (LIP) Neutrino Science 3 - Susi 2024 - Sudbury

 $\begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \begin{array}{c} \begin{array}{c} \boldsymbol{\mu}_e \\ \boldsymbol{\nu}_\mu \end{array} \end{array}$

 $\begin{bmatrix} \Delta S_{2\theta} \\ -A+\Delta C_{2\theta} \end{bmatrix} \begin{bmatrix} v_e \\ v_\mu \end{bmatrix}$

$A \equiv 2\sqrt{2}G_F N_e E = 2\sqrt{2}G_F (Y_e/m_n)\rho E$ $A \equiv ZV ZG_FN_eE = ZV ZG_{F}V_{e}N_{m}W_{r}$
(change sign for antineutrinos)

• Equations formally equal to oscillations in vaccuum, but with parameters dependent on density

MSW EFFECT IN THE SUN

dr $m^2 \cdot \frac{\sin^2 2\theta}{\cos \theta} \ge 2E_v \frac{d \ln N_e}{R}$ cos 2 2 $\sin^2 2$ θ = ω_{v} $\Delta m^2 \cdot \frac{\sin^2 2\theta}{2\theta} \ge$

J. Maneira (LIP) Neutrino Science 3 - Susi 2024 - Sudbury

 E_{v} [MeV]

• Adiabatic condition:

- slow density gradient
- neutrinos stay in the same mass eigenstate, as its mass and flavor evolves
- Large densities in the core of the Sun • Neutrinos produces as ν_e , which are pure ν_2^m • Emerge as $v^{vac} = \sin \theta v_e + \cos \theta v_\mu$ Partial conversion

Note expected rise of Pee at low energies. This is a prediction of the MSW effect.

MSW EFFECT IN THE EARTH

17

- Solar neutrinos
	- cross the whole Earth, large path and varying density
	- regenerate some of the neutrinos converted to ν_{μ} in the Sun
	- Day-night effect: Sun is actually "brighter" at night in neutrinos!
- Reactor neutrinos
	- Short path and low density
	- Small effect
- Accelerator (and atmospheric) neutrinos
	- Effect changes sign for antineutrinos
	- Mimics CP violation (more next lecture)
	- Dependence on sign of Δm^2 useful to measure that sign!

SUDBURY NEUTRINO OBSERVATORY

THE SNO DETECTOR

19

CONSTRUCTION

• SNO was built in the active Creighton mine (INCO, now VALE), close to Sudbury

PMTS

J. Maneira (LIP)

21

Charged Current reaction W boson exchange Only electron neutrinos Detect electron in final state

REACTIONS ON DEUTERIUM

Neutral Current reaction Z boson exchange All neutrino flavors Detect neutron in final state

Elastic Scattering reaction W or Z boson exchange Lower cross section for νμ, ντ Directional Lower statistics

J. Maneira (LIP) Neutrino Science 3 - Susi 2024 - Sudbury

-
-
-
-
-
-

ν^e + *d* → *p* + *p* + *e*[−]

also:

THE 3 PHASES OF SNO

Phase III (NCD) Phase I (D₂O) Phase II (salt) Nov. 99 - May 2001 July 2001 - Sept. 2003 Nov. 2004 - Dec. 2006 \leftarrow 5 cm \rightarrow ⁄n $36Cl$ $3H*$ $35C$ ∗ ${}^{3}H$ $36Cl$ $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$

neutrons captured by deuterons $E(\gamma) = 6.25$ MeV

J. Maneira (LIP) Neutrino Science 3 - Susi 2024 - Sudbury

neutrons captured by chlorine $\Sigma(E(\gamma)) = 8.6$ MeV

neutrons captured by 3He array of 40 proportional counters

EXPERIMENTAL OBSERVABLES

- event position
- direction
- energy
- isotropy

24

J. Maneira (LIP) Neutrino Science 3 - Susi 2024 - Sudbury

From these we calculate:

SNO used extensive calibrations to tune response models and determine systematics

ISOTROPY

25

$$
\beta_l \approx \left\langle P_l \left(\cos \theta_{ij} \right) \right\rangle_{i \neq j}
$$

best separation found with $\beta_{14} = \beta_1 + 4\beta_4$

NEUTRAL CURRENT DETECTORS

$$
n+{^3He}-
$$

J. Maneira (LIP) Neutrino Science 3 - Susi 2024 - Sudbury

Neutron capture efficiency: 21.5% • Pulse-shape allows background discrimination

• Array of 3He-filled proportional counters deployed in the AV

 $\rightarrow p + {}^{3}H$

neutron pulses, obtained from calibrations

alpha pulses, obtained from 4He-filled counters

CALIBRATIONS

27

SUDBURY NEUTRINO OBSERVATORY SOLAR NEUTRINO RESULTS

SIGNAL EXTRACTION

29

- Fit distributions of direction, position, isotropy
- Measure number of events and energy spectrum of CC, NC, ES
- (Energy fixed in phase I result)

ENERGY SPECTRA

30

simulated in 1987

J. Maneira (LIP) Neutrino Science 3 - Susi 2024 - Sudbury

measured 1999-2003

NEUTRAL CURRENT DETECTORS

J. Maneira (LIP) Neutrino Science 3 - Susi 2024 - Sudbury

31

Results of all 3 phases compatible

SOLAR NEUTRINO PROBLEM, SOLVED!

32

FINAL COMBINATION ALL PHASES

- Lowered energy threshold to 3.5 MeV • better CC/NC precision
- Common fit of all phases, handle common systematics
- Fit common 8B v flux and survival probability
- E dependence compatible with flat (and MSW)

LONG-BASELINE REACTOR NEUTRINOS

NUCLEAR REACTORS

- In fission reactors, fragments of 235U or 239Pu break-up are neutron-rich,
- so they β decay, emitting $\bar{\mathbf{v}}_e$, not \mathbf{v}_e (or other flavors).
- To go from ²³⁵U to stable nuclei, on average 6 decays are needed, so 6 \overline{v}
- So, for a 3GW thermal power reactor (~Bruce Peninsula power plant),
	-

are emitted per fission. Plus ~200 MeV. $6x10^{20}$ \overline{v} are produced per second • What's the flux at 300 m from the reactors? **• F=5x1010 ν/cm2/s**

Energy: a few MeV

KAMLAND

- Solar neutrino mixing in matter predicts oscillation suppression for reactor neutrinos, but only at long distances, $~100 \text{ km}$
- scintillator detector: 1 kton
- Kamioka lab: average distance to reactors 180 km • Low flux compensated by having the largest yet pure LS • Solar neutrino mixing confirmed on Earth!
-

NEUTRINO OSCILLATIONS

37

- SNO results crucial to good precision on θ_{12}
- Complementary with KamLAND's Δm212 sensitivity
- Tension led to early hints of non-zero θ_{13} , SBL experiments (Daya Bay, Reno, Double-Chooz, and also T2K, Minos) then measured it

KAMLAND FINAL RESULTS

Most precise measurement of Δm^2_{12}

- Japan following Fukushima
- backgrounds at KamLAND

EXTRA SLIDES

N16 ENERGY CALIBRATION

• Energy estimator using number of prompt hits • later using all PMT hits, including late times # of detected PMT hits varies with event position by up to 8% due to PMT angular response, attenuation in heavy and light water, and acrylic • Need to measure the optical properties *in-situ* -> optical calibration

OPTICAL CALIBRATION

41

- PMT + reflector response versus incidence angle
- reflectivity degraded over time

DIO

After all corrections, energy scale systematics $were < 0.6\%$

In salt phase, a drift in energy response was identified as caused

NEUTRON CALIBRATION

42

- AmBe and 252Cf point sources
- Adding salt improved capture and detection efficiencies

SNO DATA-TAKING

J. Maneira (LIP) Neutrino Science 3 - Susi 2024 - Sudbury

43

Large fraction of data-taking used in calibrations

Signal-loss from cuts, phase I

CHALLENGE: RADIOACTIVITY

44

Heavy and light water regularly purified and assayed. Well below target levels.

NEGATIVE OSCILLATION RESULTS

- oscillation hypothesis since late 1950s (nu/antinu), late 1960's (flavor).
- analogy with quark mixing
- short baseline reactor (Palo Verde, Bugey, etcc.)
- short baseline accelerator (CERN 1970's, chorus, nomad)

45

Deficit of solar neutrinos can be interpreted as due to mixing with parameters in one of the regions here Some of the solutions due to the fact that ν **refractive index in the Sun different for** ν**e and other flavors ("MSW effect") Excluded regions from other experiments Oscillations from "atmospheric neutrinos" (mainly νµ→ντ) Possible oscillations from LSND (unconfirmed, being further checked by miniBoone)**