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Format of this session

A closer look at some of the numbers in QTNM

I’ll pose a few questions around some of the key QTNM concepts,
you’ll give answering them a go and then we’ll talk through the
solutions

Hopefully, this will give you a bit of an insight into some of the
design choices to do with a CRES experiment
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Background

Direct measurements of neutrino mass

Measure β-decay electron
energy spectrum of tritium

mβ =

√√√√ 3∑
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Information about neutrino masses, mβ ,
encoded close to endpoint of spectrum –
E0 ≈ 18.6 keV
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Background

CRES overview

Cyclotron Radiation Emission
Spectroscopy

Concept pioneered by Project 8
collaborationa

β-decay electrons immersed in B-field
emit EM radiation – frequency
depends only on electron energy and
B-field strength

Ekin ≈ Qβ ≈ 18.6 keV

Radiation collected with antenna,
waveguide or resonant cavity

aB. Monreal and J. A. Formaggio, Phys. Rev. D
80 (2009).

f =
1

2π
eB

me + Ekin/c2

e-

B
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Background

Outline of QTNM
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Frequencies/wavelengths of interest

What kind of frequencies do we expect to detect?

Frequency of cyclotron radiation given by

νcyc =
1

2π
eB
γme

=
1

2π
eB

me + Ekin/c2

A tritium endpoint electron has Ekin ≈ 18.6 keV.

Choose the magnetic field to be B = 1 T
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Frequencies/wavelengths of interest

Solution
For Ekin = 18.6 keV and with me = 511 keV/c2 = 9.11 × 10−31 kg we
find that γ = 1.0364.
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Frequencies/wavelengths of interest

Solution
For Ekin = 18.6 keV and with me = 511 keV/c2 = 9.11 × 10−31 kg we
find that γ = 1.0364.
From that:

νcyc =
1

2π
1.602 × 10−19 C · 1 T

1.0364 · 9.11 × 10−31 kg
νcyc ≈ 27 GHz
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Frequencies/wavelengths of interest

Solution
For Ekin = 18.6 keV and with me = 511 keV/c2 = 9.11 × 10−31 kg we
find that γ = 1.0364.
From that:

νcyc =
1

2π
1.602 × 10−19 C · 1 T

1.0364 · 9.11 × 10−31 kg
νcyc ≈ 27 GHz

This is equivalent to a wavelength of ∼ 1 cm

So we are looking at microwave radiation – detect with antennas,
waveguides or resonant cavities
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Radiated power

How much power do we detect from each electron?

Total power radiated by a charge in a magnetic field given by

PLarmor =
2πe2ν2

cycβ
2 sin2 θ

3ϵ0c

θ is the ‘pitch angle’ between the magnetic field direction
and the electron’s momentum vector.

B

pe
θ
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Radiated power

Solution

For γ = 1.036, β = 0.26 and we find that PLarmor ∼ 1 fW for B = 1 T and
θ = π

2 .
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Radiated power

Solution

For γ = 1.036, β = 0.26 and we find that PLarmor ∼ 1 fW for B = 1 T and
θ = π

2 .

Small radiated power necessitates a strong magnetic field and amplifiers
with very low noise
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Radiated power

Radiated powers

PLarmor =
2πe2ν2

cycβ
2 sin2 θ

3ϵ0c

What does this equation tell us about how to design our
experiment for optimum signal collection?
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Radiated power

Solution
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B = 1 T

Those electrons with pitch angles close
to 90◦ are the most detectable
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θ = π/2

PLarmor ∝ B2

High fields advantageous for power
detection
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Experimental bandwidth

Experimental bandwidths

Say we want to measure the last 100 eV of
the β-decay spectrum in a 1 T field.

νcyc =
1

2π
eB
γme

=
1

2π
eB

me + Ekin/c2
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What kind of bandwidth do our experimental components need to
have to cover this?
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Experimental bandwidth

Solution

νcyc =
1

2π
eB

me + Ekin/c2 =
eBc2

2π
(Etot)

−1

Entire decay spectrum covers a
frequency range of about 1 GHz
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Experimental bandwidth

Solution

νcyc =
1

2π
eB

me + Ekin/c2 =
eBc2

2π
(Etot)

−1

Entire decay spectrum covers a
frequency range of about 1 GHz
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Differentiate νcyc w.r.t. Etot to give

dνcyc

dEtot
= −eBc2

2π
(Etot)

−2

= −3.2 × 1023 Hz J−1 = −51 kHz eV−1 .
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Experimental bandwidth

Solution

νcyc =
1

2π
eB

me + Ekin/c2 =
eBc2

2π
(Etot)

−1

Entire decay spectrum covers a
frequency range of about 1 GHz

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Ekin [keV]

27.0

27.2

27.4

27.6

27.8

28.0

ν c
y
c

[G
H

z]
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Differentiate νcyc w.r.t. Etot to give

dνcyc

dEtot
= −eBc2

2π
(Etot)

−2

= −3.2 × 1023 Hz J−1 = −51 kHz eV−1

Therefore, at a minimum we require a bandwidth of 5 MHz to measure
the last 100 eV of the decay spectrum.
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CRES signals

CRES signals

To 1st order, our CRES signal is a monotonic sine wave.
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CRES signals

Adding noise...
We expect our primary noise contribution to be white (constant as a
function of frequency).

If we add some white noise, our time series no longer looks like our
signal.

How can we use the features of
our signal to discriminate from

noise?
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CRES signals

Solution

If we take the Fourier transform over
a sufficient period of time, our signal
is obvious in the frequency domain.

Signal is just a δ-function here!
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Required observation time

How long do we need to observe our electrons for?

We want to measure our electron energies with a
precision of ∆E = 1 eV using a Fast Fourier
Transform (FFT).

dνcyc

dEtot
= −51 kHz eV−1

How long do we need to observe our electron for to achieve this?
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Required observation time

Solution
To measure a width in energy ∆E = 1 eV, we need a width in frequency
of

∆ν =

∣∣∣∣dνcyc

dEtot

∣∣∣∣×∆E

= 51 kHz .
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Required observation time

Solution
To measure a width in energy ∆E = 1 eV, we need a width in frequency
of

∆ν =

∣∣∣∣dνcyc

dEtot

∣∣∣∣×∆E

= 51 kHz .

For an FFT, the width in frequency is given by

∆ν ∼ 1
tobs

.
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Required observation time

Solution
To measure a width in energy ∆E = 1 eV, we need a width in frequency
of

∆ν =

∣∣∣∣dνcyc

dEtot

∣∣∣∣×∆E

= 51 kHz .

For an FFT, the width in frequency is given by

∆ν ∼ 1
tobs

.

For our situation this gives us a required observation time of

tobs ≳ 20 µs .

What does this mean for our experiment design?
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Trapping

Solution

tobs ≳ 20 µs

B

pe
θ

An endpoint electron (β = 0.263) with a pitch angle of 89◦ will travel a
distance parallel to the magnetic field of

vt cos θ = 0.263c × cos(89◦)× 20 µs = 275 m .
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Trapping

Solution

tobs ≳ 20 µs

B

pe
θ

An endpoint electron (β = 0.263) with a pitch angle of 89◦ will travel a
distance parallel to the magnetic field of

vt cos θ = 0.263c × cos(89◦)× 20 µs = 275 m .

We need to confine our electrons so that they can be measured!
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Optimising the frequency bin width

Optimising the frequency bin width
If using FFTs to measure our signal, increasing tobs
also has the potential to increase our signal-to-noise
ratio.

∆ν =
1

tobs
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tobs = 50 µs

Noise has constant power spectral density and signal can be
approximated as δ-function
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Optimising the frequency bin width

Optimising the frequency bin width

So... measuring electrons for longer with FFTs means better frequency
precision and better SNR.

Are there any reasons we just can’t measure for longer and longer?
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Optimising the frequency bin width

Minimum frequency bin width

Are there any reasons we just can’t measure for longer and longer?

1 Our electrons will eventually
scatter off residual tritium gas
and we will lose information
about their initial energy

2 The electrons are radiating
energy and their cyclotron
frequency is changing
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Optimising the frequency bin width

Optimum frequency bin width

Putting aside concerns about scattering for the moment, is there a
frequency bin width which maximises the signal-to-noise scenario?

∆ν =
1

tobs

PLarmor =
2πe2ν2

cycβ
2 sin2 θ

3ϵ0c

νcyc =
1

2π
eBc2

Etot
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Optimising the frequency bin width

Solution
The optimum frequency bin width occurs when the observation time
required to produce a given frequency bin width is the same as the time
it takes the electron’s frequency to change by the same amount.
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Optimising the frequency bin width

Solution
The optimum frequency bin width occurs when the observation time
required to produce a given frequency bin width is the same as the time
it takes the electron’s frequency to change by the same amount.

Differentiate the cyclotron frequency equation w.r.t. time

dνcyc
dt

= −eBc2

2π
1

Etot

dEtot

dt
dEtot

dt
= −PLarmor
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Optimising the frequency bin width

Solution
The optimum frequency bin width occurs when the observation time
required to produce a given frequency bin width is the same as the time
it takes the electron’s frequency to change by the same amount.

Differentiate the cyclotron frequency equation w.r.t. time

dνcyc
dt

= −eBc2

2π
1

E2
tot

dEtot

dt
dEtot

dt
= −PLarmor

Expanding and simplifying gives:

dνcyc
dt

=
1

E2
tot

γ2β2 sin2 θ

(
e5B3c

12π2ϵ0m2
e

)
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Optimising the frequency bin width

Solution
Frequency change from radiation over tobs is dνcyc

dt × tobs and frequency
bin width is 1/tobs. Equate these two expressions for frequency and
solve to find

tobs,opt =
(

dνcyc
dt

)− 1
2
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Optimising the frequency bin width

Solution
Frequency change from radiation over tobs is dνcyc

dt × tobs and frequency
bin width is 1/tobs. Equate these two expressions for frequency and
solve to find

tobs,opt =
(

dνcyc
dt

)− 1
2
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Trapping

Trapping

Phys. Rev. C 99, 055501 (2019)

Need to trap our electrons:
Achieve required energy and
frequency resolution
Collect sufficient power
But don’t change their
energy!

Trap electrons in ‘no-work’ magnetic trap where they can
be observed, undergoing periodic motion

Local minimum in magnitude of background B-field

Only electrons with pitch angles above a certain value are
trapped

Trapped electrons climb up magnetic field potential until
they eventually change direction

B

pe
θ
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Trapping

Which pitch angles do we trap?

Phys. Rev. C 99, 055501 (2019)

For a given magnetic field
maximum, Bmax and trap depth,
∆B, what is the minimum electron
pitch angle we expect to trap?

Electron magnetic moment given by

µ(t) =
1
2

p2
0

me

sin2 θ(t)
B(t)

Adiabatic approximation – slowly changing B field means that µ is constant with
time
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Trapping

Solution

Phys. Rev. C 99, 055501 (2019)

Divide electron KE into components ∥ and ⊥ to
B-field

Ekin = Ekin∥ + Ekin⊥

=
1
2

p2
0

me
cos2 θ(t) + µ(t)B(t)

µ(t) =
1
2

p2
0

me

sin2 θ(t)
B(t)
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Trapping

Solution

Phys. Rev. C 99, 055501 (2019)

Divide electron KE into components ∥ and ⊥ to
B-field

Ekin = Ekin∥ + Ekin⊥

=
1
2

p2
0

me
cos2 θ(t) + µ(t)B(t)

µ(t) =
1
2

p2
0

me

sin2 θ(t)
B(t)

Recall that µ is constant with time (adiabatic)

At trap bottom: θ = θbot, B = Bmax −∆B
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Trapping

Solution

Phys. Rev. C 99, 055501 (2019)

Divide electron KE into components ∥ and ⊥ to
B-field

Ekin = Ekin∥ + Ekin⊥

=
1
2

p2
0

me
cos2 θ(t) + µ(t)B(t)

µ(t) =
1
2

p2
0

me

sin2 θ(t)
B(t)

Recall that µ is constant with time (adiabatic)

At trap bottom: θ = θbot, B = Bmax −∆B

For electrons that are just trapped: θ = π/2, B = Bmax
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Trapping

Solution

Phys. Rev. C 99, 055501 (2019)

Equating expressions for µ at the top and
bottom of the trap we find...

1
2

p2
0

me

sin2 θbot
Bmax −∆B

=
1
2

p2
0

me

1
Bmax
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Trapping

Solution

Phys. Rev. C 99, 055501 (2019)

Equating expressions for µ at the top and
bottom of the trap we find...

1
2

p2
0

me

sin2 θbot
Bmax −∆B

=
1
2

p2
0

me

1
Bmax

Rearranging, find that the pitch angle at the
trap bottom for a just trapped electron is
given by:

θbot = sin−1

(√
1 − ∆B

Bmax

)
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Trapping

Solution

Phys. Rev. C 99, 055501 (2019)

Equating expressions for µ at the top and
bottom of the trap we find...

1
2

p2
0

me

sin2 θbot
Bmax −∆B

=
1
2

p2
0

me

1
Bmax

Rearranging, find that the pitch angle at the
trap bottom for a just trapped electron is
given by:

θbot = sin−1

(√
1 − ∆B

Bmax

)

Therefore trapping condition given by:

θbot ≥ sin−1

(√
1 − ∆B

Bmax

)
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Parameter estimation

Parameter estimation
If our signal, embedded in white noise (variance σ2) is sampled at N
discrete times, each separated by at time T , with what precision can the
frequency be measured?
Fisher information matrix for a deterministic signal (unknown parameters
θ⃗) in Gaussian white noise is given by:

I(θ⃗) =
1
σ2Re

[
∂s⃗(t |θ⃗)
∂θ⃗

· ∂s⃗†(t |θ⃗)
∂θ⃗

]

Signal vector s⃗ = [s0, s1, ..., sN−1] where we model our signal as a
complex single tone wave:

sn = Aei(ωtn+ϕ0)

and tn = t0 + nT = (n0 + n)T .
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Parameter estimation

Solution
We can calculate that:

sns∗n = A2

s⃗ · s⃗† = NA2

Differentiating s⃗ w.r.t. unknown parameters gives

∂s⃗
∂A

= ei(ω⃗t+ϕ0) =
1
A

s⃗

∂s⃗
∂ω

= iA⃗tei(ω⃗t+ϕ0) = i⃗ t s⃗

∂s⃗
∂ϕ0

= iAei(ω⃗t+ϕ0) = i s⃗
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Parameter estimation

Solution
We can then calculate the elements of the Fisher information matrix:

IAA =
N
σ2 Iωω =

A2

σ2

N−1∑
n=0

t2
n =

A2

σ2 ⟨2⟩

Iϕ0ϕ0 =
NA2

σ2 IAϕ0 = Iϕ0A =
1

Aσ2Re[i s⃗ · s⃗†] = 0

IAω = IωA = 0 Iωϕ0 = Iϕ0ω =
A2

σ2

N−1∑
n=0

tn =
A2

σ2 ⟨1⟩

I(θ⃗) =
A2

σ2

 N
A2 0 0
0 ⟨2⟩ ⟨1⟩
0 ⟨1⟩ N



S. Jones (UCL) SuSi 2024 August 14, 2024 47 85



Parameter estimation

Solution

I−1 =
σ2

A2


A2

N 0 0
0 − N

⟨1⟩2−⟨2⟩N
⟨1⟩

⟨1⟩2−⟨2⟩N
0 ⟨1⟩

⟨1⟩2−⟨2⟩N
⟨2⟩

⟨1⟩2−⟨2⟩N


where

⟨1⟩ =
N−1∑
n=0

tn = n0NT +
N(N − 1)T

2

⟨2⟩ =
N−1∑
n=0

t2
n =

NT 2

6

[
1 + 2N2 + 6n0(n0 − 1) + N(6n0 − 3)

]
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Parameter estimation

Solution
The Cramer-Rao lower bound for a parameter, θi , can be expressed as

var
(
θ̂i

)
≥ (I−1)θiθi .

For estimator of the angular frequency, we find that

var (ω̂) ≥ 12σ2

A2N(N2 − 1)T 2

var (ω̂) ≳
12σ2

A2N3T 2 .

Express this in detector units of sample rate, νs = 1/T , observation
time, tobs = NT and SNR = A2/2σ2:

var (ω̂) ≳
6

SNR t3
obsνs

.
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Parameter estimation

Chirping sine wave
Our signal frequency is constantly changing from the moment the
electron is produced – signal better represented by:

sn = A exp
[
i
(
ω0tn + ct2

n + ϕ0
)]

.
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Parameter estimation

Chirping sine wave

Our signal frequency is constantly changing from the moment the
electron is produced – signal better represented by:

sn = A exp
[
i
(
ω0tn + ct2

n + ϕ0
)]

.

If we perform the same method as before, we now find

var (ω̂0) ≳
96

SNR t3
obsνs

which is 16× larger than the previous result.
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Frequency precision

Frequency precision

var (ω̂0) ≳
96

SNR t3
obs νs

This equation tells us the key routes to improving our frequency (and
energy) precision
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Frequency precision

Frequency precision

var (ω̂0) ≳
96

SNR t3
obs νs

This equation tells us the key routes to improving our frequency (and
energy) precision

Increase the rate (e.g. of our digitizer) at which we sample our data
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Frequency precision

Frequency precision

var (ω̂0) ≳
96

SNR t3
obs νs

This equation tells us the key routes to improving our frequency (and
energy) precision

Increase the rate (e.g. of our digitizer) at which we sample our data

Improve our SNR – ↑ collected power, ↓ noise
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Frequency precision

Frequency precision

var (ω̂0) ≳
96

SNR t3
obs νs

This equation tells us the key routes to improving our frequency (and
energy) precision

Increase the rate (e.g. of our digitizer) at which we sample our data

Improve our SNR – ↑ collected power, ↓ noise

Most fruitfully – observe our electrons for longer!
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Frequency precision

Required observation time

Previous FFT-based calculation found that we require tobs ≳ 20 µs to
achieve energy resolution of 1 eV.

Now use the Cramér-Rao lower bound to determine the required
observation time to achieve σE = 1 eV.

var (ω̂0) ≳
96

SNR t3
obs νs

Assume:

Sample rate, νs = 1 GHz

Noise temperature, Tnoise = 5 K

We collect 10% of the total radiated
power in a 1 T magnetic field
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Frequency precision

Solution
Linear start frequency resolution given by σν0 =

√
var (ω̂0)/2π which

can be rearranged to give

t3
obs =

24
π2SNR νsσ2

ν0

S. Jones (UCL) SuSi 2024 August 14, 2024 57 85



Frequency precision

Solution
Linear start frequency resolution given by σν0 =

√
var (ω̂0)/2π which

can be rearranged to give

t3
obs =

24
π2SNR νsσ2

ν0

We have previously calculated our total radiated power to be ∼ 1 fW –
assume we collect 10−16 W
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Frequency precision

Solution
Linear start frequency resolution given by σν0 =

√
var (ω̂0)/2π which

can be rearranged to give

t3
obs =

24
π2SNR νsσ2

ν0

We have previously calculated our total radiated power to be ∼ 1 fW –
assume we collect 10−16 W

White noise power over bandwidth Bν given by kBTnoiseBν – take
bandwidth to be Nyquist frequency, νs/2
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Frequency precision

Solution
Linear start frequency resolution given by σν0 =

√
var (ω̂0)/2π which

can be rearranged to give

t3
obs =

24
π2SNR νsσ2

ν0

We have previously calculated our total radiated power to be ∼ 1 fW –
assume we collect 10−16 W

White noise power over bandwidth Bν given by kBTnoiseBν – take
bandwidth to be Nyquist frequency, νs/2

Therefore, SNR = 10−16 W
1.38×10−23 J K−1·5 K·500×106 s−1 = 0.0029.
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Frequency precision

Solution
Linear start frequency resolution given by σν0 =

√
var (ω̂0)/2π which

can be rearranged to give

t3
obs =

24
π2SNR νsσ2

ν0

We have previously calculated our total radiated power to be ∼ 1 fW –
assume we collect 10−16 W

White noise power over bandwidth Bν given by kBTnoiseBν – take
bandwidth to be Nyquist frequency, νs/2

Therefore, SNR = 10−16 W
1.38×10−23 J K−1·5 K·500×106 s−1 = 0.0029.

tobs =
(

24
π2 · 0.0029 · 106 s−1 · (50 × 103 s−1)2

)1/3

≈ 70 µs
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Scattering constraints

Scattering constraints

From the previous example, we have a required observation time,
tobs ≈ 70 µs.

What kind of constraints does this put on our tritium atom number
density?

Tritium scattering cross-section, σ0 ≈ 9 × 10−19 cm2

For an endpoint electron, β ≈ 0.26.
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Scattering constraints

Solution
Say we have a tritium atom number density, n. The mean free path of an
electron is given by

1
σ0n

.
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Scattering constraints

Solution
Say we have a tritium atom number density, n. The mean free path of an
electron is given by

1
σ0n

.

Mean free time is therefore given by

τ =
1

σ0nβc
.
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Scattering constraints

Solution
Say we have a tritium atom number density, n. The mean free path of an
electron is given by

1
σ0n

.

Mean free time is therefore given by

τ =
1

σ0nβc
.

If we want our electrons’ mean free time to be similar to our required
observation time then we require

n =
1

σ0βctobs
=

1
9 × 10−23 m2 · 0.26 · 3 × 108 m s−1 · 70 × 10−6 s

= 2 × 1018 m−3

S. Jones (UCL) SuSi 2024 August 14, 2024 66 85



Sensitivity calculation

Reminder: Tritium β-decay spectrum

5 10 15 20
0.0

0.5

1.0

1.5

2.0
27.027.227.427.627.8

Ee [keV]

dΓ
/d
E
e
[1
0-
13
s-
1 e
V

-
1 ]

νCR/B [GHz/T]

(a)

mν=0

E0

dΓ
dEkin

≈ GF cos2 θC

2π3 (g2
V + 3g2

A)F (2,Ekin)|p|(Ekin + me)

×
3∑

i=1

|Uei |2 (E0 − Ekin)
√

(E0 − Ekin)2 − m2
i Θ(E0 − Ekin − mi)
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Sensitivity calculation

Behaviour close to spectrum endpoint

−70 −60 −50 −40 −30 −20 −10 0
Ekin − E0 [meV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d
Γ
/d
E

k
in

[s
−

1
eV
−

1
]

×10−24

IO, m3 = 0 eV

dΓ
dEkin

≈ C
3∑

i=1

|Uei |2 (E0 − Ekin)

√
(E0 − Ekin)

2 − m2
i Θ(E0 − Ekin − mi)
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Sensitivity calculation

Behaviour close to spectrum endpoint

−70 −60 −50 −40 −30 −20 −10 0
Ekin − E0 [meV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d
Γ
/d
E

k
in

[s
−

1
eV
−

1
]

×10−24

IO, m3 = 0 eV

mβ = 49 meV

When we measure the decay
spectrum we fit for m2

β where

m2
β =

3∑
i=1

|Uei |2m2
i .

dΓ
dEkin

≈ C (E0 − Ekin)
√
(E0 − Ekin)

2 − m2
β Θ(E0 − Ekin − mβ)
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Sensitivity calculation

Basic sensitivity calculation: 1

For a background-free, systematics-free experiment, how many tritium
atoms do we need to observe for 1 year to achieve a 90% CL limit on mβ

of 0.1 eV?

dN
dE

= 3rt(E0 − E)
[
(E0 − E)2 − m2

β

]1/2

r : Rate in last eV of spectrum with
mβ = 0

t : Running time

Measure mβ using single
measurement of Ntot events
in energy interval,
∆E = E0 − E1

Assume we can achieve
∆E = 1 eV

Step 1: How many decays do we expect in our energy interval, ∆E?
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Sensitivity calculation

Solution

N =

∫ E0

E1

3rt(E0 − E)
[
(E0 − E)2 − m2

β

]1/2
dE

=
[
−rt

[
(E0 − E)2 − m2

β

]3/2
]E0

E1

= rt
[
(E0 − E1)

2 − m2
β

]3/2

= rt∆E3

[
1 −

m2
β

∆E2

]3/2
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Sensitivity calculation

Solution

N =

∫ E0

E1

3rt(E0 − E)
[
(E0 − E)2 − m2

β

]1/2
dE

=
[
−rt

[
(E0 − E)2 − m2

β

]3/2
]E0

E1

= rt
[
(E0 − E1)

2 − m2
β

]3/2

= rt∆E3

[
1 −

m2
β

∆E2

]3/2

For the case where ∆E ≫ m2
β :

N ≈ rt∆E3

(
1 − 3

2

m2
β

∆E2

)
.
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Sensitivity calculation

Basic sensitivity calculation: 2

We now have an expression for the expected number of tritium decays in
a window ∆E .

N ≈ rt∆E3

(
1 − 3

2

m2
β

∆E2

)

Step 2: Calculate the variance of m2
β
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Sensitivity calculation

Solution

N ≈ rt∆E3

(
1 − 3

2

m2
β

∆E2

)

The variance of N may be expressed as

(σN)
2 =

(
∂N
∂m2

β

)2 (
σm2

β

)2
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Sensitivity calculation

Solution

N ≈ rt∆E3

(
1 − 3

2

m2
β

∆E2

)

The variance of N may be expressed as

(σN)
2 =

(
∂N
∂m2

β

)2 (
σm2

β

)2 where ∂N
∂m2

β

= −3rt∆E
2

.
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Sensitivity calculation

Solution

N ≈ rt∆E3

(
1 − 3

2

m2
β

∆E2

)

The variance of N may be expressed as

(σN)
2 =

(
∂N
∂m2

β

)2 (
σm2

β

)2 where ∂N
∂m2

β

= −3rt∆E
2

.

Therefore,

σm2
β
=

2
3rt∆E

√
N =

2
3rt∆E

√√√√rt∆E3

(
1 − 3

2

m2
β

∆E2

)
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Sensitivity calculation

Solution

N ≈ rt∆E3

(
1 − 3

2

m2
β

∆E2

)
The variance of N may be expressed as

(σN)
2 =

(
∂N
∂m2

β

)2 (
σm2

β

)2 where ∂N
∂m2

β

= −3rt∆E
2

.

Therefore,

σm2
β
=

2
3rt∆E

√
N =

2
3rt∆E

√√√√rt∆E3

(
1 − 3

2

m2
β

∆E2

)

≈ 2
3

√
∆E
rt
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Sensitivity calculation

Basic sensitivity calculation: 3
We have now calculated the variance of m2

β :

σm2
β
≈ 2

3

√
∆E
rt

.

Step 3: Returning to our original question: with a 1 year running time,
how many tritium atoms must we observe to obtain a limit of
mβ ≲ 0.1 eV (90% CL)? Assume a trapping and detection efficiency of 1.

Rate in the last eV, r , may be expressed as

r = ϵ
Natom

τm
η .

ϵ: Trapping and detection
efficiency

η = 2 × 10−13 eV−3: Fraction of
events in last eV

τm: Mean tritium lifetime

τ1/2 = 12.32 years
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Sensitivity calculation

Solution

mβ, 90CL =
√

1.28σm2
β
=

8

5
√

3

(
∆E
rt

)1/4

.
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Sensitivity calculation

Solution

mβ, 90CL =
√

1.28σm2
β
=

8

5
√

3

(
∆E
rt

)1/4

.

Given that r = ϵNatom
τm

η and setting ϵ = 1:

mβ, 90CL =
8

5
√

3

(
∆E τm

t η Natom

)1/4
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Sensitivity calculation

Solution

mβ, 90CL =
√

1.28σm2
β
=

8

5
√

3

(
∆E
rt

)1/4

.

Given that r = ϵNatom
τm

η and setting ϵ = 1:

mβ, 90CL =
8

5
√

3

(
∆E τm

t η Natom

)1/4

Rearranging we find

Natom =

(
8

5
√

3

)4 ∆Eτm

tη(mβ, 90CL)4
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Sensitivity calculation

Solution

mβ, 90CL =
√

1.28σm2
β
=

8

5
√

3

(
∆E
rt

)1/4

.

Given that r = ϵNatom
τm

η and setting ϵ = 1:

mβ, 90CL =
8

5
√

3

(
∆E τm

t η Natom

)1/4

Rearranging we find

Natom =

(
8

5
√

3

)4 ∆Eτm

tη(mβ, 90CL)4

=

(
8

5
√

3

)4 1 eV · 5.6090 × 108 s
3.1558 × 107 s · 2 × 10−13 eV−3 · (0.1 eV)4

≈ 1018 atoms
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Sensitivity calculation

Possible mass limits
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Unfavourable sensitivity scaling with ‘exposure’ (Natom × time) –
(rt)−1/4

1018 atoms is a tritium mass of 5 µg – misleadingly small!
Assumes all electrons are trapped and reco’d
Need to maintain atomic tritium (rather than T2) so require a larger
inventory for regeneration
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Sensitivity calculation

Tritium inventory

For comparison: TLK has an inventory of 25 g of T2
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Summary

Summary

Hopefully this workshop has helped flesh out some of the details
behind QTNM

As you have seen, there are a number of competing factors which
need to be addressed to make a CRES experiment work optimally

Questions?
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