

NEUTRINO SCIENCE 4

J. MANEIRA

LIP, LISBON, PORTUGAL

SUSI 2024 SNOLAB UNDERGROUND SCIENCE INSTITUTE JULY 22 - AUGUST 2, 2024 SUDBURY, CANADA

OVERALL PLAN OF THE 5 LECTURES

1.Neutrinos in the Standard Model. 2.Neutrino interactions, detectors. Solar and atmospheric neutrino problems. 3. Neutrino oscillations in 2 flavors. SNO and SK. 4. Neutrino oscillations in 3 flavors. Future experiments. Cosmology and Astrophysics.

- Theory and experiment will be strongly mingled.
- Every lecture will have some of both.

- 5. Theory and search for neutrino masses. Neutrinoless double-beta decay. Neutrinos in

PLAN FOR LECTURE 4

- Finding evidence for oscillations
 - with atmospheric neutrinos: Super-Kamiokande
 - ... and early confirmations with terrestrial sources: K2K, MINOS
- Three-flavor neutrino mixing
 - Neutrino mass ordering
 - Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and three-flavor oscillations
 - CP violation and matter effects
- Current experimental status
- Future experiments

SUPER-KAMIOKANDE

CHERENKOV DETECTORS IN JAPAN

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

Hyper-Kamiokande

Aiming to start observation in 2027

68m diameter x 71m hight 260000 ton (190000 ton)

50cm diameter / about 40000

SUPER-KAMIOKANDE

Largest detector sensitive to solar neutrino energies: 22.5 kton fiducial Recently published: complete analysis of SK phases I - IV: over 20 years of data!! Significant improvements in energy reconstruction and uncertaities Since 2020: SK-V (prep for Gd), SK-VI (0.01% Gd), SK-VII (0.03% Gd)

SUPER-KAMIOKANDE SOLAR

Following slides from my recent talk at Neutrino 2024

TIME VARIATIONS OF 8B FLUX

Phase	SK-I	SK-II	SK-III	SK-IV
Period (Start)	April '96	October '02	July '06	September '08
Period (End)	July '01	October '05	August '08	May '18
Livetime [days]	1,496	791	548	2,970
ID PMTs	11,146	5,182	11,129	11,129
OD PMTs	1,885	1,885	1,885	1,885
PMT coverage [%]	40	19	40	40
Energy thr. [MeV]	4.49	6.49	3.99	3.49

Very precise rate measurement, consistent among various phases

SK-IV only, calc.

SK I-IV combined fit, $> 3 \sigma$

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

J. Maneira (LIP)

12/2017Date [month/year]

⁸B SOLAR NEUTRINO SPECTRUM

J. Maneira (LIP)

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

SK OSCILLATIONS GLOBAL FIT

SK fit, fixed θ_{13}

J. Maneira (LIP)

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

• Solar best-fit value updated to: $\Delta m_{21}^2 = 6.10^{+0.95}_{-0.81} \times 10^{-5} eV^2$

• $\sim 1.5 \sigma$ away from KamLAND

NEW PHASES CONTINUE...

Solar Neutrinos: Recent Results and Prospects - Neutrino 2024 - Milano

J. Maneira (LIP)

SUPER-KAMIOKANDE ATMOSPHERIC

SK ATMOSPHERIC NEUTRINOS

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

SK - TYPES OF EVENTS

Neutrino Science 4 - Susi 2024 - Sudbury

FULLY CONTAINED

no signal in outer detector

Super-Kamiokande

Run 3013 Event 149004 96-10-24:19:39:51 Inner: 1763 hits, 4003 pE Outer: 3 hits, 5 pE (in-time) Trigger ID: 0x03 D wall: 897.4 cm FC e-like, p = 463.8 MeV/c

Time(ns)

< 958 • 958-963 • 963-968 968-973 973-978 993-998 998-1003 • 1003-1008 • 1008-1013= • 1013-1018 • 1018-1023 • 1023-1028

>1028

•

electron-like

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

muon-like

PARTIALLY CONTAINED

one cluster in outer detector

Super-Kamiokande

Run 8205 Event 3894074 99-12-16:08:14:45 Inner: 4771 hits, 15758 pE Outer: -1 hits, 0 pE (in-time) Trigger ID: 0x0f ap veôr: Fully-Contained

Time(ns)

stopping muon

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

two clusters in outer detector

upward throughgoing muon

THE "SMOKING GUN" PLOTS

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

Expected, no oscillations Fit to data, oscillations

Neutrino "disappearance" depends on energy and direction (path length)

Discovery of neutrino oscillations!

A WEALTH OF DATA...

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

LATEST RESULTS, NEUTRINO 2024

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

EARLY CONFIRMATION

K2K - FROM KEK TO KAMIOKA

Far detector (FD) event Near detector (ND) event

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

Proton Synchrotron Front

First long baseline accelerator neutrino experiment!

Use ND data to predict non-oscillated FD spectrum

Spectral distortion compatible with atmospheric oscillation parameters

0.8 sin²(20)

MINOS

Neutrino Science 4 - Susi 2024 - Sudbury

J. Maneira (LIP)

Long-baseline experiment at Soudan with Fermilab beam (735 km) W/r K2K, beam is more intense and higher energy (~same L/E) Magnetized iron and plastic scintillator detector: better energy resolution Confirms SK and K2K with better precision on Δm^2

OSCILLATIONS WITH 3 FLAVORS

NEUTRINO MASS ORDERING

- But that's OK, since
 - $|\Delta m_{sol}^2| \sim |\Delta m_{reaLBL}^2| \sim |\Delta m_{21}^2| \sim 7.5 \times 10^{-5} eV^2$ • $|\Delta m_{atm}^2| \sim |\Delta m_{accLBL}^2| \sim |\Delta m_{32}^2| \sim 2.4 \times 10^{-3} eV^2$
- MSW effect in the Sun: we know $\Delta m_{21}^2 > 0$. Still, 2 possible orderings:

With 3 neutrinos, have 2 independent mass splittings $m_3^2 - m_1^2 = (m_3^2 - m_2^2) + (m_2^2 - m_1^2)$

3 FLAVOR NEUTRINO MIXING

- Simple extension of the two-neutrino mechanism U elements are complex, in the general case
- Mixing matrix has to be unitary to preserve probability
- Inverse matrix

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} U_{e1}^* & U_{\mu 1}^* & U_{\tau 1}^* \\ U_{e2}^* & U_{\mu 2}^* & U_{\tau 2}^* \\ U_{e3}^* & U_{\mu 3}^* & U_{\tau 3}^* \end{pmatrix}$$

- Unitarity constraints
 - 18 > 9 d.o.f

J. Maneira (LIP)

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

SURVIVAL PROBABILITY

$$|\Psi(t=0)\rangle = |\nu_e\rangle = U_{e1}|\nu_1\rangle + U_{e2}|\nu_2\rangle + U_{e3}|$$

$$|\Psi(L)\rangle = U_{e1}|v_1\rangle e^{-i\phi_1} + U_{e2}|v_2\rangle e^{-i\phi_2} + U_{e3}|v_3\rangle e^{-i\phi_3}$$

$$\begin{aligned} |\Psi(L)\rangle &= (U_{e1}U_{e1}^{*}e^{-i\phi_{1}} + U_{e2}U_{e2}^{*}e^{-i\phi_{2}} + U_{e3}U_{e3}^{*}e^{-i\phi_{3}})| \\ &+ (U_{e1}U_{\mu1}^{*}e^{-i\phi_{1}} + U_{e2}U_{\mu2}^{*}e^{-i\phi_{2}} + U_{e3}U_{\mu3}^{*}e^{-i\phi_{3}}) \\ &+ (U_{e1}U_{\tau1}^{*}e^{-i\phi_{1}} + U_{e2}U_{\tau2}^{*}e^{-i\phi_{2}} + U_{e3}U_{\tau3}^{*}e^{-i\phi_{3}}) \end{aligned}$$

$$P(\mathbf{v}_{e} \to \mathbf{v}_{e}) = |\langle \mathbf{v}_{e} | \mathbf{\psi}(L) \rangle|^{2}$$

= $|U_{e1}U_{e1}^{*}e^{-i\phi_{1}} + U_{e2}U_{e2}^{*}e^{-i\phi_{2}} + U_{e3}U_{e3}^{*}e^{-i\phi_{3}}|^{2}$

$$P(\mathbf{v}_{e} \rightarrow \mathbf{v}_{e}) = 1 + 2|U_{e1}|^{2}|U_{e2}|^{2}\Re\{[e^{-i(\phi_{1}-\phi_{2})} + 2|U_{e1}|^{2}|U_{e3}|^{2}\Re\{[e^{-i(\phi_{1}-\phi_{3})} + 2|U_{e2}|^{2}|U_{e3}|^{2}\Re\{[e^{-i(\phi_{2}-\phi_{3})} + 2|U_{e2}|^{2}|U_{e3}|^{2}\Re\{[e^{-i(\phi_{2}-\phi_{3})} + 2|U_{e2}|^{2}|U_{e3}|^{2}\Re\{[e^{-i(\phi_{2}-\phi_{3})} + 2|U_{e3}|^{2}\Re\{[e^{-i(\phi_{2}-\phi_{3})} + 2|U_{e3}|^{2}\Re\{[e$$

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

 $v_3\rangle$

-1]

 $-1]\}$

 $-1]\}$

• flavor
states
$$|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k} |\nu_{k}\rangle$$
 • m
st
 $\nu_{\alpha} = \nu_{e}, \nu_{\mu}, \nu_{\tau}$ $\nu_{k} = \nu$
 $\phi_{i} = p_{i}.x = E_{i}t - |\vec{p}|L = (E_{i} - |\vec{p}|)$
expressing $\nu_{1}, \nu_{2}, \nu_{3}$ as a function
 $\nu_{e}, \nu_{\mu}, \nu_{\tau}$ and re-arranging the term
 $\nu_{\tau}\rangle$
 $\nu_{\tau}\rangle$

making use of unitarity relations

SURVIVAL PROBABILITY

$$P(\mathbf{v}_{e} \rightarrow \mathbf{v}_{e}) = 1 + 2|U_{e1}|^{2}|U_{e2}|^{2}\Re\{[e^{-i(\phi_{1}-\phi_{2})} - 2|U_{e1}|^{2}|U_{e3}|^{2}\Re\{[e^{-i(\phi_{1}-\phi_{3})} - 2|U_{e2}|^{2}|U_{e3}|^{2}\Re\{[e^{-i(\phi_{2}-\phi_{3})} - 2|U_{e2}|^{2}|U_{e3}|^{2}\Re\{[e^{-i(\phi_{2}-\phi_{3})} - 2|U_{e2}|^{2}|U_{e3}|^{2}\Re\{[e^{-i(\phi_{2}-\phi_{3})} - 2|U_{e3}|^{2}\Re\{[e^{-i(\phi_{2}-\phi_{3})} - 2|U_{e3}|^{2}\Re\{[e$$

$$\Delta m_{21}^2 = m_2^2 - m_1^2$$

$$P(v_e \to v_e) = 1 - 4|U_{e1}|^2|U_{e2}|^2\sin^2\Delta_{21} + C_{e1}|^2|U_{e2}|^2\sin^2\Delta_{21} + C_{e1}|^2|U_{e2}|^2\sin^2\Delta_{21} + C_{e1}|^2|U_{e2}|^2|$$

- Let's examine this. Survival (or disappearance) probability: Depends only on module of U elements, not on phases Depends on Δs only via sin², so does not depend on sign of any Δm^2 .

$-4|U_{e1}|^2|U_{e3}|^2\sin^2\Delta_{31}-4|U_{e2}|^2|U_{e3}|^2\sin^2\Delta_{32}$

GENERAL EXPRESSION

General expression for both survival and oscillation: $P\left(\nu_{\alpha} \to \nu_{\beta}\right) = \left|\left\langle\nu_{\beta} \left|\nu_{\alpha}(L)\right\rangle\right|^{2} = \left|\sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-i\left(\frac{m_{i}^{2}L}{2E}\right)}\right|^{2}\right|$

- Let's examine this as well. If $\alpha \neq \beta$, oscillation (or appearance) probability:
 - Depends also on phases
 - Depends on Δs also via a sin term, so it does depend on sign of Δm^2
 - But not if U is real, since in that case $\mathcal{F}mA_{\alpha\beta}^{ij} = 0$

TIME REVERSAL

$$P\left(\nu_{\beta} \to \nu_{\alpha}\right) = \left|\left\langle\nu_{\alpha} \left|\nu_{\beta}(L)\right\rangle\right|^{2} = \left|\sum_{i}^{2}\right|^{2}$$
$$= \delta_{\alpha\beta} - 4\sum_{i>j} \Re e(A_{\alpha\beta}^{ij})^{*} sin^{2}$$

• If the U matrix is not real, then

$$P\left(\nu_{\alpha} \to \nu_{\beta}\right) \neq P\left(\nu_{\beta} \to \nu_{\beta}\right)$$

 Not time-symmetric! -

J. Maneira (LIP)

i $\frac{m_i^2 L}{2E}$ $U_{\alpha i}U_{\beta i}^{*}e$ $\frac{\Delta m_{ij}^2 L}{4E} + 2\sum_{i>j} \Im(A_{\alpha\beta}^{ij}) *sin$ $\Delta m_{ij}^2 L$ 2E

CP AND CPT IN WEAK INTERACTIONS

In addition to parity, two other discrete symmetries

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

Weak interactions violate P. CPT must be conserved. But what about C and CP?

Appears invariant...

CP IN NEUTRINO OSCILLATIONS

Effect of discrete symmetries in neutrino oscillations:

- But we saw that, if the PMNS matrix is not real, then Therefore
- So, if the PMNS matrix is not real, CP is violated in neutrino oscillations!

IMPORTANT IMPLICATIONS ON THE MATTER/ANTIMATTER ASYMMETRY IN THE UNIVERSE!

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

• CPT conservation implies: $P(v_e \to v_\mu) = P(\overline{v}_\mu \to \overline{v}_e)$ $P(v_\mu \to v_e) = P(\overline{v}_e \to \overline{v}_\mu)$

$$P(\nu_e \to \nu_\mu) \neq P(\nu_\mu \to \nu_e)$$
$$P(\nu_e \to \nu_\mu) \neq P(\overline{\nu}_e \to \overline{\nu}_\mu)$$

PMNS MATRIX PARAMETRIZATION

- PMNS matrix degrees of freedom?
 - 3x3 complex numbers, so 18 real numbers. Minus 9 unitarity constraints = 9 d.o.f
 - fields can be phase rotated.

 $\theta_{23} \approx 49^{\circ}$

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

• 3 real angles and 6 complex phases, but the charged leptons are Dirac particles, their

OSCILLATION PROBABILITY

We can now write the oscillation probability as a function of the angles and phase

$$P(\mathbf{v}_{e} \rightarrow \mathbf{v}_{\mu}) = |\langle \mathbf{v}_{\mu} | \boldsymbol{\psi}(L) \rangle|^{2}$$

$$= |U_{e1}U_{\mu1}^{*}e^{-i\phi_{1}} + U_{e2}U_{\mu2}^{*}e^{i\phi_{1}}$$

$$P(\overline{v}_{\mu}^{*} \rightarrow \overline{v}_{e}^{*}) \simeq \sin^{2}\theta_{23}\sin^{2}2\theta_{13}$$

$$\frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}}\Delta_{3}^{2}$$

$$+ \sin 2\theta_{23}\sin 2\theta_{13}$$

$$\times \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)}\Delta_{4}$$

$$\times \frac{\sin(aL)}{aL}\Delta_{21}\cos^{2}\theta_{23}\sin^{2}2\theta_{13}$$

$$+ \cos^{2}\theta_{23}\sin^{2}2\theta_{13}$$

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

BEST STRATEGY FOR EACH ANGLE?

• Since the mass splittings are quite different mixing angle is different

VACUUM OSCILLATION LENGTH $|\Delta m_{21}^2| \sim 7.5 \times 10^{-5} eV^2$ $|\Delta m_{13}^2| \sim |\Delta m_{23}^2| \sim 2.4 \times 10^{-3} eV^2$

ACC LBL

 $(U_{e1} U_{e2} U_{e3})$ (1)0 $U_{\mu 1} \ U_{\mu 2} \ U_{\mu 3} \ U_{\tau 1} \ U_{\tau 2} \ U_{\tau 3}$ Х $-s_{23}$

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

Since the mass splittings are quite different, the best experiment to measure each

$E \sim 3 M E V$ (REACTORS	$E \sim 1 GEV$ (ATM, ACC)	
50 KM (LBL)	16,000 KM (TOO BIG!)	S(T)]
1.5 KM (SBL)	515 KM (LBL)	S(L) Shor Base

REACTOR SBL, ACC LBL SOLAR (MSW), REACTOR LBL

$$\begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

__ (Long) ne

CURRENT STATUS, REACTOR AND ACCELERATOR EXPERIMENTS

DAYA BAY AND THETA 13

- Next: how to measure θ_{13} ?
 - Coupled to Δm_{31}^2 . At reactor neutrino energies, oscillation length ~ 1 km. Previous exp. too close Also if θ_{10} is small amplitude also small
 - Also, if θ_{13} is small, amplitude also small.
 - The key experiment was Daya Bay in China
 - Two sets of near detectors, one of far detectors
 - All identical, so systematic uncertainties cancel

DAYA BAY RESULTS

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

5 1015 $\Delta \chi^2$

LBL ACCELERATOR: T2K & NOVA

LATEST T2K RESULTS

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

With these 4 observation channels, sensitive to many oscillation parameters

Latest results from T2K

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

- 19

S. CAO, PASCOS, JULY 2024

NOVA RESULTS

J. Maneira (LIP)

GLOBAL FITS

GLOBAL OSCILLATION FITS

- Consistent results favoring the 3-flavor neutrino oscillation framework
- Best precision for the parameters comes from combination of all available solar, reactor,
- Tension may point to new physics... or the need for more data...

GLOBAL FITS RESULTS

parameter $\Delta m_{21}^2 [10^{-5} \text{eV}^2]$ $|\Delta m_{31}^2| [10^{-3} \text{eV}^2] \text{ (NO)}$ $|\Delta m_{31}^2| [10^{-3} \text{eV}^2]$ (IO) $\sin^2 \theta_{12} / 10^{-1}$ $\sin^2 \theta_{23} / 10^{-1}$ (NO) $\sin^2 \theta_{23} / 10^{-1}$ (IO) $\sin^2 \frac{\theta_{13}}{10^{-2}}$ (NO) $\sin^2 \theta_{13} / 10^{-2}$ (IO) δ/π (NO) (IO) π 0

HTTPS://GLOBALFIT.ASTROPARTICLES.ES/

Neutrino Science 4 - Susi 2024 - Sudbury

J. Maneira (LIP)

-	

best fit $\pm 1\sigma$	3σ range
$7.55\substack{+0.22 \\ -0.20}$	6.98-8.19
$2.51^{+0.02}_{-0.03}$	2.43 - 2.58
$2.41^{+0.03}_{-0.02}$	2.34 - 2.49
3.04 ± 0.16	2.57 - 3.55
$5.64^{+0.15}_{-0.21}$	4.23 - 6.04
$5.64_{-0.18}^{+0.15}$	4.27 - 6.03
$2.20^{+0.05}_{-0.06}$	2.03 - 2.38
$2.20^{+0.07}_{-0.04}$	2.04 - 2.38
$1.12^{+0.16}_{-0.12}$	0.76 - 2.00
$1.50^{+0.13}_{-0.14}$	1.11 - 1.87

PMNS VS. CKM

$$\equiv J_{\rm CP}^{\rm max} \sin \delta_{\rm CP}$$
$$J_{\rm CP}^{\rm max} = \cos \theta_{12} \sin \theta_{12} \cos \theta_{23} \sin \theta_{23} \cos^2 \theta_{13} \sin \theta$$

CP violation effects proportional to Jarlskog invariant, depends on angles too With neutrinos can be 3 orders of magnitude larger than with quarks!

FUTURE EXPERIMENTS

JUNO REACTOR EXPERIMENT

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

- Follow-up of Daya Bay
- Biggest liquid scintillator (LS) detector ever
- 17612 20-inch PMTs, 25600 3-inch PMTs

JUNO PHYSICS

- By definition $\Delta m_{31}^2 = \Delta m_{32}^2 + \Delta m_{21}^2$
- We know that $\Delta m_{21}^2 > 0$ (MSW solar)
- How to determine the mass ordering?
 - Normal: $|\Delta m_{31}^2| = |\Delta m_{32}^2| + \Delta m_{21}^2$
 - Inverted: $|\Delta m_{31}^2| = |\Delta m_{32}^2| \Delta m_{21}^2$
 - But the difference is small, since $\Delta m_{21}^2 \approx 3\% \times |\Delta m_{32}^2|$
- Requires distinguishing small details in oscillation pattern
- Expected energy resolution: 2.95% @1MeV
- Expected 3 σ sensitivity (*a*) ~6 yrs*26.6 GWth

HYPER-KAMIOKANDE

- 260 kton (188 kt fiducial)
- upgrade of the T2K beam and near detectors
 2.5 deg off-axis
- upgraded PMTs with better QE and timingcavity in contruction
- expect start of data in 2027

HK PROJECTED SENSITIVITY

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

- $\nu_e(\bar{\nu_e})$ appearance in $\nu_\mu(\bar{\nu_\mu})$ beam
- Energy <1 GeV: mostly QE
- Short distance: small matter
- Very high statistics -> CP violation discovery (5 σ) in 60% of the values in 10yrs

DEEP UNDERGROUND NEUTRINO EXPERIMENT

J. Maneira (LIP)

- underground

Neutrino Science 4 - Susi 2024 - Sudbury

1.5 km deep, 4 Far Détecto

DUNE DETECTOR TECHNOLOGIES

- Liquid Argon Time Projection Chambers
 - Horizontal Drift (Far Detector 1)
 - Vertical Drift (Far Detector 2, possibly 3)
- Precision tracking (5 mm wire pitch)
- Detects all charges -> full calorimetry
- Full event (ν ID and energy) reconstruction

Neutrino Science 4 - Susi 2024 - Sudbury

J. Maneira (LIP)

Simulated 2.5 GeV electron neutrino

DUNE EXPECTED SPECTRA

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

5.0

Wide-band beam: two oscillation minima (p.33) If $\delta_{CP} \sim -\pi/2$, DUNE will measure an enhancement in ν_e appearance, and a reduction in $\bar{\nu}_e$ appearance

DUNE EXPECTED SPECTRA

• Long baseline gives DUNE sensitivity to mass ordering (MO) through matter effects If the mass ordering is normal, DUNE will measure a much larger enhancement in ν_e appearance, and a reduction in $\bar{\nu_e}$ appearance • MO, δ_{CP} , and θ_{23} all affect spectra with different shapes \rightarrow additional handle on resolving degeneracies

Neutrino Science 4 - Susi 2024 - Sudbury

DUNE AND PROTODUNE STATUS

J. Maneira (LIP)

Neutrino Science 4 - Susi 2024 - Sudbury

- HD detector taking data with beam, cosmics and

- Excavation complete, installation in 2026-27

