

2024/02/08

Oscura (DAMIC and SENSEI)

Juan Estrada Oscura Project Manager (DOE PI) DAMIC and SENSEI Collaborator

This talk

- SENSEI Experiment (Results and plans) from Javier Tiffenberg
- DAMIC Experiment (Results and plans) from Alvaro Chavarria
- Oscura
 - R&D done
 - •

- from Javier Tiffenberg from Alvaro Chavarria

First results from SENSEI @ SNOLAB:

Fermilab

 $m_{A'}$ [eV]

World-leading result using Snolab Run-1 data: arXiv:2312.13342 (Paper submitted on Dec-2023)

3

SENSEI @ SNOLAB: Second science run

Setup and operations:

- 19 CCDs (~40 g)
- Commissioning: DONE!
- Science: 11/2023 present
- Dark current measurement: DONE!
- Data acquisition for **new DM limit** in progress

Thanks to Snolab for all the support!

4

DAMIC

In 2020, we observed 17±8 excess bulk events with E~100 eV_{ee}. Critical for DAMIC-M and Oscura

2022 Upgraded to skipper-CCDs

- ► Two 24 Mpix DAMIC-M skipper CCDs (18 g Si target) installed in Oct-Nov 2021.
- Single- e^{-} resolution, 2 x 10⁻³ e⁻/pix/day, 10 d.r.u., 18 g.
- Nominally the same detector components, *i.e.*, very similar background environment.
- Science run from March 2022 to January 2023 (4.8 kg-day).

Results (June 2023)

- Excess measured again with 5.4 σ statistical significance.
- Results from skipper upgrade consistent with 11 kgday analysis.
- Disfavors most (all?) possible "instrumental" origins of the excess.
- However, radiation environment of the detector remains the same.

Most likely from a source of radiation in the DAMIC detector that is not included in our background model

Hard to reconcile with results from liquid argon

Back-thinned CCDs

- Back-thinning removes the region of partial charge collection (PCC) on the back of the CCDs.
- PCC degrades the ionization signal from surface events so they populate the low-energy region where the DM signal is expected.
- These events are not the cause of the excess but could be an important background for Oscura.

- Two back-thinned CCDs of the same 24 Mpix format as
 - backgrounds in back-thinned CCDs. Analysis underway.

Skipper-CCD DM program

Experiment	Mass [kg]	#CCDs	Radiation bkgd [dru]	Instrumental bkgd [e-/pix/day]	Commission
SENSEI @ MINOS	~0.002	1	3400	1.6 x 10 -4	late-2019
DAMIC @ SNOLAB	~0.02	2	~10	3 x 10-3	late-2021
DAMIC-M LBC	~0.02	2	10	3 x 10-3	late-2021
SENSEI-100	~0.1	50	10 (goal)		mid-2022
DAMIC-M	~1	200	0.1 (goal)		~2023
OSCURA	~10	20,000	0.01 (goal)	1 x 10 ⁻⁶ (goal)	~2028

Oscura is an ambitious program that brings together the DAMIC, SENSEI and DAMIC-M teams for the development of ultimate DM experiment with skipper-CCDs.

Skipper-CCD DM program

Mass [kg]	#CCDs	Radiation bkgd [dru]	Instrumental bkgd [e-/pix/day]	Commission
~0.02	2	~10	3 x 10 ⁻³	late-2021
~0.1	50	10 (goal)		mid-2022
~10	20,000	0.01 (goal)	1 x 10 ⁻⁶ (goal)	~2028
	Mass [kg] ~0.02 ~0.1	Mass [kg] #CCDs ~0.02 2 ~0.1 50 ~10 20,000	Mass [kg] #CCDs Radiation bkgd [dru] ~0.02 2 ~10 ~0.1 50 10 (goal) ~10 20,000 0.01 (goal)	Mass [kg] #CCDs Radiation bkgd [dru] Instrumental bkgd [e-/pix/day] ~0.02 2 ~10 3 x 10 ⁻³ ~0.1 50 10 (goal)

THIS IS A SNOLAB PROGRAM!

i	r	า	g	75	
•					

"Key Milestone" represent well-motivated sub-GeV DM models, highlighted in the recommendations of the Basic Research Needs report [5].

Figure 1. Approximate projected sensitivity for Oscura to DM-electron scattering at 90% C.L. assuming a 30 kg-year exposure, zero background events with $2e^-$ or more, a $1e^-$ threshold and a fixed $1e^-$ event rate of $10^{-6}e^{-1}$ /pix/day (blue). To build this curve, 100% efficiency was assumed for the reconstruction of events above $2e^{-}$. The left (right) plot assumes a heavy (light) mediator in the DM-electron interaction. Approximate projected sensitivities for SENSEI (DAMIC-M) are shown in cyan (red) [1, 5, 12, 18, 21, 22]. Existing constraints from skipper-CCDs from SENSEI [13–15] and DAMIC-M [16] are shaded in pink. Shaded gray regions are constrained by several other experiments (some shown explicitly) [19, 23–33]. Existing limits come directly from publications; reader should look at them for specific assumptions. Orange regions labeled

R&D Milestones : 3 high priorities (done)

work (2 vendors) [arXiv:2304.04401].

12

- D 102, 102006 (2020), <u>arXiv:2303.10862</u>, <u>arXiv:2306.01717</u>]

<u>SENSOR</u>: Before Oscura skipper-CCDs were fabricated at DALSA. DALSA will discontinue this production line. The highest priority for Oscura R&D was developing a new fabrication process with more modern technology. <u>We tested new sensors and these</u>

<u>READOUT</u>: Oscura will have ~20,000 CCDs. Developed new cold front end electronics for this. Solution designed and tested [arXiv:2304.13088, Sensors 2022, 22(11), 4308].

BACKGROUND: SENSEI is designed for background of 5 d.r.u. (events/kg/day/keV), DAMIC-M 0.1 dru, Oscura has a goal of 0.01 dru. Major effort in background control material selection. <u>Module simulations completed (Geant4), initial material budgets</u> produced, established the cosmogenic activation limits. [arXiv:2007.10584, Phys. Rev.

Completed R&D : sensors

PAPER • OPEN ACCESS

Skipper-CCD sensors for the Oscura experiment: requirements and preliminary tests

Brenda A. Cervantes-Vergara¹, Santiago Perez¹⁵, Juan Estrada⁴, Ana Botti⁴, Claudio R. Chavez^{4,8},
Fernando Chierchie⁸, Nathan Saffold⁴, Alexis Aguilar-Arevalo¹, Fabricio Alcalde-Bessia²,
Nicolás Avalos² + Show full author list
Published 18 August 2023 • © 2023 The Author(s)
Journal of Instrumentation, Volume 18, August 2023
Citation Brenda A. Cervantes-Vergara *et al* 2023 *JINST* 18 P08016
DOI 10.1088/1748-0221/18/08/P08016

Table 2. Sensors performance parameters constraints to achieve the Oscura background goal/requirement and demonstrated performance of prototype sensors. The "Best achieved" column contains the best values achieved with skipper-CCDs and the checkmarks (\checkmark) indicate that the constraints for meeting the Oscura background requirement have been met.

Parameter	Goal	Requirement	Prototype	Best achieved	Units
Dark current	1×10^{-6}	1.6×10^{-4}	3×10^{-2}	$1.6 \times 10^{-4} \checkmark$	<i>e</i> ⁻ /pix/day
Readout time (full array)	< 2	< 5	3.4 (4.2)	3.4 🗸	hours
Pixel readout rate	> 188	> 76	111 (89)	111 🗸	pix/s
Readout noise	< 0.16	< 0.20	0.19 (0.20)	0.19 🗸	e^{-} RMS
Spurious charge	$< 4 \times 10^{-11}$	$< 6 \times 10^{-9}$	7.2×10^{-7}	1.4×10^{-8}	<i>e</i> ⁻ /pix/transfer
Trap density ($\tau > 5.3 \text{ ms}$)	< (0.12	< 0.015	< 0.0003 🗸	traps/pix
Charge transfer inefficiency	< 1	0 ⁻⁵	$< 5 \times 10^{-5}$	$< 10^{-5}$ \checkmark	1/transfer
VIS/NIR light blocking	> 9	90%	95%	95% 🗸	

Completed R&D : sensors

PAPER • OPEN ACCESS

Skipper-CCD sensors for the Oscura experiment: requirements and preliminary tests

Brenda A. Cervantes-Vergara¹, Santiago Perez¹⁵, Juan Estrada⁴, Ana Botti⁴, Claudio R. Chavez^{4,8}, Fernando Chierchie⁸, Nathan Saffold⁴, Alexis Aguilar-Arevalo¹, Fabricio Alcalde-Bessia², Nicolás Avalos² + Show full author list Published 18 August 2023 • © 2023 The Author(s) Journal of Instrumentation, Volume 18, August 2023 Citation Brenda A. Cervantes-Vergara et al 2023 JINST 18 P08016 **DOI** 10.1088/1748-0221/18/08/P08016

Table 2. Sensors performance parameters constraints to achieve the Oscura and demonstrated performance of prototype sensors. The "Best achieved" c achieved with skipper-CCDs and the checkmarks (\checkmark) indicate that the conbackground requirement have been met. News 2024!

Parameter	Goal	Requirement			
Dark current	1×10^{-6}	1.6×10^{-4}			
Readout time (full array)	< 2	< 5			
Pixel readout rate	> 188	> 76			
Readout noise	< 0.16	< 0.20			
Spurious charge	$< 4 \times 10^{-11}$	$< 6 \times 10^{-9}$			
Trap density ($\tau > 5.3 \text{ ms}$)	< (0.12			
Charge transfer inefficiency	< 10 ⁻⁵				
VIS/NIR light blocking	> 90%				

Prototype 1x10⁻³ 3.4 (4.2) 111 (89) 0.19 (0.20) 7.2×10^{-7} < 0.015 $< 5 \times 10^{-5}$ 95%

Figure 13. Approximate projected sensitivity for Oscura to DM-electron scattering at 90% C.L. assuming a 30-kg year exposure and: 1) a $3e^-$ threshold and zero background events with $3e^-$ or more (dashed blue); 2) a $4e^-$ threshold and zero background events with $4e^-$ or more (dotted blue). To build these curves, 100% efficiency was assumed for the reconstruction of events above the threshold. The left (right) plot assumes a heavy (light) mediator in the DM-electron interaction. The blue solid line and the other curves are as in Fig. 1.

Completed R&D : electronics **Cold front end: Back end :**

Designed, Fabricated and Tested the MIDNA ASIC. Cold front end electronics for skipper-CCD. 4-channel.

https://arxiv.org/abs/2304.13088

Signal channel

Designed and tested a multiplexer solution for the back end. <u>Operated 160</u> <u>CCDs with single readout</u> channel. Sensors 2022, 22(11), 4308

MIDNA ASICs

We designed, build and tested the MINDA2 ASIC for our readout. We need 6,000 MIDNAs. This was a big part of our cost.

https://arxiv.org/abs/2304.13088

It turns out that the MIDNA is so small that we can use some space that is available for free on a large scale fabrication process at FNAL.

(CMS+microelectronics)

So will have all our MIDNA done before we start the

project. This will cover all the ASIC needs for Oscura, with parts for other skipper-CCD efforts:

4MIDNA board for 1 MCM

 MIDNA 2 (fully tested) • MIDNA 2.1 (lower gain for better dynamic range) • MIDNA 3 (16 channel + multiplexer)

Completed R&D : electronics/packaging Multi Chip Module

Circuit layout

MCM concept 2021

Functional test cold

6" ceramic MCM 2022

Mechanical prototype of the Oscura Supermodule with 130g of CCDs (16 MCMs)

Low background solution (Silicon)

6" Si MCM 2022 : fabs and ANL + FNAL

After a few iterations on the design of the Si-MCM we have now tested it, and are confident we can achieve the Oscura specs.

Background Control

Simularions by B.Loer (PNNL)

Background Control

Component

cable with coverlay CCD activation (5 days) SM bronze screws copper shield single-layer cable SM copper pitchadapter wirebonds SM PTFE screws epoxy cable PTFE spacers SM PTFE spacers 0.005

Simularions by B.Loer (PNNL)

Current status

Duration [d]	Step	Location	Latitude	Longitude	Altitude [km]	Neutron Flux [n/cm2/sec]	Sea Level Factor	Shielding	Shielding Factor	Sea-level days	NOTES
3	Ingot growing	TOPSIL, Frederikssund, Denmark	55.83	12.11	0.015	3.41E-03	1.16	None	1	3.48	Special request to grow quickly. If longer time r full mass, can we request multiple boules?
14	Ingot storage	Hospital basement, Copenhagen, Denmark	55.68	12.56	0.045	3.51E-03	1.19	Basement	50	0.33	Don't actually know duration or shielding facto
28	Transport to Montreal		55.68	12.56	0	3.36E-03	1.14	Shielded Container	20	1.60	Transportation time based on searates.com. Us Copenhagen as location
3	Transport to Phoenix		45.51	-73.55	0.864	7.74E-03	2.63	Shielded Container	20	0.39	Transportation time based on Google Maps. Us Montreal as location. Used Liberal, KA as altitu
4	Wafering	SUMCO, Phoenix, AZ	33.41	-111.94	0.36	4.24E-03	1.44	Shielded Box	2.25	2.56	Picked random place from Google. 26 min awa Microchip. Used Microchip as location.
14	Storage	San Xavier, AZ	31.97	-111.09	1.08	7.89E-03	2.68	Shallow Underground	400	0.09	Shielding based on assumed 100 m.w.e.
66	PRE-FAB TOTAL									8.47	
32	CCD processing	Microchip, Tempe, AZ	33.41	-111.94	0.36	4.24E-03	1.44	Shielded Box	2.25	20.51	Estimate 66% time in shielding box, rest outsid
30	Storage	San Xavier, AZ	31.97	-111.09	1.08	7.89E-03	2.68	Shallow Underground	400	0.20	Shielding based on assumed 100 m.w.e.
2	Transport to Fermilab	Fermilab, IL	31.97	-111.09	0.864	6.56E-03	2.23	Shielded Container	20	0.22	Transportation time based on Google Maps. Us as location. Used Liberal, KA as altitude
60	Packaging	MINOS tunnel	41.83	-88.26	0.216	1.50E-06	5.10E-04	None (already applied)	1	0.03	Neutron flux taken from Garrison thesis for neu MeV in SciBath at MINOS near detector
60	Testing	MINOS tunnel	41.83	-88.26	0.216	1.50E-06	5.10E-04	None (already applied)	1	0.03	Neutron flux taken from Garrison thesis for neu MeV in SciBath at MINOS near detector
1	Transport to SNOLAB		41.83	-88.26	0.216	4.16E-03	1.41	Shielded Container	20	0.07	Used Fermilab as location
185	POST-FAB TOTAL									21.07	
251	TOTAL									29.53	

R.Saldanha (PNNL)

Current status

Duration [d]	Step	Location	Latitude	Longitude	Altitude [km]	Neutron Flux [n/cm2/sec]	Sea Level Factor	Shielding	Shielding Factor	Sea-level days	NOTES
3	Ingot growing	TOPSIL, Frederikssund, Denmark	55.83	12.11	0.015	3.41E-03	1.16	None	1	3.48	Special request to grow quickly. If longer time r full mass, can we request multiple boules?
14	Ingot storage	Hospital basement, Copenhagen, Denmark	55.68	12.56	0.045	3.51E-03	1.19	Basement	50	0.33	Don't actually know duration or shielding facto
28	Transport to Montreal		55.68	12.56	0	3.36E-03	1.14	Shielded Container	20	1.60	Transportation time based on searates.com. Us Copenhagen as location
3	Transport to Phoenix		45.51	-73.55	0.864	7.74E-03	2.63	Shielded Container	20	0.39	Transportation time based on Google Maps. Us Montreal as location. Used Liberal, KA as altitu
4	Wafering	SUMCO, Phoenix, AZ	33.41	-111.94	0.36	4.24E-03	1.44	Shielded Box	2.25	2.56	Picked random place from Google. 26 min awa Microchip. Used Microchip as location.
14	Storage	San Xavier, AZ	31.97	-111.09	1.08	7.89E-03	2.68	Shallow Underground	400	0.09	Shielding based on assumed 100 m.w.e.
66	PRE-FAB TOTAL									8.47	Reset clock
32	CCD processing	Microchip, Tempe, AZ	33.41	-111.94	0.36	4.24E-03	1.44	Shielded Box	2.25	20.51	Estimate 66% time in shielding box, rest outsid
30	Storage	San Xavier, AZ	31.97	-111.09	1.08	7.89E-03	2.68	Shallow Underground	400	0.20	Shielding based on assumed 100 m.w.e.
2	Transport to Fermilab	Fermilab, IL	31.97	-111.09	0.864	6.56E-03	2.23	Shielded Container	20	0.22	Transportation time based on Google Maps. Us as location. Used Liberal, KA as altitude
60	Packaging	MINOS tunnel	41.83	-88.26	0.216	1.50E-06	5.10E-04	None (already applied)	1	0.03	Neutron flux taken from Garrison thesis for neu MeV in SciBath at MINOS near detector
60	Testing	MINOS tunnel	41.83	-88.26	0.216	1.50E-06	5.10E-04	None (already applied)	1	0.03	Neutron flux taken from Garrison thesis for neu MeV in SciBath at MINOS near detector
1	Transport to SNOLAB		41.83	-88.26	0.216	4.16E-03	1.41	Shielded Container	20	0.07	Used Fermilab as location
185	POST-FAB TOTAL									21.07	
251	TOTAL									29.53	
251	TOTAL WITH BAKING									21.49	

Duration [d]	Step	Location	Latitude	Longitude	Altitude [km]	Neutron Flux [n/cm2/sec]	Sea Level Factor	Shielding	Shielding Factor	Sea-level days	NOTES
3	Ingot growing	TOPSIL, Frederikssund, Denmark	55.83	12.11	0.015	3.41E-03	1.16	None	1	3.48	Special request to grow quickly. If longer time r full mass, can we request multiple boules?
14	Ingot storage	Hospital basement, Copenhagen, Denmark	55.68	12.56	0.045	3.51E-03	1.19	Basement	50	0.33	Don't actually know duration or shielding facto
28	Transport to Montreal		55.68	12.56	0	3.36E-03	1.14	Shielded Container	20	1.60	Transportation time based on searates.com. Us Copenhagen as location
3	Transport to Phoenix		45.51	-73.55	0.864	7.74E-03	2.63	Shielded Container	20	0.39	Transportation time based on Google Maps. Us Montreal as location. Used Liberal, KA as altitud
4	Wafering	SUMCO, Phoenix, AZ	33.41	-111.94	0.36	4.24E-03	1.44	Shielded Box	2.25	2.56	Picked random place from Google. 26 min awa Microchip. Used Microchip as location.
14	Storage	San Xavier, AZ	31.97	-111.09	1.08	7.89E-03	2.68	Shallow Underground	400	0.09	Shielding based on assumed 100 m.w.e.
66	PRE-FAB TOTAL									8.47	Reset clock
32	CCD processing	Microchip, Tempe, AZ	33.41	-111.94	0.36	4.24E-03	1.44	Shielded Box	2.25	20.51	Estimate 66% time in shielding box, rest outside
30	Storage	San Xavier, AZ	31.97	-111.09	1.08	7.89E-03	2.68	Shallow Underground	400	0.20	Shielding based on assumed 100 m.w.e.
2	Transport to Fermilab	Fermilab, IL	31.97	-111.09	0.864	6.56E-03	2.23	Shielded Container	20	0.22	Transportation time based on Google Maps. Us as location. Used Liberal, KA as altitude
60	Packaging	MINOS tunnel	41.83	-88.26	0.216	1.50E-06	5.10E-04	None (already applied)	1	0.03	Neutron flux taken from Garrison thesis for neu MeV in SciBath at MINOS near detector
60	Testing	MINOS tunnel	41.83	-88.26	0.216	1.50E-06	5.10E-04	None (already applied)	1	0.03	Neutron flux taken from Garrison thesis for neu MeV in SciBath at MINOS near detector
1	Transport to SNOLAB		41.83	-88.26	0.216	4.16E-03	1.41	Shielded Container	20	0.07	Used Fermilab as location
185	POST-FAB TOTAL									21.07	
251	TOTAL									29.53	
251	TOTAL WITH BAKING									21.49	

Very close... but need to understand cost

10.75 Post fab baking (50%) ~0.026 DRU (scaling from 5 days)

Another small advantage

FIG. 3. Rates as a function of charge for Si. A comparison of the Compton scattering rates (gray bands) as a function of the charge ionized, Q, in a Si crystal with a background rate of 1 DRU at $\Delta E = 1$ keV using RIA. The lines show the DM-electron scattering rates computed with QCDark [28] for DM–electron cross-sections listed in Table II. We use the secondary ionization model at 100 K from Ref. [36].

R.Essig (SBU) et al arXiv: 2310:02316

Our forecasts assume flat background, but the Compton background dominating at low energies is not really flat. Ongoing effort to measure and model this background for skipper-CCDs show that a background at lower e-bins will benefit from this shape (x5 in 2e-

R&D done. Now get final design!

Some more details of the design

Vessel with mods to fit into cage and rail.

Pressure vessel fluid/thermal simulation

BEST (baseline)

Too much backg.

works (lower cost)

works (lower cost)

Pushing towards lower pressure

Design: outer shield and installation inside SNOLAB

In the SNOLAB drift

Outer shield

Detail of helium lines

We know what do to, it is a matter of cost now...

10kg ~ \$15M

Cost Drivers : MCM interconects

Need ~100 of these (Supermodule)

The MCM interconnects are expensive, but recently was able to find another vendor that could mean big savings (\$1M).

High density cryogenic connectors

Need ~1600 of these (MCM)

Cost Drivers : MCM factory (clean room with no cosmics, sounds familiar?)

MCM Assembly Robot

Micro-bonding

Estimated Uncertainty

We have quotes for most things: Sensors, connectors, Si circuits, electronics, packaging robot.

Still need final design.

Office of Science

10kg	Uncertainty %	EU
\$174,154.22	0.1	\$17,415.42
\$2,235,000.00	0.2	\$447,000.00
\$2,624,720.74	0.2	\$524,944.15
\$2,664,342.91	0.25	\$666,085.73
\$50,000.00	0.3	\$15,000.00
\$768,764.04	0.4	\$307,505.62
\$39,025.98	0.5	\$19,512.99
\$200,000.00	0.3	\$60,000.00
\$1,500,000.00	0.3	\$450,000.00
\$93,739.90	0.3	\$28,121.97
\$10,349,747.79		\$2,535,585.87

OSCURA Risk Register

- Risks are being actively managed; four significant risks have already been closed:

NISK NEGI																	
Risk ID	Risk Title	Risk Summary	Risk Type	Risk Owner	Risk Status (6/2022)	Risk Mitigations	Risk Responses	Conditions for closing risk	Probabilit y	Technical Impact	Cost Impact - Min (k\$)	Cost Impact - Likely (k\$)	Cost Impact - Max (k\$)	Schedule Impact - Min (months)	Schedule Impact - Likely (months)	Schedule Impact - Max (months)	Explanation of Estimate
Osc-risk- 001	Microchip R&D sensors not adequate for Oscura.	If the Microchip CCDs do not meet Oscura needs THEN we cannot start construction of Oscura.	Threat	Steve Holland	Closed	The process control monitoring (PCM) test structures tested at LBNL.R&D sensors a to be ttested in 2021. Pre- production run is planned for 2023.	If risk occurs then we will need to have another design and fabrication cycle	This risk can be closed after the evaluation of the prototype sensors during 2021.	30%	High	150	200	300	4	7	12	Microhip CCD worked on the first fabrication run. Some optimization is till going on. (<u>REDUCED with</u> <u>respect to 2021)</u>
Osc-risk- 003	Cost of readout for Oscura	IF we cannot design an affordable 24,000 channels readout system THEN cannot start construction of Oscura.	Threat	Juan Estrada	Closed	Tested in 2021 a discrete low cost solution for the front end.	If risk occurs more electronics R&D would be needed, or the electronics cost becomes very high	This has been retired during 2021.	0%	High	3000	4000	5000	4	6	12	This risk has been retired with the CDS tests done early 2021.
Osc-risk- 004	ASIC readout meets noise requirements	IF ASIC demonstrates the noise performance needed for Oscura THEN front end electronics becomes less expensive, and lower background	Opportunity	Juan Estrada	Closed	MIDNA CCD demonstrated in 2022.	If risk occurs we will consider using ASIC in the front end electronics.	This risk will be closed when the readout decision is done (2/2022)	100%	High	-100	-300	-450	0	0	0	The results indicate the MIDNA works, and we were able to reduce the cost of the experiment significantly (~\$1M).
Osc-risk- 007	No agreement with SNOLAB	IF agreement with SNOLAB is not done THEN need to find new underground location.	Threat	Paul Grylls	Closed	Started conversations with SNOLAB at R&D phase. First step GW0 done. Now	If the risk occurs we have to look for other underground labs (Modane, SURF, other)	The risk will be closed when GW1 is reach with SNOLAB.	10%	High	300	1000	1500	4	12	24	Oscura is now a SNOLAB project (GW0) and regular meetings are schedule to plan infrastructure and installation.

Lucas Taylor, Fermilab Risk Manager 23 Aug 2023

OSCURA risks have been identified, analyzed and documented in the risk register in the Fermilab-standard format. Risk data were recently reviewed and updated by the project.

MC model results: Cost contingency

- MC model aggregates stochastic risk costs
 - **Direct risk costs** (triangle impact functions)
 - Burn rate costs of (triangular) delays —
 - = \$44k / month x stochastic delay
 - Note: risk opportunties save money
- Risk cost = 697k (mean)
- Risk cost = \$2,172k (at 90% CL)
- Total cost contingency = \$4.7M = \$2.5M Estimate Uncertainty + \$2.2M risk This is 47% or the \$10M total base cost $\sim 40\%$ is typical for Fermilab projects
- Burn rate cost contribution will decrease if the schedule risk impacts are reduced

Analysis	
Iterations:	100000
	^
Statistics	
Minimum:	(\$2,000,167)
Maximum:	\$4,948,071
Mean:	\$696,867
Dor Width:	\$500,000

H	lighlighters	
5	0%	\$609,583
7	0%	\$1,322,875
8	0%	\$1,697,241
9	0%	\$2,172,128

Fermilab

Estimated Uncertainty

	10kg
123.2 Project Controls	
123.3.10 Sensor Production	
123.3.9 Sensor Packaging	
123.3.8 Readout Electronics	
123.3.7 Data Aquisition System	
123.3.6 Cryostat	
123.3.11 Sensor Testing	
123.3.5 Background Control	
123.3.3 Shielding	
123.3.2 Installation Planning	
Total	

3	Uncertainty %	EU
\$174,154.22	0.1	\$17,415.42
\$2,235,000.00	0.2	\$447,000.00
\$2,624,720.74	0.2	\$524,944.15
\$2,664,342.91	0.25	\$666,085.73
\$50,000.00	0.3	\$15,000.00
\$768,764.04	0.4	\$307,505.62
\$39,025.98	0.5	\$19,512.99
\$200,000.00	0.3	\$60,000.00
\$1,500,000.00	0.3	\$450,000.00
\$93,739.90	0.3	\$28,121.97
\$10,349,747.79		\$2,535,585.87

Risk = \$2.2MTotal contingency (EU+Risk) = \$4.7M

Oscura testing vessels at FNAL

Moskita Single Detector test at MINOS to measure DC.

SENSEI Copy (AKA : Dark Beats) ~160 CCDs (10 MCMs) in vacuum. Electronics test. Future beam experiments.

3 MCMs operating in nitrogen gas (15 PSI). This is a test of the MIDNAs + operations in gas. Can have up to ~200 CCDs

Future integration test (~1kg) Lower background and to be use to test SM before installation. (Up to 1500 CCDs)

Low pressure (15 psi) operations of 3 MCMs

50psi	
45psi	
40psi	
35psi	
30psi	
25psi	
20psi	
15psi	

Getting ready for the 6 SM (1,500 CCD test) x96 X96

Part of R&D, could do some early science, and will test all the SM.

Operated underground.

6 SM

What's next for Oscura

- April 5th review:
 - Preliminary Project Execution Plan (FNAL)
 - Preliminary Design (SNOLAB/FNAL)
- End of 2024:
 - Ready to start construction

• This is part of the DMNI effort at DOE, good support from P5 report.

Oscura

Data	Rac	diation Background	UG work						
readout electron liguel Sofo-Haro, C Chavez)	ics laudio	Shield (Ben Loer)	installation plann	ing					
1ulti-Chip Intercon (Ana Botti)	nects	Background Control (Richard Saldanha)	UG facilities (Paul Grylls)						

DAQ

HW database (Javier Tiffenberg, Dario Rosriguez)

Software Computing (Rocio Vilar, Nuria Castello-Mor)

Risk Register

OSCURA has the 8 Open risks: 6 Threats and 2 Opportunities

Risk Register data																
Risk ID	Risk Title	Risk Summary	Risk Type	Risk Owner Risk Sta (6/202	us Risk Mitigations ?)	Risk Responses	Conditions for closing risk	Probabilit y	Technical Impact	Cost Impact - Min (k\$)	Cost Impact - Likely (k\$)	Cost Impact - Max (k\$)	Schedule Impact - Min (months)	Schedule Impact - Likely (months)	Schedule Impact - Max (months)	Explanation of Estimate
Osc-risk- 002	MIT-LL sensors part of Oscura	IF we include MIT-LL sensors in Oscura THEN project could address any issues during fab at microchip.	Opportunity	Javier Oper Tiffenberg	MIT-LL sensors being characterized continuously.	If risk occurs we could improve Oscura construction schedule, or detector performance.	This risk can be closed once we have most detectors in hand.	50%	High	150	400	600	0	0	0	The sensors work. Maybe they could have better performance (dark current)?
Osc-risk- 005	Cosmic activation of CCDs produce unmanageable background.	IF cosmic activation of CCDs are not manageable THEN detectors need to be fabricated in a shielded area or underground.	Threat	Richard Oper Saldanha	Cosmic activation was quantified using neutrons. A process of removing tritium from CCDs is being developed. A shipping strategy is planned.	If risk occurs we have very high costs to control the cosmic activations.	This risk will be closed when a final CCD handling plan from foundry to SNOLAB is established.	20%	High	50	200	1000	0	0	0	Previous results in the literature and early tests show that tritium can be removed from pure silicon wafers. This is still under investigation.
Osc-risk- 006	Background from CCD packaging materials above spec.	IF background from standard CCD packaging materials is too high THEN detector packaging cost will increase.	Threat	Ben Loer Oper	Assays on materials are being done, and simulations performed to evaluate this risk.	If the risk occurs we have to go into more expensive solutions for packaging (for example all silicon components)	This risk will be closed when a design for the packaging has been fully evaluated in simulations.	30%	High	50	200	2000	0	0	0	Preliminary design works in early simulation. Full simulations ongoing.
Osc-risk- 008	Early science with partial detector load	IF we deploy partial load of detectors underground THEN Oscura could produce science before construction is completed.	Opportunity	Juan Oper Estrada	Collaboration need to make a plan for this option, is early since possible at SNOLAB?	If the risk occurs we have to plan early science run with partial detector load.	The risk will be closed when a plan for early science is ready.	50%	High	300	1000	1500	0	0	0	Early science is now part of the program, but still need to discuss details with SNOLAB.
Osc-risk- 009	Unaccounted source of low energy background	IF there is an unknown background at 2e- THEN we will not be able to have a 0 background experiment	Threat	Juan Oper Estrada	Investigation into CCD backside layers as potential source of background and R&D into possible mitigation strategies. Evaluate science potential	If the risk occurs we will have to increase the threshold of the experiment	The risk will be closed after the end of the run.	50%	Medium	° Im		° s ar	e all	° zero	°	Probability is currently unknown. Studies with pathfinder experiments are underway that will provide significant further input within the next year.
Osc-risk- 010	Delays in distribution chain due o to covid-19	If problems with the electronics distribution chain continue after FY24, the fabrication of electronics will be delayed and cost more.	Threat	Juan Oper Estrada	of Oscura with 3e- threshold Project has purchases most of the parts needed for testing (integration testing) of components before construction.	If the risk occurs we will have to purchase parts at a higher cost, with extra delay.	The risk will be closed when distribution chain becomes normal.	50%	High	300	1000	1500	6	12	24	Oscura is trying to design electronics with some flexibility to change components if they become unavaialble. No issue now for R&D or design stage because of early procurement of critical parts.
Osc-risk- 011	Delays in procurement process.	Delays in the procurement process for: CCDs fab, MCM fab.	Threat	Juan Oper Estrada	Start the CCD fab and the MCM fab as soon as the Oscura projects starts starts.	If the risk occurs we will suffer a delay	. The risk will be closed when POs for MCMs and sensors are placed.	50%	High	0	0	0	6	9	12	We have places smaller order for sensor fabrications, and have seen delays of up to 9 months. We expect to do better, based on the experience.
Osc-risk- 012	Availability of copper electroforming facility	Oscura is planning to use the electroforming facility at PNNL, but its use has to be scheduled with time.	Threat	Richard Oper Saldanha	Schedule the use of the facility as soor as possible, and start electroformic as soon as possible. An option will be to use commercial copper in the earlier stages of the project.	if the risk occurs we will have higher background during the ealier stages of the experiment.	The risk will be closed when f electroforming is scheduled (SOW).	50%	Medium	100	150	200	0	0	0	We are estimating the cost of building the copper parts for the SM using commercial supplier, while we wait for the PNNL cooper.

3

23 Aug 2023 Lucas Taylor, Fermilab Risk Manager

MC model to determine cost and schedule contingency

- Made summary (toy) schedule in Primavera P6, with a project duration of 3 years: Oct 2024 – Sep 2027
- Built risk MC model using the standard Fermilab risk framework: Oracle's *Primavera Risk Analysis (PRA)*
 - Modeled min/likely/max cost and schedule impacts using triangle probability distribution functions -
 - Assumed risk delays are all on critical path (conservative)
 - Assumed risk delays occur in series (conservative)
 - Burn rate cost of risk delays = \$44k / month
 - Marching army labor and increased escalation due to delays
 - In the MC model, burn rate costs are proportional to the stochastic risk delays

🗲 Fermilab

MC model results: Schedule contingency

- Project finish without any risks
 Project finish: 30 Sep 2027
- Allowing for stochastic risks
 - Mean finish: 15 Sep 2028 \rightarrow Mear
 - 90% CL finish: 21 Sep 2029 → Schedule contingency need is 23.7 months (at 90% CL)
- 2 years of schedule contingency for a 3 year project seems to be excessive
- Suggest revisiting the assessments for the schedule risk drivers :
 - Supply chain delays: P = 50% min / likely / max = 6 / 12 / 24 months (P*mean = 7.0 months)
 - Procurement delays: P = 50% min / likely / max = 6 / 9 / 12 months (P*mean = 4.5 months)

 \rightarrow Mean delay is 11.5 months

Fermilab

Phase-1

	10kg
123.2 Project Controls	
123.3.10 Sensor Production	\$2
123.3.9 Sensor Packaging	\$2
123.3.8 Readout Electronics	\$2
123.3.7 Data Aquisition System	
123.3.6 Cryostat	
123.3.11 Sensor Testing	
123.3.5 Background Control	
123.3.3 Shielding	\$1
123.3.2 Installation Planning	
Total	\$10

- Build the vessel for 10kg, install 5kg.
- 3 years from now, maybe we could get better performance with some of the
- This could also accelerate the schedule ~6mo...

new sensors we are developing (sisero, skipper-cmos, double-sided-CCD,...).

Collaboration Health

Oscura is an emerging Science Collaboration (not fully formed).

Oscura has a "Statement of Collaboration Culture". We have named two ombudspersons to address any internal issues.

Soon, we will establish spokespeople, science collaboration groups, a publication board, and a speakers bureau. Science Collaboration Constitution.

