A Practical Introduction to Particle Physics at SNOLAB

Dr. Pierre Gorel
Students Orientation Session
September 03, 2025

Slides adapted from Dr Tom Sonley

Atomic Theory

- Nucleus and Electrons
- Nucleus made of protons and neutrons
 - # of protons determines element
 - # of protons + neutrons determines isotope
- Electrons live in quantized energy levels (orbitals)
 - Almost always live in their lowest energy (ground) state
 - Can absorb energy to move an electron to a higher energy level or to free an electron entirely (ion)
 - 1 eV (visible light) to 10 keV (x-rays)

Molecules and Crystals

- Molecules are groups of bound atoms
 - Energy of the bound group is less than the energy of separate atoms
 - Can be configured in different ways. These configurations are quantized.
 - 1 neV (Radio Frequency) to 10 eV (visible light)
- Crystals are large groups of similar atoms in a repeating lattice
 - There are strong quantum-mechanical effects
 - Electron energy levels are grouped over the whole crystal (bands)
 - Energy gap between valence bands and conduction bands determines properties: insulator, conductor, or semi-conductor
 - For semi-conductors, band gap is around 1 eV (visible light)
 - Vibrations are also quantized (phonons)

Nucleus

 208 Tl

- Protons and Neutrons live in quantized energy levels.
 - Almost always in the ground state
- Neutrons can change to protons via β decay.
- Protons can change to neutrons via β + decay.
- An α (⁴He nucleus) particle can escape
- A **neutron** can escape
- The new nucleus (daughter) will probably be in an **excited state**.
 - It will emit gamma rays to reach the ground state.
 1 keV (x-rays) to 5 MeV (gamma rays)

Chart of Nucleides (https://www.nndc.bnl.gov/)

Unknown

Quarks and Hadrons

- Baryons are groups of 3 quarks
 - Proton = uud 938 MeV
 - Neutron = udd 940 MeV
- Mesons are groups of 2 quarks
 - π+ = ud

- 140 keV
- $\pi^0 = (u\overline{u} d\overline{d})/\sqrt{2}$
- 135 keV

• $\pi^- = \overline{u}\overline{d}$

- 140 keV
- Single quarks are never observed
- Quarks interact through the Strong, Electromagnetic, and Weak forces

Leptons

- Electrons, muons, and taus interact through the Electromagnetic and Weak forces
- Neutrinos interact only through the Weak force
 - Primarily created in beta decay, pion decay, muon decay and <u>fusion</u>
 - Extremely difficult to detect
 - Most abundant particle in the universe
 - All observed neutrinos are lefthanded

Particle Interactions

- All interactions are through a **force carrier**:
 - Gluon for Strong force
 - Photon for Electromagnetic Force
 - W[±], or **Z** for the Weak Interaction
- All interactions can be represented as a Feynman Diagram
- Relativistic Energy and Momentum must be conserved at the start and end.
 - But can be violated a bit in the middle
- Other quantum numbers must be conserved (parity, chirality, etc.) leading to "forbidden decays"

Standard Model Interactions (Forces Mediated by Gauge Bosons)

X is any fermion in the Standard Model.

X is electrically charged.

X is any quark.

U is a up-type quark; D is a down-type quark.

X is a photon or Z-boson.

L is a lepton and v is the corresponding neutrino.

۲× ۸+۲۰۲۰ ۳-۱

X and Y are any two electroweak bosons such that charge is conserved.

https://xkcd.com/1489/

Strong Interaction

- Mediated by Gluons and Quantum Chromodynamics (QCD)
- Holds baryons and mesons together
- 2nd-order effects hold nuclei together (virtual pion exchange)
- Gluons interact with each other -> extremely complicated calculations
- In accelerators, strong interactions produce "hadronic showers" aka "jets"
 - Tons of pions, leptons, and photons from very fast decays

Weak Interaction

- Mediated by W (80 GeV) and Z (91 GeV) bosons
- Outside of accelerators, much less common than Strong or Electromagnetic interactions
 - Only seen when other interactions are not possible
- Only interaction that can change a "u" quark into a "d" quark,
 - Can also cross quark generations (c quark into d quark).
- Only interaction that produces neutrinos and lets them interact with matter.

Electromagnetic Interactions

- Mediated by the photon.
- Most common particle interaction.
- Let's us detect particles.
 - Photons:
 - Compton Scattering
 - Photoelectric Effect
 - Pair Production
 - Massive Charged Particles: Bethe-Bloch formula
 - Electrons Low Energy: Ionization
 - Electrons High Energy: Electromagnetic Showers
 - Bremsstrahlung, Pair Production
 - All fast charged particles: Cherenkov Radiation

Standard Model of Elementary Particles

Interaction particles and matter

Most likely involving:

Photons (gamma rays, X-ray)

Charged particles (electrons, muons, alphas)

Photoelectric Effect

- Photon is absorbed by atom, electron is released
- Electron has energy equal to photon energy – atomic binding energy

Compton Scattering

Electron Energy

- Photon bounces off an electron like billiard balls
- Exit direction of photon determines energy of photon and electron.

Pair Production

- Incident photon converts into an electron-positron pair
- Only possible in the presence of matter to conserve momentum
- Only possible if gamma ray energy is > 1 MeV

 Positron will quickly annihilate with an electron, producing 2 gamma rays with 511 keV each

Simulation of 1.5 MeV Gamma Rays

Line widths are usually set by the resolution of the detector. Germanium detectors have resolutions of 1 to 3 keV.

Photon Attenuation

At 1 MeV, gamma rays are attenuated by 1/e at 1.9 cm in copper.

At 1 MeV, gamma rays are attenuated by 1/e at 1.2 cm in lead.

Heavy Charged Particles: Bethe-Bloch Formula

4

34. Passage of Particles Through Matter

Electrons

Cherenkov Radiation

"Sonic Boom" of light

 Particle must be traveling faster than the speed of light in the medium

• Light is emitted only at angle θ

Cherenkov Radiation

"Sonic Boom" of light

 Particle must be traveling faster than the speed of light in the medium

- Light is emitted only at angle θ_c
- Extremely weak source of light

Common Interactions at SNOLAB

- Comic Ray muons
 - Produced in the atmosphere by cosmic rays (extremely energetic protons)
 - Travel through the detectors
 - Deposit tons of energy
 - Can break up nuclei (spallation) which releases neutrons, and can activate other materials
- Alpha Decays
 - Nuclear decay that releases a helium-4 nucleus
 - Very energetic
 - Very short-ranged (mm in material)
- Beta Decays
 - Nuclear decay that releases an electron or positron (and neutrino)
 - Range of around 10 mm

- Gamma Decays
 - De-excitation of a nucleus after another decay
 - Highly penetrating
- Neutrons
 - Very rarely released
 - fission decays
 - spallation
 - alpha particle interactions
 - Highly penetrating
 - Detected as either nuclear recoil or capture on another nucleus