

NEUTRINO SCIENCE 5

J. MANEIRA

LIP, LISBON, PORTUGAL

SUSI 2024 SNOLAB UNDERGROUND SCIENCE INSTITUTE JULY 22 - AUGUST 2, 2024 SUDBURY, CANADA

OVERALL PLAN OF THE 5 LECTURES

1.Neutrinos in the Standard Model. 2.Neutrino interactions, detectors. Solar and atmospheric neutrino problems. 3. Neutrino oscillations in 2 flavors. SNO and SK. 4. Neutrino oscillations in 3 flavors. Future experiments. Cosmology and Astrophysics.

- Theory and experiment will be strongly mingled.
- Every lecture will have some of both.

- 5. Theory and search for neutrino masses. Neutrinoless double-beta decay. Neutrinos in

PLAN FOR LECTURE 5

- Theory of neutrino masses
 - Lagrangians in Quantum Field Theory
 - Electroweak symmetry breaking the Higgs mechanism
 - Yukawa interactions and fermion masses
 - Charge conjugation of Dirac and Weyl fields
 - Types of possible neutrino mass terms
 - See-saw mechanism
- Experimental searches for Dirac and Majorana neutrino masses
 - From cosmology
- Single beta decay: Katrin
- Neutrinoless double-beta decay

THEORY OF NEUTRINO MASSES

LAGRANGIANS IN CLASSICAL MECHANICS

- Conservative forces are the gradient of a scalar potential
- So Newton's law $\vec{F} = m\vec{a}$ is also
- L = T UDefine the Lagrangian
 - T is the kinetic (e.g. $T=1/2mv^2$) and U the potential energy
 - L is a function of coordinates q_i and their time derivatives \dot{q}_i
- Laws of motion given by the Euler Laws

 $d \partial L$ at oq_i

 $\overrightarrow{F} = -\overrightarrow{\nabla}U$ $\begin{aligned} d\vec{v} &= -\vec{\nabla} U \\ dt \end{aligned}$

agrange equation	Example		
	∂L	∂T _ n	
	$\partial \dot{q}_i$	∂v_x	
i	∂L	∂U	
	∂q_i	∂x	

 ${\mathcal X}$

LAGRANGIANS IN QUANTUM FIELD THEORY

- equal footing
- Replace q_i and \dot{q}_i by fields $\Phi_i(t, x, y, z)$
- Replace L by lagrangian density \mathcal{L} such

Replace the Euler-Lagrange equation by

In order to respect Lorentz-invariance, need spatial and time coordinates to be in

) and field derivatives
$$\partial_{\mu} \Phi_{i} = \frac{\partial \Phi_{i}}{\partial x^{\mu}}$$

In that $L = \int \mathscr{L} d^{3}x$

$$\partial_{\mu} \left(\frac{\partial \mathscr{L}}{\partial (\partial_{\mu} \Phi_{i})} \right) - \frac{\partial \mathscr{L}}{\partial \Phi_{i}} = 0$$

EXAMPLES

Field Lagrangian Scalar $\mathscr{L} = \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - \frac{1}{2} m^2 \phi^2$ Spinor $\mathscr{L} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi$ Vector $\mathscr{L} = -\frac{1}{\Lambda}F^{\mu\nu}F_{\mu\nu} - j^{\mu}A_{\mu}$ Vector $\mathscr{L} = -\frac{1}{\Lambda}F^{\mu\nu}F_{\mu\nu} + \frac{1}{\gamma}m^2A^{\mu}A_{\mu}$

charge density and current $A^{\mu} = j^{\mu} = (\rho, \vec{J}) = e \bar{\psi} \gamma^{\mu} \psi$ EM potenti

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

Equation of motion

 $\partial_{\mu}\phi\partial^{\mu}\phi + m^{2}\phi = 0$ Klein-Gordon

$$i\gamma^{\mu}(\partial_{\mu}\psi) - m\psi = 0$$
 Dirac

$$_{\mu}F^{\mu\nu} = j^{\nu}$$
 Maxwell (w/ source)

$$\partial_{\mu}F^{\mu\nu} + m^2A^{\nu} = 0$$
 Proca (massive be)

 $A^{\mu} = (\phi, \overrightarrow{A}) \qquad F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial_{\nu}A_{\mu}$ EM potential and vector potential

(all in covariant form)

FULL QED LAGRANGIAN

Example of mass term:

$$m_e \bar{\psi} \psi = m_e \left(\bar{e_R} e_R \right)$$

But this violates the weak interaction gauge invariance!

mass term Interaction $\mathscr{L} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} - m_{f}\bar{\psi}\psi - e\bar{\psi}Q_{f}\gamma^{\mu}\psi A_{\mu}$ term

 m_f, Q_f : mass and charge of fermion

Interaction term comes from requiring lagrangian to be invariant to U(1)_Q symmetry

 $(\pm e_L e_R)$

WEAK INTERACTION GAUGE GROUP

- Mixing between Weak Isospin $SU(2)_L$ and Hypercharge $U(1)_Y$.
- Isospin follows a typical spin algebra. Total isopin I_W , projection I_3^W .
 - Why "L"? L fields are doublets $(I_W = \frac{1}{2})$, while R fields are singlets $(I_W = 0)$
- Hypercharge a function of charge and weak isospin $Y = 2Q 2I_3^W$

Fermion (f)	Ι	I_3	Q	Y
$\begin{pmatrix} \nu_{e\mathrm{L}} \\ e_{\mathrm{L}} \end{pmatrix}, \begin{pmatrix} \nu_{\mu\mathrm{L}} \\ \mu_{\mathrm{L}} \end{pmatrix}, \begin{pmatrix} \nu_{\tau\mathrm{L}} \\ \tau_{\mathrm{L}} \end{pmatrix}$	$\frac{1}{2}$	$+\frac{1}{2}$	0	-1
		$-rac{1}{2}$	-1	-1
$ u_{e\mathrm{R}}, u_{\mu\mathrm{R}}, u_{ au\mathrm{R}} $	0	0	0	0
$e_{ m R}, \mu_{ m R}, au_{ m R}$	0	0	-1	-2

• So, $m_e \left(\bar{e_R} e_L + \bar{e_L} e_R \right)$ is clearly not an isospin singlet

J. Maneira (LIP)

Fermion (f)	Ι	I_3	Q	Y
$egin{pmatrix} u_{ m L} \ d'_{ m L} \end{pmatrix}, egin{pmatrix} c_{ m L} \ s'_{ m L} \end{pmatrix}, egin{pmatrix} t_{ m L} \ b'_{ m L} \end{pmatrix}$	$\frac{1}{2}$	$+rac{1}{2} -rac{1}{2}$	$+\frac{2}{3}$ $-\frac{1}{3}$	$+\frac{1}{3}$ $+\frac{1}{3}$
$u_{ m R}, c_{ m R}, t_{ m R}$	0	0	$+\frac{2}{3}$	$+\frac{4}{3}$
$d_{ m R}, s_{ m R}, b_{ m R}$	0	0	$-rac{1}{3}$	$-\frac{2}{3}$

LAGRANGIAN EXPRESSED IN ISOSPIN

- Example: lepton interaction with W+
- L fermions are doublets, but whole current is singlet -> gauge invariant in SU(2) !
- Equivalent to the familiar formulation:

$$j_{+}^{\mu} = \frac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^{\mu} \sigma_+ \chi_L = \frac{g_W}{\sqrt{2}} (\overline{\nu}_L, \overline{e}_L) \gamma^{\mu} \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}$$

• Higgs is introduced as an isospin doublet too. Conjugate ϕ_C for the up-quarks • Yukawa terms (Higgs-fermion interaction) then become gauge invariant as well!

$$\mathcal{L}_{e} = -g_{e} \left[\left(\overline{v}_{e} \ \overline{e} \right)_{L} \left(\frac{\phi^{+}}{\phi^{0}} \right) e_{R} + \overline{e}_{R} \left(\phi^{+*} \right) \mathcal{L}_{u} = g_{u} \left(\overline{u} \ \overline{d} \right)_{L} \left(-\frac{\phi^{0*}}{\phi^{-}} \right) u_{R} + \text{Hermitia}$$

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

 $\chi_L = \begin{pmatrix} v_e \\ e^- \end{pmatrix}_L$ $j_+^{\mu} = \frac{g_W}{\sqrt{2}} \overline{\chi}_L \gamma^{\mu} \sigma_+ \chi_L$ $v_e \xrightarrow{g_W} e^ \frac{1}{2}\left(\frac{v}{e}\right)_{L} = \frac{g_{W}}{\sqrt{2}}\overline{v}_{L}\gamma^{\mu}e_{L} = \frac{g_{W}}{\sqrt{2}}\overline{v}\gamma^{\mu}\frac{1}{2}(1-\gamma^{5})e_{L}$ $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$ $\phi_c = -i\sigma_2\phi^* = \begin{pmatrix} -\phi^{0*} \\ \phi^{-} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -\phi_3 + i\phi_4 \\ \phi_1 - i\phi_2 \end{pmatrix}.$ $\phi^{0*}\left(\begin{array}{c} \mathbf{v}_{\mathrm{e}} \\ \mathrm{e} \end{array}\right)$ an conjugate,

DIRAC MASS TERMS

MASS TERM
$$\mathcal{L}_{e} = -\frac{g_{e}}{\sqrt{2}}v\left(\overline{e}_{L}e_{R} + \overline{e}_{R}e_{L}\right) + \frac{g_{e}}{\sqrt{2}}v\left(\overline{e}_{L}e_{R} +$$

- - Introduce new ν_R fields

 - Mass terms and Higgs coupling just like for any other fermion
 - Physical neutrino is $\nu_1 = \nu_L + \nu_R$, then
 - Problems: ν_R appears nowhere else; does not explain small neutrino masses

Can we do something similar for neutrinos? • Introduce new ν_R fields $\mathscr{L}_D = g_D(\overline{\nu_L} \quad \overline{e_L}) \begin{pmatrix} -\phi^{0^+} \\ \phi^{-} \end{pmatrix} \nu_R + h \cdot c \cdot \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} \right) \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} -$ • $I_3^W(\nu_L) = +1/2$, so mass terms involve Higgs conjugate field ϕ_C (like up-quarks)

$$\mathcal{L}_D = -m_D \left(\overline{\mathbf{v}_R} \mathbf{v}_L + \overline{\mathbf{v}_L} \right)$$

$$\mathcal{P}_D = -m_D \overline{\nu_1} \nu_1$$

MAJORANA MASS TERMS

- Can we build mass terms without ν_R ? Yes, for Majorana particles. Charge conjugation is the discrete operation that turns particles into antiparticles
- - for fermion fields
 - A Majorana field is $\phi = \psi + \psi^{C}$, so that $\phi = \phi^{C}$, i.e. particle = antiparticle!
 - As neutral particles, neutrinos can be Majorana
 - Mass terms can be built only with ψ_L and ψ_L^C , not involving any R fields

- Problem... and solution
- Since $I_3\left(\overline{\nu_L^C}\right) = I_3\left(\nu_L\right) = 1/2$, the term with Higgs doublet not gauge-invariant (need $I_3 = -1$).
- So, let's try having both ψ_L^C and new N_R fields
- Two Majorana fields $\nu_L + \nu_L^C$ and $N_R^C + N_R$
- Four possible mass terms

$$\psi^{C} = C\psi^{*} = i\gamma_{2}\gamma^{0}\psi^{*} = i\gamma_{2}\gamma^{0}\bar{\psi}^{T}$$

 $\mathscr{L}_{L}^{M} = -\frac{1}{2}m_{L}\overline{\nu_{L}^{C}}\nu_{L}$

 $m_D \overline{N_R} \nu_L$ $m_D \overline{\nu_L^C} N_R^C$ $m_L \overline{\nu_L^C} \nu_L$ $m_R \overline{N_R} N_R^C$

SEE-SAW MECHANISM

- The general mass term, involving Dirac and Majorana fields, is:
- We can diagonalise the matrix
- Interesting special case: • $m_L = 0$ (eliminates gauge-breaking term)

$$m_1 = -\frac{m_D^2}{m_R}$$

 $m_2 = m_R \left(1\right)$

- If $m_D \approx 10^2 GeV$ (electroweak scale) and (GUT scale), then $m_1 \approx 10 \text{ meV}$ (scale of
- Mass eigenstates (both Majorana, i.e. ϕ =
 - Light: $\nu_1 \approx \nu_L + \nu_L^C$, is the weak interaction active one
 - Heavy: $\nu_2 \approx N_R^C + N_R$, is the weakly inactive one

$$\mathcal{L}^{mass} = \begin{bmatrix} \overline{\nu_L^C} & \overline{N_R} \end{bmatrix} \begin{bmatrix} m_L & m_D \\ m_D & m_R \end{bmatrix} \begin{bmatrix} \nu_L \\ N_R^C \end{bmatrix} + h$$
$$m_{1,2} = \frac{1}{2} \begin{bmatrix} (m_L + m_R) \pm \sqrt{(m_L - m_R)^2 + 4m_R^2} \end{bmatrix}$$

and
$$m_R \gg m_D$$

$$1 + \frac{m_D^2}{m_R^2} \right) \approx m_R$$

$$m_R \approx 10^{15} GeV$$

 $\nu \text{ masses}$
 $= \phi^C$

SMALLNESS OF NEUTRINO MASSES EXPLAINED BY EXISTENCE OF VERY HEAVY NEUTRINOS

NEUTRINO MASS OBSERVABLES

Neutrino Science 5 - Susi 2024 - Sudbury

SEARCH FOR NEUTRINO MASS IN BETA DECAY

TRITIUM BETA DECAY

10 (arb.) % % $m_v = 0 \text{ eV}$ 6 Count rate ~ 2·10⁻¹³ 4 1 eV m,,= -3 -2 0 $E-E_0 (eV)$

Neutrino Science 5 - Susi 2024 - Sudbury

J. Maneira (LIP)

- With massive neutrinos, the endpoint of beta decay should be slightly distorted with respect to the decay's Q value
- Most sensitive search for those distortions are with tritium decay
- $E = 18.6 \text{ keV}, T_{1/2} = 12 \text{ yr}$
- Effective "electron" neutrino mass

KATRIN EXPERIMENT

KATRIN RESULTS

 $m_{
u}$

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

$\langle 0.100 \rangle 0.100 \rangle$

NEUTRINOS IN COSMOLOGY

COSMIC BACKGROUND RADIATION

- Primordial Universe: temperature so high that there were no neutral atoms, but a soup of particles that light could not cross or escape Only after 300,000 years it cools enough for light to
 - escape: the cosmic background radiation (CMB)
 - Very uniform, local differences about 10⁻⁵. A lot of information in those fluctuations!
- Something similar with neutrinos
 - Example of reactions cycle
 - But their interaction is much
- weaker, they decouple much earlier: only one second after the Big Bang
- Very high number density of neutrinos, similar to photons
- Numerous enough influence the large scale structure of the Universe

WMAP 2003 Planck 2013 Cobe 1992 $\begin{array}{l}
V_e + n \leftrightarrow e + p \\
e^+ + n \leftrightarrow V_e + p \\
n \leftrightarrow e^- + p + V_e
\end{array}$

CONSTRAINTS ON NEUTRINO MASS

Large scale structure neutrinomasses

1500 2000

CMB fluctuations sensitive to ν mass

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

simulations for different

Current best limit from cosmology $M_{\nu_i} < 72 \ meV!$

NEUTRINOLESS DOUBLE BETA DECAY

DOUBLE BETA DECAY

Double beta decay (DBD) may occur in some even-even nuclei with when beta decay not energetically possible • 35 natural isotopes (observed in 11) Very rare process: Typical T^{1/2} ~ 10^{18} - 10^{21} yr Neutrinoless double decay involves "internal" neutrino annihilation and lepton number violation, possible only if there is a Majorana mass term

 $2\nu\beta\beta \ mode: {}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z+2}X_{N-2} + 2e^{-} + 2\overline{\nu_{e}}$ $0\nu\beta\beta \ mode: {}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z+2}X_{N-2} + 2e^{-}$

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

NLDBD RATE AND NUCLEAR PHYSICS

J. Maneira (LIP)

А

Particle Physics term

Nuclear matrix element calculations are very hard because of

discrepancies of factors of 3 between models are common more recent ab-initio models are considered more reliable Measurement of NLDBD with various isotopes is essential!

NLDBD - PARTICLE PHYSICS TERM

- possibility, the exchange of light Majorana neutrinos
- chirality is not a good quantum number
- Recall from lecture 1:

$$u_{\uparrow} \propto \frac{1}{2}(1+k)u_R + \frac{1}{2}(1-k)u_L$$

Particle Physics term Effective Majorana mass Depends on masses m1, m2, m3 also on neutrino mixing parameters

$$= \left| m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{i(\alpha_2 - \alpha_1)} + m_3 s_{13}^2 e^{i(\alpha_1 - 2\delta_{CP})} \right|$$

Many non-SM physics processes can cause NLDBD, we focus here on the simplest

Requires a flip of the neutrino's chirality. Possible because for massive neutrinos,

MAJORANA MASS GOALS

$$m_{\beta\beta} = \left| \sum_{k=1}^{3} m_k U_{ek}^2 \right| = \left| m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{i(\alpha_2 - \alpha_1)} \right|$$

- Existing neutrino oscillation measurements put constraints on $m_{\beta\beta}$
 - But in addition, depends on Majorana phases
 - Inverted ordering $m_{\beta\beta} > 20$ meV, normal ordering $m_{\beta\beta} > \sim 1$ meV

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

 $(+m_3s_{13}^2e^{i(\alpha_1-2\delta_{CP})})$

EXPERIMENTAL SEARCH

- Choose a suitable isotope
 - High energy, high isotopic abundance (or enrich)
- Observe large quantities for a long time
- Detect electron energy sum, reject backgrounds
- Look for a peak, in addition to the continuum for DBD

$$S^{0
u} = rac{\ln 2}{n_{\sigma}}$$

compromise in others

J. Maneira (LIP)

Often an optimization of a given parameter leads to a

Example: large mass, low backgrounds typically means low energy resolution (needed to reject backgrounds)

MAIN TYPES OF EXPERIMENTS

- 1. Calorimeters with high energy resolution and low mass: Germanium semiconductor experiments, like GERDA, or tellurium cryogenic bolometers, like CUORE;
- 2. Calorimeters with high mass and low energy resolution: Large isotopeloaded liquid scintillator detectors, like KamLAND-Zen or SNO+;
- 3. Detectors with tracking or topology capabilities: Gas or liquid-phase time projection chambers (TPCs) with some degree of tracking or topology measurement to complement the calorimetry.

Leading sensitivity: type 1 and 2

Experiment	Isotope	Resolution	Exposure	Bg. Idx.	$T_{1/2}, yr$	m_{etaeta}
		keV	kg.yr	$(keV.kg.yr)^{-1}$	(90% C.L.)	meV
CUORE	¹³⁰ Te	7.8	289	$1.5 imes10^{-2}$	$2.2 imes10^{25}$	90-305
GERDA	76 Ge	2.6 - 4.9	98	$5.2 imes10^{-4}$	$1.8 imes10^{26}$	79-180
KLZ	¹³⁶ Xe	247	510	$1.3 imes10^{-4}$	$2.3 imes10^{26}$	36-156

NLDBD CURRENT EXPERIMENTS

CUORE

Half-life limit: $T_{1/2}^{0\nu} > 3.8 \times 10^{25}$ yr (90% C.I.)

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

External backgrounds prevent reaching a better sensitivity

$$m_{\beta\beta} < 70 - 240 \text{ meV}$$

GERMANIUM DETECTORS

- long history of developments
- capable of reducing multuple types of backgrounds
- leading energy resolution 0.1% (FWHM) L. PERTOLDI, NEUTRINO 2024

J. Maneira (LIP)

LEGEND

- - 7 events surviving. Background index $BI = 5.3 \pm 2.2 \cdot 10^{-4} \text{ cts} / (\text{keV kg yr})$ PRELIMINARY!

GERDA, MAJORANA and LEGEND combined fit

- *p*-value of background-only = 26%
- T^{0v}_{1/2} lower limits (90% frequentist C.L.)

Observed

 $> 1.9 \cdot 10^{26} \text{ yr}$ 2.8 $\cdot 10^{26} \text{ yr}$

Neutrino Science 5 - Susi 2024 - Sudbury

J. Maneira (LIP)

17.0

Kg 14.7

22.1 86.7

LEGEND-200 uses 142 kg of enriched Ge crystals Preliminary data combined with other Ge experiments (GERDA, MAJORANA) yields limit of $1.9 \times 10^{26} yr$ LEGEND-1000 aims for 10²⁸yr (next decade)

KAMLAND-ZEN

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

Xenon is a gas, it's soluble in liquid scintillator! KamLAND-ZEN has 745 kg of enriched Xe dissolved in the LS Highest mass of isotope of any experiment!

I. SHIMIZU, NEUTRINO 2024

KAMLAND-ZEN RESULTS

rate in ROI: 30.0 events/Xe-ton/yr

Neutrino Science 5 - Susi 2024 - Sudbury

J. Maneira (LIP)

Kamioka not so deep, very large backgrounds from cosmic muon activation of Xenon nuclei Cosmigenic tagging not perfect: fit both tagged and untagged spectra

0vββ candidate

long-lived candidate

best-fit : 0 event 0νββ upper limit : < 10.0 event at 90% C.L. in R < 1.57 m

KAMLAND-ZEN RESULTS

Combined T^{0v}1/2 > 3.8 × 10²⁶ yr

KamLAND-Zen (¹³⁶Xe)

 $m_{lightest} < 84 - 353 \text{ meV}$

- Leading result from KamLAND-Zen due to high mass
- Probing well into the IO region, depending on nuclear matrix elements

NLDBD FUTURE EXPERIMENTS

Neutrino Science 5 - Susi 2024 - Sudbury

J. Maneira (LIP)

30 ·

THE SNO+ EXPERIMENT

Repurposing the Sudbury Neutrino Observatory (SNO) detector

Rope system Hold-up and -down Low Radioactivity

Acrylic Vessel (AV) 12 m diameter

> Ultra-Pure Water

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

2 km underground $\sim 70 \text{ muons/day}$

~9300 PMTs

Purification plant

Target Material

- 1. Water: 905 tonnes
- 2. LAB Scintillator: 780 tonnes
- 3. Tellurium loading: +3.9 tonnes

THE SNO+ EXPERIMENT

Solar Neutrinos

Reactor Neutrinos

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

Supernova Neutrinos + exotics

Geo-Neutrinos

eutrinoless uble-Beta Decay

SNO+ TIMELINE

2018 2021 2017 2019 2020

Water phase

- High Rn
- Low Rn

Partial fill phase Scintillator over water. Stop in fill due to Covid.

52

Scintillator phase

- Low PPO
- Nominal PPO
- Added bis-MSB

Next: Telluriumloaded phase

Те

Tellurium

SNO+ PERFORMANCE

- Water Phase
 - Extensive calibrations: well-tuned detector model
 - Constraints on external backgrounds: smaller than nominal
- Scintillator Phase
 - Tracking background and light levels throughout operations
 - High but decreasing level of Po210
 - BiPo214/212 segments of Uranium and Thorium chains at low level:
 - Eq. 238 U ~ 4.3×10^{-17} g/g $\mathcal{S}'\mathcal{S}$
 - Eq. 232 Th ~ 5.3×10^{-17} g/g

0.7

0.6

SNO+ WITH TELLURIUM

- Overall approach
 - Develop a way to load Tellurium in a large liquid scintillator detector
 - Highest abundance isotope -> high mass (1333kg of 130 Te at 0.5% loading)
- Chemical methods for purification and loading developed by SNO+

- TeBD very transparent and soluble in liquid scintillator. Expect 400 p.e./MeV
- Purification by dissolving Te acid in water and • force recrystalization. Impurities stay in water.

• Scintillator purifiable, detector is large and can use fiducial volume -> low backgrounds!

Tellurium-butanediol complex (TeBD)+ water (evaporate after synthesis)

TELLURIUM SYSTEMS

Te acid purification (UG)

DDA distillation (surface)

DDA surface to UG transfer

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

Te diol synthesis (UG)

SNO+ DBD SENSITIVITY

- Water phase constrained external backgrounds
- Scintillator phase constrained several internal backgrounds

J. Maneira (LIP)

Other expectations based conservatively on raw purity and purification factors

Neutrino Science 5 - Susi 2024 - Sudbury

SNO+ IN CONTEXT

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

NEUTRINOS IN ASTROPHYSICS

SOLAR NEUTRINOS

NEUTRINOS AS A PROBE OF THE SUN

- Solar neutrino observations
 - Sun burns via pp chain (99%), CNO cycle (1%) √
- Sun's composition still uncertain. Two classes of solar models high or low metallicity Z [abundances X: H, Y: He, Z: Li, ...]
 - HighZ favored by helioseismology

J. Maneira (LIP)

50

Neutrino Science 5 - Susi 2024 - Sudbury

DUNE

Phase-I, starting 2029

- Phase-II

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

Two largest LAr TPCs ever built: ~ 27 kton active vol. (comb.) Recent progress in low energy reconstruction: $\sim 16\%$ resolution High ⁸B stats $\rightarrow 3 \sigma$ solar/reactor Δm_{21}^2 discrimination High x-section on Ar, kinematics favorable for hep discovery

very active R&D to improve LE performance

JUNO PROSPECTS ON SOLAR NEUTRINOS

- Low energy ⁸B spectral measurement (+ day-night), constraining upturn and oscillation parameters
- 7Be rate $< 1^{\circ}/_{\circ}$
- pep rate < 10%
- CNO similar to Borexino (not accurate enough for metallicity)

Time [y]

52

Time [y]

THEIA

Hybrid Cherenkov+scintilation detection combines high light yield and directionality fast sensors, slow scintillator, dichroicon (ANNIE, EOS, BUTTON) Targeting precision CNO and sensitive probe of vacuum/matter transition region.

Timing

"instantaneous chertons" vs. delayed "scintons" \rightarrow ns resolution or better

Spectrum

UV/blue scintillation vs. blue/green Cherenkov \rightarrow wavelength-sensitivity

Angular distribution

increased PMT hit density under Cherenkov angle \rightarrow sufficient granularity

Neutrino Science 5 - Susi 2024 - Sudbury

J. Maneira (LIP)

- R&D on Cherenkov/scintillation separation:
- Directionality provides powerful discriminant

CNO precision well below 10%

HIGH ENERGY NEUTRINOS

ICECUBE AND HIGH ENERGY NEUTRINOS

Neutrino Science 5 - Susi 2024 - Sudbury

J. Maneira (LIP)

The Galaxy with Neutrinos

J.A. AGUILAR, NEUTRINO 2024

Binomial Test +75°

J.A. AGUILAR, NEUTRINO 2024

SUPERNOVA NEUTRINOS

SUPERNOVAE: AS BRIGHT AS GALAXIES

and yet, they are much brighter in neutrinos!

Neutrino Science 5 - Susi 2024 - Sudbury

J. Maneira (LIP)

THE LIFE AND DEATH OF STARS

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

PHASES OF STELLAR EVOLUTION

- Main sequence
 - Hydrogen burning in core
- Red Giant
 - Hydrogen burning in shell
 - Helium burning in core
- Supergiant
 - Helium burning in shell
 - ... and so on up to iron
 - M=1.5 Msun in R=8000km
 - ...burning stops
 - gravity not balanced \rightarrow Collapse!
 - core becomes a neutron star $\rho = 3 \times 10^{14} gcm^{-3}$, R= 50km

SUPERNOVA EXPLOSION

- Explosion from release of gravitational binding energy
 - $E = 3x \ 10^{53} \text{ erg} \sim 17\% \text{ Msun } c^2$
 - 99% neutrinos
 - 1% kinetic energy of ejecta
 - only 0.01% as photons

- Neutrino production
 - in formation of neutron star
 - Neutronization: $p + e_{-} \Leftrightarrow n + v$
 - reaction in equilibrium within "neutrinosphere"
 - when shock wave reaches it, intense electron neutrino burst

THREE PHASES OF SN NEUTRINO EMISSION

- Prompt ve burst
 - neutronization
 - when shock wave reaches zone with density of 10¹¹ gcm⁻³

intense, but very short

- Accretion
 - delayed explosion fueled by neutrino heating of infalling matter
 - all-flavors reaction

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

- Cooling neutrino diffusion

FLUX AND ENERGY VS TIME

J. Maneira (LIP)

Neutrino Science 5 - Susi 2024 - Sudbury

OSCILLATIONS OF SUPERNOVA NEUTRINOS

- Oscillations affect flavor composition
- Depend on:
 - density profile
 - mass ordering

SUPERNOVA 1987A

- 160 light-years (close-by...)
- 1058 neutrinos emitted!! 24 were detected

J. Maneira (LIP)

THANK YOU!