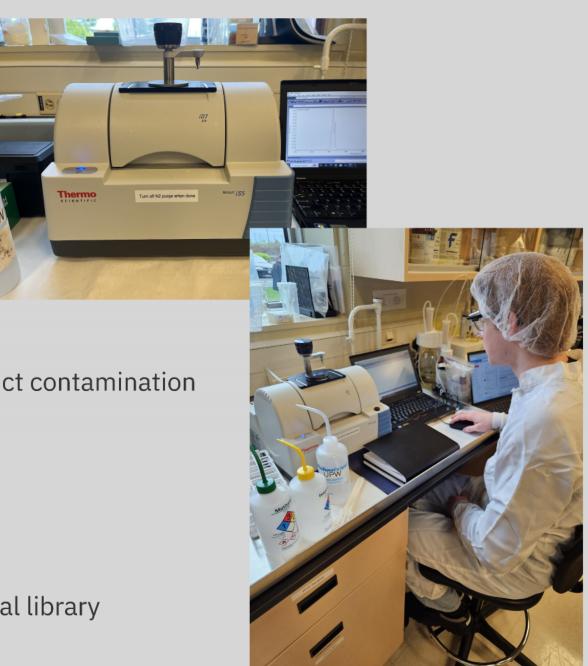
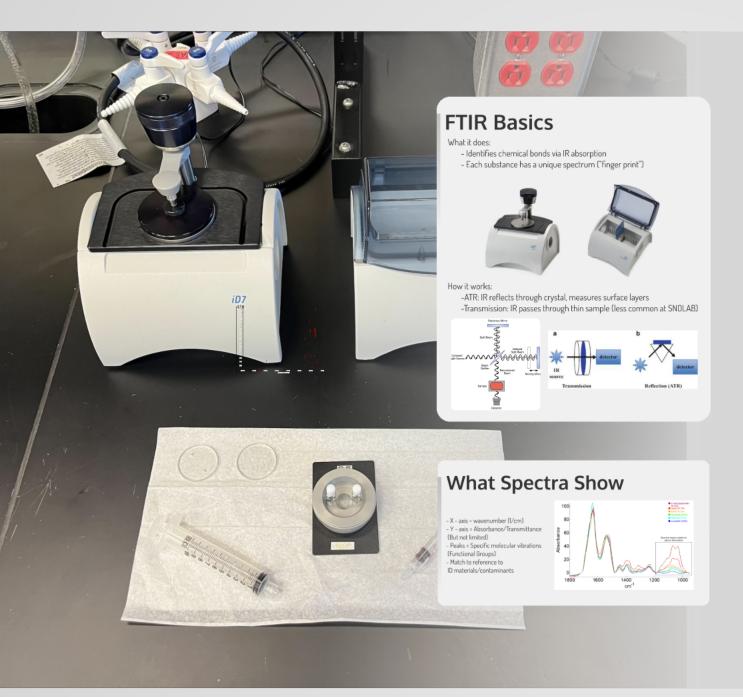
Expanding FTIR Capabilities at SNOLAB: Building a Chemical and Materials Spectral Database

Utilizing FTIR Spectroscopy for Accurate Material Verification and Contamination Control at SNOLAB

Cameron Van Der Zyl


Analytical Chemistry Program Research Assistant


Why FTIR at SNOLAB?

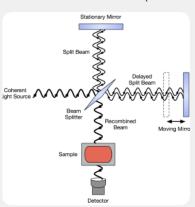
Why FTIR at SNOLAB?

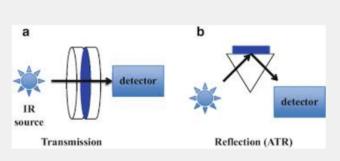
- Ultra-clean, low-background sceince requires strict contamination control
- -Need fast, accurate material verification
- FTIR = rapid, non-destructive, versatile
- Previously underused at SNOLAB
- My project: Unlock full potential + building spectral library

A Quick Primer on FTIR

FTIR Basics

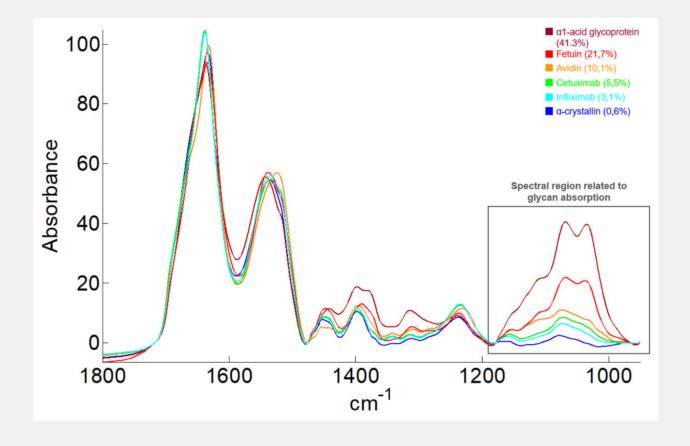
What it does:


- Identifies chemical bonds via IR absorption
- Each substance has a unique spectrum ("finger print")



How it works:

- -ATR: IR reflects through crystal, measures surface layers
- -Transmission: IR passes through thin sample (less common at SNOLAB)



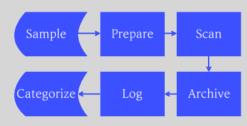
APr

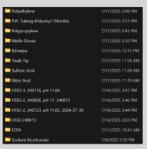
What Spectra Show

- X axis = wavenumber (1/cm)
- Y axis = Absorbance/Transmittance(But not limited)
- Peaks = Specific molecular vibrations(Functional Groups)
- Match to reference to
 ID materials/contaminants

Project Overview: Building a Spectral Reference Library

Creating a comprehensive spectral reference library is crucial for effective material verification at SNOLAB.


Learning Phase


- Mastered FTIR and OMNIC software
- Developed consistent scan parameters & cleaning SOP

Library Build

- Scanned high-priority chemicals, materials, common contaminants
- Created structured folders + metadata system


Automation

- Python tool for functional group recognition

Impact Assessment

- Faster, more consistent material verification with more accurance and consistency

	Index	Match	Compound Name
1	71	99.93	PICO Mineral Oil
2	32	92.36	POLY(ETHYLENE:PROPYLENE:DIENE)
3	637	91.93	Poly(ethylene:propylene:ethylidenenorbornene)
4	629	91.30	Poly(ethylene:propylene:ethylidenenorbornene)
5	252	88.72	Ethylene/propylene/diene terpolymer
6	107	87.43	Mineral oil
7	628	87.28	Poly(ethylene:propylene:diene)
8	758	87.26	Thermoplastic elastomer
9	1	87.11	TRIACONTANE, 99%
10	39	86.98	POLY(ETHYLENE:PROPYLENE)

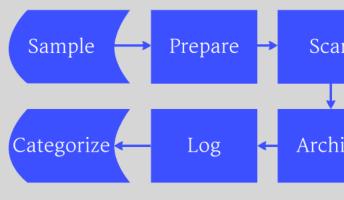
CONCLUSION

Based on FTIR-ATR analysis, the unknown liquid sample from the PICO detector is conclusively identified as PICO's standard Mineral Oil, with a spectral similarity of 99.93%. There is no evidence of chemical deviation or contamination. The leak likely originated from the existing oil system used in the detector.

Note a similarity of 100% is generally not attainable as factors as minimal as CO2 and H2O content in the air can cause deviations in spectral readings

Learning Phase

- Mastered FTIR and OMNIC software
- Developed consistent scan parameters & cleaning SOP



What I needed to learn

- ★Instrument capabilities
- **★**0MNIC tools
- Background scanning
- ★Scan setting
- ★Sample contact/ATR cleaning

Library Build

- Scanned high-priority chemica materials, common contaminant
- Created structured folders + metadata system

Polyethylene	7/17/2025 3:08 PM
Polyetilylerie	1/11/2023 3.06 PW
PVC Tubing (Polyvinyl Chloride)	7/17/2025 2:51 PM
Polypropylene	7/17/2025 2:41 PM
Nitrile Gloves	7/17/2025 2:32 PM
Kimwipe	7/17/2025 12:12 PM
Swab Tip	7/17/2025 11:56 AM
Sulfuric Acid	7/17/2025 11:20 AM
Nitric Acid	7/17/2025 11:19 AM
HTiO-3, 240716, pH 11.84	7/14/2025 3:47 PM
HTiO-2, 240806, pH 11, 240813	7/14/2025 3:46 PM
HTiO-2, 240723, pH 11.85, 2024-07-30	7/14/2025 3:44 PM
HTiO 240813	7/14/2025 3:03 PM
EDTA	7/11/2025 10:41 AM
Sodium Bicarbonate	7/9/2025 2:50 PM

ning Phase

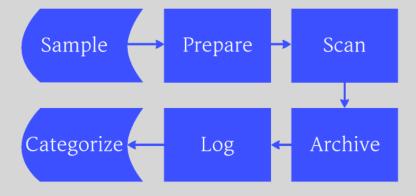
stered FTIR and OMNIC vare

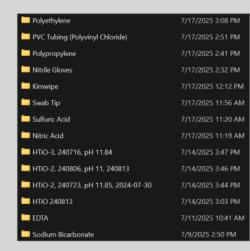
veloped consistent scan meters & cleaning SOP

What I needed to learn

nstrument capabilities

OMNIC tools


Background scanning


Scan setting

Sample contact/ATR cleaning

Library Build

- Scanned high-priority chemicals, materials, common contaminants
- Created structured folders + metadata system

Automation

- Python tool for functional group reco

```
import numpy as np
def assign_functional_groups(wavenumber, shape, absorbance):
    partial_matches = []
    shape = shape.lower()
    for fg, wn min, wn max, shapes, min abs, max abs in FUNCTIONAL GROUPS:
          Properly handle None for wn min/wn max
        absorbance match = min abs <= absorbance <= max abs
            partial_matches.append(fg)
#Strong absorbance is > 0.55
#Weak absorbance is > 0.00 but < 0.14
    except ValueError:
How many peaks are being analyzed? 3
  Mavenumber (cm^-1): 1600
 Shape (sharp, broad, etc): sharp
Absorbance (numeric): 0.5
  Mavenumber (cm^-1): 3650
  Shape (sharp, broad, etc): broad
Absorbance (numeric): 0.3
                                                          Peak Assignments with Sh
  Wavenumber (cm^-1): 2555
                                                           Peak at 1600.0 cm^-1 (sh
  Shape (sharp, broad, etc): sharp
  Absorbance (numeric): 0.7
                                                             Most likely functional
                                                               - Alkenes | Trisubsti
Peak Assignments with Shape/Absorbance Narrowing
                                                               - Alkenes | Conjugate
```

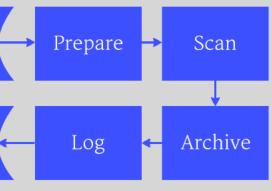
- Ketones | Enol of 1

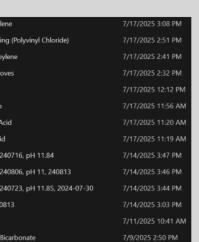
- Ketones | σ - Hydro

- Carboxylic Acids

Peak at 3650.0 cm^-1 (br

Peak at 2555.0 cm^-1 (sh Most likely functional


- Carboxylic Acids


- Amines | Ammonium I

No matching functional

Build

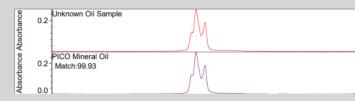
high-priority chemicals, common contaminants structured folders + system

Automation

- Python tool for functional group recognition

```
import numpy as np
def assign_functional_groups(wavenumber, shape, absorbance):
    partial_matches = []
     shape = shape.lower()
      for fg, wn_min, wn_max, shapes, min_abs, max_abs in FUNCTIONAL_GROUPS:
          # Properly handle None for wn min/wn max
          if wn_min is not None and wn_max is not None:
              wn_match = wn_min <= wavenumber <= wn_max
              wn_match = False
          shape_match = shape in shapes or 'variable' in shapes
          absorbance match = min abs <= absorbance <= max abs
          if wn_match and shape_match and absorbance_match:
               matches.append(fg)
          elif wn_match and shape_match:
              partial_matches.append(fg)
                                                             ('Mononuclear Arcestics | C-H Stretch', 3000, 3100, ['sharp'], 0.1, 0.7)
     return matches, partial_matches
                                                               'Mononuclear Aromatics | C=C Ring Stretch', 1450, 1600, ['sharp'], 0.1, 1.0)
                                                             ('Mononuclear Arcestics | Benzene Ring Breath', 675, 966, ['sharp'], 8.1, 8.6), ('Mononuclear Arcestics | 1,2-Disubstituted', 735, 776, ['sharp'], 8.1, 8.5),
#Strong absorbance is > 0.55
                                                             ('Nononuclear Arcestics | 1,3-Disubstituted', 800, 800, ['sharp'], 0.1, 0.5), ('Nononuclear Arcestics | 1,4-Disubstituted', 830, 860, ['sharp'], 0.1, 0.5),
#Medium absorbance is > 0.15 but < 0.54
                                                              ('Mononuclear Arcestics | 1,2,4-Trisubstituted', 750, 860, ['sharp'], 0.1, 0.6), ('Mononuclear Arcestics | 1,2,3-Trisubstituted', 730, 880, ['sharp'], 0.1, 0.6),
#Weak absorbance is > 0.00 but < 0.14
                                                                Mononuclear Arcmatics | 1,3,5-Trisubstituted', 820, 860, ['sharp'], 0.1, 0.6),
def main():
        y.

n = int(input("How many peaks are being a ("Alcohola and Phenola | Intramolecular Bonded (mask)", $509, $7094, ['sharp'], 0.15, 0.54),


("Alcohola and Phenola | Intramolecular Bonded (mask)", $509, $7094, ['sharp'], 0.15, 0.54),

("Alcohola and Phenola | Intramolecular Bonded (strong), 2709, $2096, ['sharp'], 0.55, 14.0),

("Alcohola and Phenola | Intermolecular Bonded", $100, $3096, ['sharp'], 0.55, 14.0),
     except ValueError
                                                             ('Alcohols and Phenols | Saturated Tert.', 1875, 1258, ['sharp'], 8.54, 14.8),
                                                             ('Acetals | Ketals', 1020, 1180, ['sharp'], 0.55, 14.0),
How many peaks are being analyzed? 3
 Please enter the wavenumber (cm^-1), shape (sharp/broad), and absorbance (numeric) for each peak
   Mavenumber (cm^-1): 1600
   Shape (sharp, broad, etc): sharp
   Absorbance (numeric): 0.5
   Mayenumber (cm^-1): 3650
   Shape (sharp, broad, etc): broad
   Absorbance (numeric): 0.3
                                                                     Peak Assignments with Shape/Absorbance Narrowing:
   Navenumber (cm^-1): 2555
                                                                     Peak at 1600.0 cm^-1 (sharp, absorbance=0.5):
   Shape (sharp, broad, etc): sharp
   Absorbance (numeric): 0.7
                                                                        Most likely functional groups:
                                                                         - Alkenes | Trisubstituted
 Peak Assignments with Shape/Absorbance Narrowing
                                                                          - Alkenes | Conjugated
                                                                          - Mononuclear Aromatics | C=C Ring Stretch
                                                                         - Ketones | Enol of 1,3-Diketone
                                                                          - Ketones | σ - Hydroxy Aryl Ketone
                                                                         - Carboxylic Acids | Carboxylate Ion
                                                                     Peak at 3650.0 cm^-1 (broad, absorbance=0.3):
                                                                        No matching functional group found.
                                                                     Peak at 2555.0 cm^-1 (sharp, absorbance=0.7):
                                                                        Most likely functional groups:
                                                                         - Carboxylic Acids | Dimer
                                                                          - Amines | Ammonium Ion
```

Impact Assessment

- Faster, more consistent material verification more accurance and consistency

	Index	Match	Compound Name
1	71	99.93	PICO Mineral Oil
2	32	92.36	POLY(ETHYLENE:PROPYLENE:D
3	637	91.93	Poly(ethylene:propylene:ethylidene
4	629	91.30	Poly(ethylene:propylene:ethylidene
5	252	88.72	Ethylene/propylene/diene terpolym
6	107	87.43	Mineral oil
7	628	87.28	Poly(ethylene:propylene:diene)
8	758	87.26	Thermoplastic elastomer
9	1	87.11	TRIACONTANE, 99%
10	39	86.98	POLY(ETHYLENE:PROPYLENE)

CONCLUSION

Based on FTIR-ATR analysis, the unknown liquid sample from the PICO conclusively identified as PICO's standard Mineral Oil, with a spectral similarit There is no evidence of chemical deviation or contamination. The leak likely of the existing oil system used in the detector.

Note a similarity of 100% is generally not attainable as factors as minimal H2O content in the air can cause deviations in spectral readings

omation

tool for functional group recognition

```
_groups(wavenumber, shape, absorbance):
n_max, shapes, min_abs, max_abs in FUNCTIONAL_GROUPS:
undle None for wn_min/wn_max
not None and wn_max is not None:
= wn_min <= wavenumber <= wn_max
False
shape in shapes or 'variable' in shapes
tch = min_abs <= absorbance <= max_abs
nd shape_match and absorbance_match:
ppend(fg)
and shape_match:
atches.append(fg)
                               ('Mononuclear Aromatics | C-H Stretch', 3000, 3100, ['sharp'], 0.1, 0.7),
artial_matches
                              > 0.15 but < 0.54
0.00 but < 0.14
                               ('Mononuclear Aromatics | 1,2,4-Trisubstituted', 758, 868, ['sharp'], 0.1, 0.6), ('Mononuclear Aromatics | 1,2,3-Trisubstituted', 730, 800, ['sharp'], 0.1, 0.6),
                               ('Mononuclear Aromatics | 1,3,5-Trisubstituted', 820, 860, ['sharp'], 0.1, 0.6),
# ALCORDS AND PHYSICS $

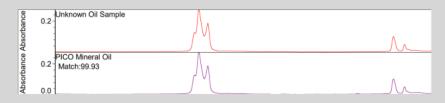
("How many peaks are being a ("Alcohols and Phesols | Free ON", 3458, 3780, ("sharp"), 0.15, 0.54),

("Alcohols and Phesols | Intravolecular Bonded (meak)", 3589, 3780, ("sharp"), 0.15, 0.54),

("Alcohols and Phesols | Intravolecular Bonded (strong)", 2780, 3180, ("brand"), 0.45, 14.0),

("Alcohols and Phesols | Intravolecular Bonded", 1380, 5500, ("meat"), 0.42, 43.0)
                               ('Alcohols and Phenols | Saturated Tert.', 1075, 1250, ['sharp'], 0.54, 14.0),
                              ('Acetals | Ketals', 1020, 1180, ['sharp'], 0.55, 14.0),
analyzed? 3
ber (cm^-1), shape (sharp/broad), and absorbance (numeric) for each peak. 35, 14.0),
600
tc): sharp
tc): broad
                                      Peak Assignments with Shape/Absorbance Narrowing:
555
tc): sharp
                                      Peak at 1600.0 cm^-1 (sharp, absorbance=0.5):
                                         Most likely functional groups:
                                          - Alkenes | Trisubstituted
ape/Absorbance Narrowing:

    Alkenes | Conjugated


                                          - Mononuclear Aromatics | C=C Ring Stretch

    Ketones | Enol of 1,3-Diketone

                                          - Ketones | σ - Hydroxy Aryl Ketone
                                          - Carboxylic Acids | Carboxylate Ion
                                      Peak at 3650.0 cm^-1 (broad, absorbance=0.3):
                                         No matching functional group found.
                                      Peak at 2555.0 cm^-1 (sharp, absorbance=0.7):
                                         Most likely functional groups:
                                          - Carboxylic Acids | Dimer
                                          - Amines | Ammonium Ion
```

Impact Assessment

- Faster, more consistent material verification with more accurance and consistency

	Index	Match	Compound Name
1	71	99.93	PICO Mineral Oil
2	32	92.36	POLY(ETHYLENE:PROPYLENE:DIENE)
3	637	91.93	Poly(ethylene:propylene:ethylidenenorbornene)
4	629	91.30	Poly(ethylene:propylene:ethylidenenorbornene)
5	252	88.72	Ethylene/propylene/diene terpolymer
6	107	87.43	Mineral oil
7	628	87.28	Poly(ethylene:propylene:diene)
8	758	87.26	Thermoplastic elastomer
9	1	87.11	TRIACONTANE, 99%
10	39	86.98	POLY(ETHYLENE:PROPYLENE)

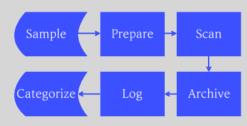
CONCLUSION

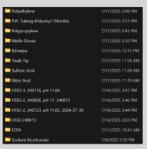
Based on FTIR-ATR analysis, the unknown liquid sample from the PICO detector is conclusively identified as PICO's standard Mineral Oil, with a spectral similarity of 99.93%. There is no evidence of chemical deviation or contamination. The leak likely originated from the existing oil system used in the detector.

Note a similarity of 100% is generally not attainable as factors as minimal as CO2 and H2O content in the air can cause deviations in spectral readings

Project Overview: Building a Spectral Reference Library

Creating a comprehensive spectral reference library is crucial for effective material verification at SNOLAB.


Learning Phase


- Mastered FTIR and OMNIC software
- Developed consistent scan parameters & cleaning SOP

Library Build

- Scanned high-priority chemicals, materials, common contaminants
- Created structured folders + metadata system


Automation

- Python tool for functional group recognition

Impact Assessment

- Faster, more consistent material verification with more accurance and consistency

	Index	Match	Compound Name
1	71	99.93	PICO Mineral Oil
2	32	92.36	POLY(ETHYLENE:PROPYLENE:DIENE)
3	637	91.93	Poly(ethylene:propylene:ethylidenenorbornene)
4	629	91.30	Poly(ethylene:propylene:ethylidenenorbornene)
5	252	88.72	Ethylene/propylene/diene terpolymer
6	107	87.43	Mineral oil
7	628	87.28	Poly(ethylene:propylene:diene)
8	758	87.26	Thermoplastic elastomer
9	1	87.11	TRIACONTANE, 99%
10	39	86.98	POLY(ETHYLENE:PROPYLENE)

CONCLUSION

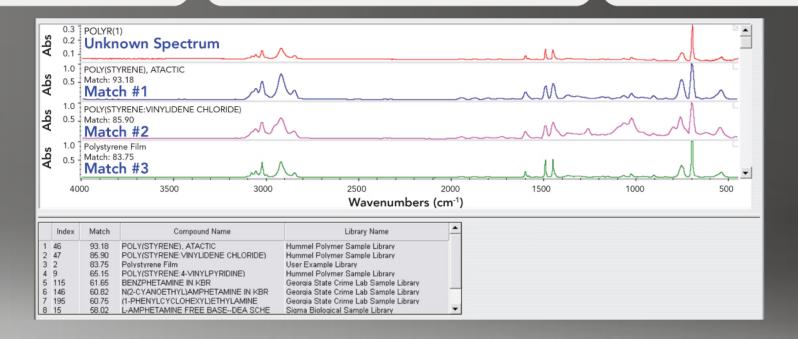
Based on FTIR-ATR analysis, the unknown liquid sample from the PICO detector is conclusively identified as PICO's standard Mineral Oil, with a spectral similarity of 99.93%. There is no evidence of chemical deviation or contamination. The leak likely originated from the existing oil system used in the detector.

Note a similarity of 100% is generally not attainable as factors as minimal as CO2 and H2O content in the air can cause deviations in spectral readings

Future of the

Library(ies)

Library Access


- Access to ~10 libraries
- Made in-lab + externally

Spectra Access

- 100+ spectra scanned inlab + added to library-1000+ overall spectra

Future?

- Ability to create new libraries
- Ability to add to current libraries
 - International collaboration opportunity???

Thermo Nicolet high quality commercial collections of FT-IR and Raman Spectral Libraries encompassing some 258,000 compounds are available

Future of the SNO-Library(ies)

Library Access

- Access to ~10 libraries
- Made in-lab + externally

Spectra Access

 100+ spectra scanned inlab + added to library
 1000+ overall spectra

Future?

- Ability to create new libraries
- Ability to add to current libraries
- International collaboration opportunity???

Thermo Nicolet high quality commercial collections of FT-IR and Raman Spectral Libraries encompassing some 258,000 compounds are available

Increased Accessibility

```
- Simple prompts, no programming skills needed
```

- Reduces learning curve for FTIR users

- Clear, readable results

```
# RINGOLOMETO (MCD. F.

# RINGOLOMETO (MCD. F.

| Controllayeries | 10,071, 100, 101, | 10 may | 1, 6.15, 14.4),
| Controllayeries | 10,071, 100, 101, | 10 may | 1, 6.15, 14.4),
| Controllayeries | 10,071, 100, 101, | 10 may | 1, 6.15, 14.4),
| Controllayeries | 10,071, 100, 101, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,071, | 10,
```

Enhanced Efficiency in Research

```
- Faster unknown identification

- Consistent, reproducible analysis

| Consistent | Consistent
```

```
import numpy as np
def assign_functional_groups(wavenumber, shape, absorbance):
    matches = []
    partial_matches = []
    shape = shape.lower()
    for fg, wn_min, wn_max, shapes, min_abs, max_abs in FUNCTIONAL_GRO
        # Properly handle None for wn min/wn max
        if wn_min is not None and wn_max is not None:
            wn match = wn min <= wavenumber <= wn max
        else:
            wn match = False
        shape_match = shape in shapes or 'variable' in shapes
        absorbance match = min abs <= absorbance <= max abs
        if wn match and shape match and absorbance match:
            matches.append(fg)
        elif wn_match and shape_match:
            partial_matches.append(fg)
    return matches, partial matches
#Strong absorbance is > 0.55
#Medium absorbance is > 0.15 but < 0.54
#Weak absorbance is > 0.00 but < 0.14
def main():
    try:
        n = int(input("How many peaks are being analyzed? "))
    except ValueError:
        print("Invalid number. Exiting.")
        return
    peaks = []
    print("Please enter the wavenumber (cm^-1), shape (sharp/broad), and
    for i in range(n):
        print(f"\nPeak {i+1}:")
        while True:
                wn = float(input(" Wavenumber (cm^-1): "))
                break
            except ValueError:
                print(" Please enter a valid number for wavenumber.")
        shape = input(" Shape (sharp, broad, etc): ").strip().lower()
        while True:
            try:
                absorbance = float(input(" Absorbance (numeric): "))
                break
```

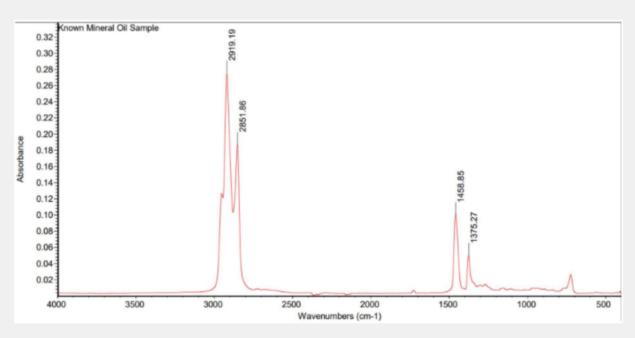
----- \/-1...F.....

Automating Functional Group Recognition with Python

Streamlined Data Analysis

- Input peak wavenumber, shape, absorbance Script matches to functional groups
- Flags full and partial matches

How many peaks are being analyzed?				
Peak 1:				
Wavenumber (cm^-1):				
Shape (sharp, broad, etc):				
Absorbance (numeric):				
How many peaks are being analyzed? 1				
Please enter the wavenumber (cm^-1), shape (sharp/broad), and absorbance (numeric) for each peak.				
Peak 1:				
Wavenumber (cm^-1): 3650				
Shape (sharp, broad, etc): Sharp				
Absorbance (numeric): 0.5				
Peak Assignments with Shape/Absorbance Narrowing:				
Peak at 3650.0 cm ⁻¹ (sharp, absorbance=0.5):				
Most likely functional groups:				
- Alcohols and Phenols Free OH				
- Alcohols and Phenols Intramolecular Bonded (weak)				


Increased Accessibility

- Simple prompts, no programming skills needed
- Reduces learning curve for FTIR users
- Clear, readable results

```
# ISOTHIOCYANATES (RNCS) $
('Isothiocyanates | Alkyl', 1990, 2360, ['sharp'], 0.55, 14.0),
('Isothiocyanates | Alkyl', 650, 720, ['sharp'], 0.15, 0.54),
('Isothiocyanates | Aromatic', 2050, 2320, ['sharp'], 0.55, 14.0),
('Isothiocyanates | Aromatic', 900, 970, ['sharp'], 0.15, 0.54),
# NITRO COMPOUNDS $
('Nitro Compounds | Aliphatic', 1520, 1580, ['sharp'], 0.55, 14.0),
('Nitro Compounds | Aliphatic', 1320, 1400, ['sharp'], 0.15, 0.54),
('Nitro Compounds | Aromatic', 1510, 1570, ['sharp'], 0.55, 14.0),
('Nitro Compounds | Aromatic', 1315, 1400, ['sharp'], 0.15, 0.54),
('Nitro Compounds | Conjugated', 1500, 1560, ['sharp'], 0.55, 14.0),
('Nitro Compounds | Conjugated', 1290, 1385, ['sharp'], 0.15, 0.54),
('Nitro Compounds | Nitramine', 1575, 1625, ['sharp'], 0.55, 14.0),
('Nitro Compounds | Nitramine', 1275, 1350, ['sharp'], 0.55, 14.0),
# NITROSOAMINES $
('Nitrosoamines | Vapor', 1515, 1595, ['sharp'], 0.55, 14.0),
('Nitrosoamines | Liquid', 1505, 1585, ['sharp'], 0.55, 14.0),
# NITRATES (RONO2) $
('Nitrates', 1600, 1680, ['sharp'], 0.55, 14.0),
('Nitrates', 1200, 1310, ['sharp'], 0.55, 14.0),
('Nitrates', 800, 870, ['sharp'], 0.55, 14.0),
```

Enhanced Efficiency in Research

- Faster unknown identification

- Consistent, reproducible analysis

Peak at 1458.0 cm^-1 (sharp, absorbance=0.12):

```
Most likely functional groups:
   - Mononuclear Aromatics | C=C Ring Stretch
   - Phosphorus Compounds | PCH3
   - Phosphorus Compounds | PC6H5
Peak at 1375.0 cm^-1 (sharp, absorbance=0.08):
  Most likely functional groups:
                                       Peak at 2919.0 cm^-1 (sharp, absorbance=0.3):
   - Isocyanates
                                        Most likely functional groups:
   - Silicon Compounds | SiCH3
                                         - Alkanes
   - Silicon Compounds | SiCH2
                                         - Aldehydes | Alkyl
                                          - Aldehydes | Aromatic - Conjugated
                                         - Amines | Amine Salts Primary
                                          - Amines | Amine Salts Secondary
                                       Peak at 2851.0 cm^-1 (sharp, absorbance=0.2):
                                        Most likely functional groups:
                                         - Alkanes
                                         - Aldehydes | Alkyl
                                          - Aldehydes | Aromatic - Conjugated
                                          - Amines | Amine Salts Primary
                                          - Amines | Amine Salts Secondary
```

FTIR's Growing Significance in SNOLAB's Workflows

FTIR's capabilities are now fully realized at SNOLAB, enabling rapid chemical identification, QA/QC assurance, and unknown material analysis with minimal sample prep.

With a growing spectral library and functional group automation, FTIR is becoming a foundational tool across research, operations, and contamination control.

Unknown PICO leak Sample (OSA#2111)

Sample Date: May 29th 2025 Date of Analysis: May 29th 2025

Analyst: Cameron Van Der Zyl

Data For: Angela Hesketh | Olivia Conrad

 $Email: \underline{ahesketh@snolab.ca} \mid oconrad@snolab.ca$

Project: SNOLAB

Analyst: Cameron Van Der Zyl

Particle Counter - Lab A Surface Facility Samp

Sample Date: Late May | To surface June 6^{th} 2025 Date of Analysis: June 9^{th} 2025

Data For: Regan Picotte

Email: rpicotte@snolab.ca Project: CUTE

Analyst: Cameron Van Der Zyl

CUTE Unknown Waste Sample (OSA#2094)

Sample Date: May 20th 2025 Date of Analysis: May 26th 2025

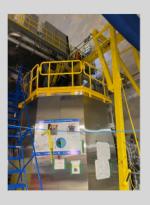
Data For: Ashley Mathewson

Email: ashley.mathewson@snolab.ca

Project: PICO

PICO Chiller Samples (OSA-2083)

Future Prospects of FTIR at SNOLAB


Exploring advanced applications in material verification and contamination analysis.

Applications

Enhanced Contamination Forensics

Training

- Fingerprint more materials and reagents Quantitative use:
- Verify supplier quality
- Degredation of chemicals with time

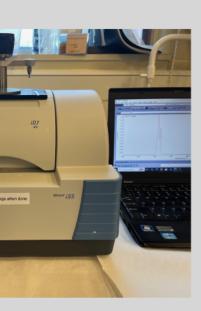
- Build signature database from past incidents

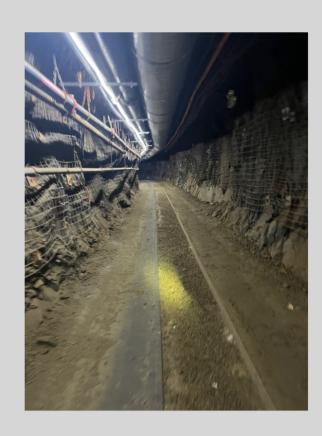
- With the help of intuitive workflows, guided procedures, and the functional group recognition script, new users can be trained faster and with fewer errors.
- This lowers the barrier for entry and empowers researchers, technicians, and students alike to use FTIR as a standard tool in their investigations.

Enhance


Applications

- Fingerprint more materials and reagents Quantitative use:
- Verify supplier quality
- Degredation of chemicals with time


- Build signature da


Enhanced Contamination Forensics

eagents

me

- Build signature database from past incidents

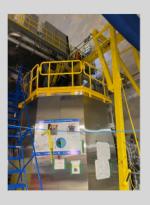
- With the help of intufunctional group recognister and with fewer - This lowers the barr technicians, and stude their investigations.

Training

incidents

- With the help of intuitive workflows, guided procedures, and the functional group recognition script, new users can be trained faster and with fewer errors.
- This lowers the barrier for entry and empowers researchers, technicians, and students alike to use FTIR as a standard tool in their investigations.

Future Prospects of FTIR at SNOLAB


Exploring advanced applications in material verification and contamination analysis.

Applications

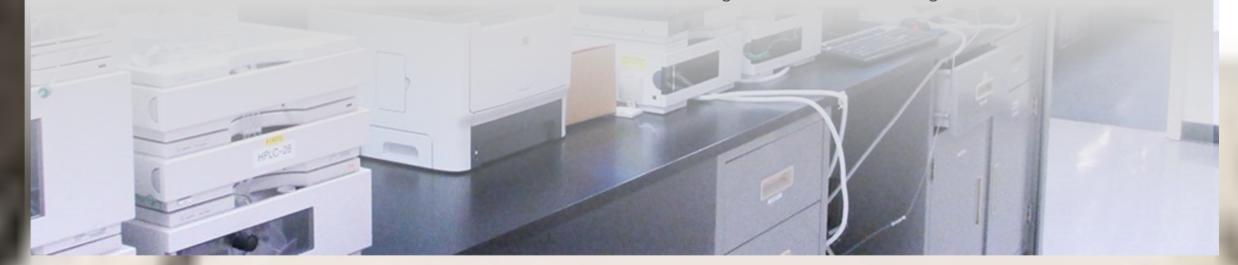
Enhanced Contamination Forensics

Training

- Fingerprint more materials and reagents Quantitative use:
- Verify supplier quality
- Degredation of chemicals with time

- Build signature database from past incidents

- With the help of intuitive workflows, guided procedures, and the functional group recognition script, new users can be trained faster and with fewer errors.
- This lowers the barrier for entry and empowers researchers, technicians, and students alike to use FTIR as a standard tool in their investigations.


The Indispensable Role of FTIR in Clean Science

The Indispensable Role of FTIR in Clean Science

FTIR spectroscopy has become a cornerstone in the pursuit of ultra-clean environments at SNOLAB. Its ability to rapidly identify trace-level contaminants, verify materials, and provide non-destructive analysis ensures that cleanliness is not just maintained — it is provable, repeatable, and continuously improvable.

By transforming a previously underutilized tool into a reliable frontline technique, FTIR empowers both research integrity and operational excellence. It bridges the gap between chemistry and contamination control, offering real-time insight where precision matters most.

As SNOLAB continues to push the boundaries of low-background physics, FTIR now stands as a guardian of purity — enabling cleaner science and stronger discoveries.

Applications Inquiry

Curious about how FTIR fits into your research or lab work? Let's talk use cases.


Results Discussion

Want to dive deeper into spectral interpretation or the script's logic? (maybe email me about this or pull me for a chat later on!)

Future Prospects

Interested in where FTIR could go next at SNOLAB or in clean science more broadly?

Expanding FTIR Capabilities at SNOLAB: Building a Chemical and Materials Spectral Database

Utilizing FTIR Spectroscopy for Accurate Material Verification and Contamination Control at SNOLAB

Cameron Van Der Zyl

Analytical Chemistry Program Research Assistant