

A NEW ELECTRONIC READOUT FOR THE ATLAS LIQUID ARGON CALORIMETER

Presented by Emma Rancourt

2025/08/13

OUTLINE

- I. **Background information** about CERN
 - ➤ Large Hadron Collider (LHC)
 - > ATLAS Detector
 - ➤ Liquid Argon (LAr) Calorimeter Readout
- II. **Purpose** of the analysis tool
- III. **Structure** of the analysis tool
- IV. **Outputs** from the analysis tool
- V. Summary

LARGE HADRON COLLIDER (LHC)

- Purpose: proton-proton collisions, chain of accelerators boosting particle energy in stages
- ATLAS: General-purpose detector, Higgs boson studies & beyond the standard model searches
- High-Luminosity LHC:

 Extends discovery potential
 by increasing the number of collisions per seconds

LIQUID ARGON (LAR) CALORIMETER

- Sampling calorimeter measuring the energy of electrons, photons and hadrons.
- Number of cell readout channels: 182,468
- ATLAS Liquid Argon calorimeter Phase-II upgrade project: New readout electronics system tolerating increased radiation and compatible with the trigger system.

LAR CALORIMETER READOUT ARCHITECTURE (SIMPLIFIED)

Front-end electronics

- Calibration board (CASA):
 Injects detector-like signals
- Front-end boards (FEB2):
 Amplify and shape analog pulses, apply dual gain, digitize and serialize the signals.

Off-detector electronics

- LAr Signal Processor Boards (LASP):
 Perform signal processing, energy reconstruction and buffering.
- Data Acquisition (DAQ):
 Results are sent to the data acquisition system.

STRUCTURE OF THE TEST DATA

2025-08-13

PURPOSE OF THE ANALYSIS TOOL

Analysis of the data coming from the new readout system:

- Pedestal runs: no injected signals
- **RAMP and Delay runs**: injected calibrated pulses

Detection of **unexpected behaviours** by investigating:

- Mean
- Standard deviation
- Amplitude
- etc.

Standard deviation ADC as a function of event - Channel 12

2025-08-13 Emma Rancourt

FUNCTIONAL STRUCTURE OF THE ANALYSIS TOOL

SUMMARY PLOTS

Pearson Correlation Coefficient of the mean ADC between channels

Representative plots offering a global overview of the data:

- RMS per Event vs. Channel: Highlights event-wise anomalies across channels.
- Pearson Correlation Coefficient of Mean ADC: Reveals linear correlation between channels that could be due to electronics cross-talk.

120

Channel

CHANNEL-SPECIFIC PLOTS

ADC as a function of time samples – Channel 121

Illustrative plots generated for individual channels:

- ΔADC vs. RMS: Shows how ADC range varies with RMS, revealing fluctuations and potential signal anomalies.
- ADC vs. time sample (Anomalous Events): Visualizes time-domain behavior for events exhibiting irregularities.

Summary

- Development of new electronics readout for the ATLAS Liquid Argon calorimeter in preparation for High-Luminosity LHC.
- Development of tools to facilitate the detection and visualization of anomalies in data recorded by a readout test system at CERN.

Outlook

- Development of a website to display results, and integration of automated analysis execution.

REFERENCES

[1] Mobs, E. (2019). The CERN accelerator complex in 2019. CERN. https://cds.cern.ch/record/2684277

[2] Pequenao, J. (2008). *Computer generated image of the ATLAS Liquid Argon*. CERN. https://cds.cern.ch/record/1095928

[3] EMF. (2025). *LAr Phase-II system test setup and interconnections*. LAr HL-LHC integration & operation documentation. https://atlas-lar-hl-lhc.docs.cern.ch/Doc-EMF-setup.html

BACKUP SLIDES

LAR CALORIMETER READOUT ARCHITECTURE (PHASE-II UPGRADE)

Front-end electronics

- Front-end boards (FEB2):
 Amplify and shape analog pulses, apply dual gain, digitize, and serialize the signals.
- CASA (calibration board):
 Injects calibrated signals for both amplitude and timing.

Off-detector electronics

- LAr Signal Processor Boards (LASP):
 Perform signal processing, buffering, synchronization, and BCID alignment before sending data to the DAQ.
- ALTI (Atlas Local Trigger Interface):
 Generate a common clock for the system
- Mini-LATOURNETT (Lar Timing System):
 Configures the FEB2 and CASA boards.

2025-08-13 Emma Rancourt 14

WEBSITE ON DEVELOPMENT

Platform for visualizing analysis results: https://emf-data-analysis.web.cern.ch

