
Stephen Sekula
Research Group Manager, SNOLAB

Professor of Physics, Queen’s University
Adjunct Professor, Laurentian University

GNU/Linux for Scientists
(or, Spellcasting for Science)

Background art generated by Bing AI Image Creation

2

Overview
● What is GNU/Linux?
● How do I engage with

GNU/Linux?
● Level-1 Shellcasting: files,

folders, navigation, and actions
● Level-2 Shellcasting: pipes,

string manipulation, and
knowledge generation

● Next steps and outlook

3

WHAT IS GNU/LINUX?

4

What is Linux?
● Linux is a “kernel” that connects computer

hardware to an operating system (OS).
● It was developed by Linus Torvalds, is open-

source, and was released originally in 1991.
● My personal journey into GNU/Linux began

in 1997 when I switched to it from
Windows 95 after that ?%!# OS crashed
and cost me my umpteenth term paper. I
installed Linux alongside Windows in the
summer of 1997 and never looked back.
SNOLAB is the first place I have been
required to use Windows as my main OS
since my university days. I’ve done
everything on Linux at home and for work
for 27 years.

Tux, the Linux mascot,
created by Larry Ewing

in 1996.

5

What is GNU?
● First, what is UNIX?

– UNIX is a collection of proprietary
tools/commands for interacting with a
computer from a terminal, and is what is
meant by “the operating system (OS)” of a
UNIX machine.

– MacOS’s and iOS’s “Darwin” OS is built on
FreeBSD UNIX, an open-source version of
UNIX.

● GNU is Not UNIX! = GNU

– Recursive acronym. Cute.

– Released in 1983, initiated by Richard
Stallman at the MIT Artificial Intelligence
Laboratory. Managed by the Free Software
Foundation (FSF).

– A free, open-source collection of tools similar
to UNIX, with familiar capabilities. GNU is
really the open-source operating system. GNU
and Linux together are usually referred to as
“Linux”, but this makes some people unhappy.

Original logo by
Etienne Suvasa

6

HOW DO I INTERACT WITH GNU/LINUX?

7

If you’re running Linux
● Congratulations!
● You have made a wise OS

choice.
● No further work is required.

You can use a desktop
graphical user interface (GUI,
pronounced “goo-ee”), or run
one of the many available
terminal programs available.

● Examples: xterm, gnome-
terminal, konsole, ...

8

If you’re NOT running Linux
● <<SAD TROMBONE>>
● These things happen.
● You have several options:

– use a remote system
– run a Linux virtual

machine in your OS
environment

– Windows: install Linux Su
bsystem for Linux 2 (WSL
2) … a specific variant of
the previous option.

null

5.04

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install

9

Bonus: Windows + MobaXterm
● MobaXterm:

– A one-stop
shopping
application that
provides the basic
tools needed to
practice.

https://mobaxterm.mobatek.net/

https://mobaxterm.mobatek.net/

10

Any OS: Run a Terminal
● A “Terminal” is from the ancient tongue (1950s)

and refers to a physical device with the ability to
enter commands and direct the actions of a
computer.

● A “Terminal Emulator” is a software product that
mimics one of those original terminal concepts.

● These days, people just say “terminal” to refer to
emulators.

● Examples: Mac OS “Terminal” app or Windows
“Powershell”,or “VSCode” on any OS, or third-
party applications like Mobaxterm (Home
Edition) on Windows.

A Digital Equipment Corporation (DEC)
VT100, widely emulated in software

https://support.apple.com/en-ca/guide/terminal/apd5265185d-f365-44cb-8b09-71a064a42125/mac
https://code.visualstudio.com/
https://mobaxterm.mobatek.net/download.html

11

The Prompt
● A “prompt” or “command line” refers

to a place where a human can enter
a command for the OS.

● The environment in which that
command is excecuted is provided by
a “Shell”, which is an interpreter that
processes the commands.

● Common shell environments in
GNU/Linux are BASH, CSH, TCSH,
and ZSH … but there are others!
Shells provide a programming-
language-like environment for a user
to achieve higher-level actions.

12

Lingo
A guide to crazy things I will say when giving instructions on typing in commands:

word/phrase refers to... word/phrase refers to...

“dot” . “ampersand” &

“tilde” ~ “star” *

“dash” - “parenthesis” (or)

“underscore” _ “(square) bracket” [or]

“caret” ^ “curly bracket” { or }

“at” @ “space” hit the spacebar!

13

X Windows and Support
● How does LINUX do graphical desktop

support?
– Old way: a graphical system called “X

Windows” or X11, or just “X”.
– New way: Wayland (not fully adopted

yet)
● In either case, the idea is that if you need

to run a graphical application from a
terminal, you need a system to “pop up”
windows so you can interact with them.

● In Windows: you can run an X server
using VcXsrv

https://sourceforge.net/projects/vcxsrv/

14

VcXsrv: Example

Here, I use Powershell to launch
WSL2, specifically an Ubuntu Linux

environment, and run the old
“xclock” program. VcXsrv lets

Ubuntu pop up a clock window from
a Powershell session.

15

Getting to a Remote Linux System
If you don’t have Linux handy, no problem! SNOLAB’s Nearline Computing System runs a suite of
GNU/Linux tools based on CentOS 7, which is also the baseline choice of the Digital Research Alliance
of Canada (DRAC) national computing resource.

We can open a terminal program and use the Secure Shell, or SSH, command to connect from our
terminal to a remote terminal session on Nearline. For this you need to know the short version of your
SNOLAB user name (e.g., mine is “ssekula”).

SSH into Nearline from a prompt in your terminal program on your local machine
> ssh ssekula@nearline-login.computing.snolab.ca

The first time your connect to a new machine, SSH wisely asks if you really meant to
do this. Make sure you typed the name of the machine correctly and say “Y” to proceed.

Enter your SNOLAB password when prompted. You should see something like this:
Last login: Thu Sep 5 15:23:24 2024 from 172.31.184.183
==
Welcome to the SnoLab Internal Compute cluster!

==

[ssekula@nearline-login ~]$

16

LEVEL-1 SHELLCASTING:
FILES, FOLDERS, NAVIGATION, AND ACTIONS

17

The File System
A standard file system at its top most level looks like this on LINUX:
> ls /

bin
boot
dev
etc
home
init
lib
lib32
lib64
libx32
media
mnt
opt
proc
root
run
sbin
srv
sys
tmp
usr
var

Shellcasting 101:
(Forward) Slash

”/” is the standard
separating character

between
directories/folders in a file
system. Used alone (e.g.,

“cd /”), “/” refers to the root
of the file system – the

top-most folder (the one
folder that holds them all)

Shellcasting 101:
(Forward) Slash

”/” is the standard
separating character

between
directories/folders in a file
system. Used alone (e.g.,

“cd /”), “/” refers to the root
of the file system – the

top-most folder (the one
folder that holds them all)

“/home” is where all system user personal files will be located

“/root” is where the main administrator account (“root account”) files are stored

“/usr”: Non-essential (to the OS) libraries and executable programs are installed here by default
“/tmp”: Volatile scratch space, but often essential to OS function … avoid filling it!

18

change directories on the file system
> cd <DIRECTORY>

go up one level in the folder/directory hierarchy
> cd ..

take me back to the last directory I was in!
> cd -

Take me back to my home directory!
> cd ~

WHERE AM I?! (present working directory)
> pwd

Navigating the File System
list the contents of a folder or get details of a file or folder
> ls

list all files, including hidden ones (beginning with a “.”), and give details!
> ls -laF

Give me details about a very specific file
> ls -l <FILENAME>

Shellcasting 101:
Auto-Complete

Type the first few
characters of a file or

folder name and hit the
<TAB> key. Most shell

environments will attempt
to auto-complete the

name, speeding typing.

Shellcasting 101:
Auto-Complete

Type the first few
characters of a file or

folder name and hit the
<TAB> key. Most shell

environments will attempt
to auto-complete the

name, speeding typing.

19

BREAK!
LET’S TAKE A

5-MINUTE BREAK.

20

interactively look at a file instead of dumping all of it to the screen
at once
> more <FILENAME>

Hey! I need to do more than scroll forward (spacebar or down arrow) or
jump backward (“b” key or up arrow). How do I have a better interactive
experience?
> less <FILENAME>

The joke? “less is more”. Bah-dum-bum. IN less, you can use arrow keys to
move line-by-line in the file, and spacebar and backspace to
page-down/page-up, etc.

Looking in/at files (1)
list the contents of a folder or get details of a file or folder
> cat <FILENAME>

“cat” is short for “concatenate” – show me the contents of a bunch of files!
> cat <FILENAME1> <FILENAME2> … <FILENAME N>

SHOW ME ALL THE FILES! (dangerous)
> cat *

Shellcasting 101:
Wildcard

“*” is a powerful and
dangerous character.

Shells interpret it to mean
“any file or folder name

made from any character”
… so it matches

EVERYTHING. Use it
wisely.

Shellcasting 101:
Wildcard

“*” is a powerful and
dangerous character.

Shells interpret it to mean
“any file or folder name

made from any character”
… so it matches

EVERYTHING. Use it
wisely.

21

search for specific text in a file, print all matching lines
> grep “astroparticle” <FILENAME>

search for specific text, but insensitive to letter case
> grep -i “AstroParticle” <FILENAME>

Just tell me how many lines match with this word or phrase
> grep -c “astroparticle physics” <FILENAME>

Find lines that have any of the following words and the egrep command
> egrep “astro|neutron|neutrino|project” <FILENAME>

Looking in/at files (2)

What dark magic is this? “Regular expressions”!
These spells are best understood at Level-2.

Shellcasting 201:
Regular Expressions

A system of symbols and
patterns of symbols that
permits searching and

matching, including
replacement, in text. AKA

“regex” or “regexp”.

Shellcasting 201:
Regular Expressions

A system of symbols and
patterns of symbols that
permits searching and

matching, including
replacement, in text. AKA

“regex” or “regexp”.

22

fully interactive file editors are a bit of a religion in GNU/Linux. Wars have
been fought and never won between the communities that like EMACS and VI (or VIM).
Those two communities are united only in both agreeing that the “pico” editor is for
suckers. :-)
> emacs -nw <FILENAME>

This starts emacs in “no window” mode (do everything in the terminal).

> vim <FILENAME>

I won’t say any more about these. On your own time, explore the rich
language of “key sequences” for each that are required to save, exit, open
additional files, etc. Command-line editors are their own subject. Ask your
supervisor for recommendations/preferences. Get a cheat sheet!

I use VSCode for serious work locally and remotely (it has the ability to
connect to a remote system via SSH and make it look as if you are working
locally while you are also editing remotely).

Editing Files

23

Use wildcards to copy files matching certain conditions to another location
> cp *.dat <PATH>/<TO>/<DESTINATION>

(the above matches all files with the extension “.dat” in the current folder)

Move all folder contents (including files AND folders) to another location
> mv * <PATH>/<TO>/<DESTINATION>

Copy and Move Files
copy a file intact to another folder
> cp <FILENAME> <PATH>/<TO>/<FINAL>/<FOLDER/

copy a file to another name
> cp <FILE1> <FILE2>

move a file to another folder or filename (equivalent to copy and then delete)
> mv <FILE1> <PATH>/<TO>/<FILE2>

24

Send a whole bunch of files, tell me the progress, and allow me to pick up where I
left off if transfer fails (rsync!)
> rsync -av *.dat <USERNAME>@<REMOTE_SYSTEM>:/<PATH>/<TO>/<DESTINATION>/

If the transfer is interrupted, rerun the above and the process picks up where it
left off after first checking the original progress.

Move files between systems
Securely copy a single file from the current system to a remote networked system
> scp <FILENAME> <USERNAME>@<REMOTE_SYSTEM>:/<PATH>/<TO>/<DESTINATION>/

EXAMPLE: copy file to my home directory on Nearline
> scp analysis.dat ssekula@nearline-login.computing.snolab.ca:.

“.” means “here”, and the default location is your remote home directory

mailto:ssekula@nearline-login.computing.snolab.ca

25

LEVEL-2 SHELLCASTING:
PIPES, STRINGS, AND KNOWLEDGE GENERATION

26

previous example: search for specific text in a file, print all matching lines
> grep “astroparticle” <FILENAME>

pipe-based version of same goal
> cat <FILENAME> | grep “astroparticle”

Seems clunkier, but you can sequence as many of these as you like to accomplish as task
> cat <FILENAME> | grep “astroparticle” | grep -v “dark matter”

“grep -v” vetoes any lines that match the text

Pipes and Redirects
Output from one GNU/Shell command can be “piped” as input to another GNU/Shell
command. This is accomplished by joining commands together with the “|” symbol.

You can redirect output to a file instead of to screen, if you need to save it for later:
Match all lines with “astroparticle” and save lines to a new file
> grep “astroparticle” <FILENAME> > astroparticle_text.txt
> less astroparticle_text.txt # interactively look at the file

27

Regular Expressions
Match all lines that contain the word “dark” followed
by “sector”, including any line with any other characters
(including none at all) between these words
> egrep “dark.*sector” <FILENAME>

(egrep implements full extended regular expression syntax,
achieving the same results as “grep -e”)

Match lines containing either “dark fermion” or “dark boson”
> egrep “dark (fermion|boson)” <FILENAME>

Match lines containing either “Photomultiplier Tube” or “PMT”
> egrep “P(hotomultiplier|M)(){0,1}T” <FILENAME>

Will the above also match “PM T”? What about “PM T”?

Shellcasting 201:
Regular Expression Syntax

Shellcasting 201:
Regular Expression Syntax

. Match any character, including
a space.

[] Match a range of characters,
e.g. [a-z] or [a-zA-Z] or [0-9]

* Match the previous character or
group 0 or more times

{m,n} Match the previous character or
group at least m and at more n
times.

() Group characters inside the
parentheses into a pattern.

^ Match beginning of line

$ Match end of line

28

Editing Text Using Regexp
Use Stream Editor (sed) to find all instances of “dark fermion” and replace “fermion”
with “boson”
> cat <FILENAME> | sed -e “s/dark fermion/dark boson/g”

Reorder the phase “dark is matter” to “matter is dark”
> cat <FILENAME> | sed -e “s/\(dark\) is \(matter\)/\2 is \1/”

Some numbers are out-of-order in a comma-separated-value file. Reorder each line.
> cat data.csv
1,2,3
4,5,6
7,8,9

> cat data.csv | sed -e “s/\([0-9]\+\),\([0-9]\+\),\([0-9]\+\)/\3,\2,\1/”
“+” (entered as “\+” in sed) means “match 1 or more of the previous group or
character”

29

Simple Analysis
Do some simple arithmetic on the command line using “bc” (an arbitrary precision
numeric processing language)
> echo “2 + 5 + 8” | bc -l
15

Compute the average of those three numbers
> echo “(2 + 5 + 8)/3” | bc -l
5.00000000000000000000

Use AWK, a language designed for text processing, to compute the mean of the second
column of numbers. In AWK, “NR” is the number of rows processed and is provided
internally by the awk program. The “cut” GNU tool will be used to select the
second column from the CSV file, using the comma as the delimiter.
> cat data.csv | cut -d “,” -f 2 | awk “{SUM += $1} END {print SUM/NR}”
5

Compute the mean and standard deviation of the second column
> cat data.csv | cut -d “,” -f 2 | awk “{SUM += $1; SUMSQ += ($1)^2} END {print SUM/NR,sqrt((SUMSQ – SUM^2/NR)/(NR-1))}”
5 3

30

NEXT STEPS AND OUTLOOK

31

Next Steps
● Read more about each command and find others.

– https://www.gnu.org/software/
● Get a GNU/Linux/Shell cheat sheet (c.f. https://cheatograph

y.com/tag/linux/)
● Identify an aspect of your project where you can practice

these commands and approaches simply by doing work
you already need to do. (goal-based learning)

● Did you have trouble connecting to Nearline? Submit and
IT ticket (email support@snolab.zendesk.com and tell them
what you did and what error(s) you saw)

● Having problems with your computer and need help
getting the right tools/environment installed? Again,
request IT for help and also let your supervisor know …
they can help too!

https://www.gnu.org/software/
https://cheatography.com/tag/linux/
https://cheatography.com/tag/linux/
mailto:support@snolab.zendesk.com

32

APPENDIX

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

