The Helium and Lead Observatory (HALO) is SNOLAB's longest continuously running experiment, currently in its 12th year of operation

HALO

Clarence Virtue Spokesperson Thursday, February 8th, 2024

Experiment Overview

The Helium and Lead Observatory (HALO) is a lead-based supernova neutrino detector employing 79 tonnes of lead and 128 ³He neutron detectors from the third phase of SNO.

Neutrino detection is via neutron detection following one or two neutron emission from lead nuclei excited by NC or CC neutrino interactions. The CC electron is not detected.

Neutron thermalization and capture takes place with a characteristic time of ~200 μ s so timing information is slightly degraded and directional information is lost.

Several aspects make lead-based SN detectors compelling:

- Insensitivity to the anti- v_e flux resulting in complimentary sensitivity water and liquid scintillator based detectors
- Robustness of the technology
- Low maintenance and operating cost

New science developments

Analysis

- Focus is currently on the spallation neutron multiplicity analysis
- Of interest to the NEMESIS

 Collaboration looking for exotic DM signatures in lead targets; muon spallation is a background...
- Are the background rates observed by HALO fully consistent with conventional muon spallation expectations
- HALO completed a run selection and presented 2054 days (445 tonne.years) of data in a poster session at TAUP 2023

Figure 13: Preliminary neutron burst multiplicity spectrum from 5.6 years of HALO livetime. This dataset contains 192 bursts with 5 or more events.

New science developments

Current students (MSc)

- Esther Weima (defended February 9th)
 - Alpha backgrounds in HALO-1kT prototype ³He neutron detectors
- Remington Hill (defended September 25th)
 - T_{zero} extraction for SNEWS 2.0 triangulation inputs for HALO-1kT, HALO, SNO+
- Ben Nichol (defending March 2024)
 - Isotope content and age of HALO "²⁵²Cf" neutron source
- Shayaan Sajid (URegina Barbi & Kolev) (defended August 29th)
 - Muon veto design for mini-HALO

Talks

- Tom Sonley, The HALO Experiment at SNOLAB, Workshop on Neutrino Interaction Measurements for Supernova Neutrino Detection, ORNL, March 6-10, 2023
- Clarence Virtue, Lead-based Supernova Neutrino Detectors, SNvD 2023@LNGS, LNGS, May 29 June 1, 2023.
- Clarence Virtue, HALO Update, 2023 Canadian Astroparticle Physics Community Meeting, Kingston, Aug 8-10, 2023

New science developments - SNEWS

The SuperNova Early Warning System, SNEWS, is undergoing a complete upgrade, introducing new multi-messenger astronomy capabilities.

- HALO has been the first detector to connect to SNEWS 2.0 (while remaining connected to SNEWS "1.0") and will be the first to sign an MOU with SNEWS 2.0
- The transition to SNEWS 2.0 is not far away; HALO continues with an over-sized role in its development as one SNEWS 2.0 co-spokesperson is a HALO member
- a HALO MSc student has been deeply involved in developing algorithms to extract time-zeroes from relatively low statistic bursts to be used in pointing triangulation to be performed within the SNEWS 2.0 machinery.

6

Experiment Status – 2023

HALO continues to operate with impressive livetime with assistance from 15 HALO shifters.

In 2022 several DAQ hardware upgrades addressing a backlog of issues were completed.

No further hardware upgrades in reporting period but we have had available effort and are chasing minor software and monitoring improvements.

Core Local Group: Steve Sekula, Tom Sonley, Anita Masaskapoe, cjv

Experiencing some orca instability / Mac OS issues, and SNOLAB network issues

Experimental Status - 2023

10 20 30 40 50 60 70 80 90 100 110 120 130 Segment Number

Counts

Segment

Threshold

Gain

HALO Remote Monitoring System

MAIN
HALO Dashboard
- Machines
₩ VME
High Voltage
* Low Voltage
UPS
PDU
O GPS
A Hardware Map
😍 Pulser
A Bursts
CouchDB
Assets
Development Site
EXTERNAL LINKS
III Data Viewing
Shift Reports (TWiki)
Monitoring Wishlist

Version 1.1.0

Detector Overview	Hardware Overview		Alarms No active alarms. ORCA / Sentry (Documentation)
i Info Status Log Run 8158 is in progress on HALOdaq2 Last Updated: 3 seconds ago (2022-04-21 21:52:16 EDD)	GREEN HALOdaq1 CPU: 1.20% RAM: 30.20% IP: 142.51.71.221	GREEN HALOdaq2 CPU: 11.70% RAM: 47.00% IP: 142.51.71.222	
ime Started: 2022-04-21 13:01:03 EDT ime Remaining: 15:08:48 un Type: Source in Storage; Pulser; SNEWS; Front Shielding; Supernova;	GREEN Halo Shift CPU: 32.70% RAM: 20.10% IP: 10.0.3.1	GREEN Halo User CPU: 45.10% RAM: 11.59% IP: 10.0.3.2	DAQ 1 Sentry Status: GREEN Last Updated: 0 minutes ago (2022-04-21 21:51:27 EDT Colour Status Alarms: None
otal Counts: 17, 336, 144 otal Rates: 4.60	GREEN SBC 1 CPU: 25.10%	GREEN SBC 2 CPU: 25.60%	Click for Sentry Data
	GREEN LV 1 IP: 10.0.5.1 GREEN HV 1 IP: 10.0.6.1	GREEN LV 2 IP: 10.0.5.2 GREEN HV 2 IP: 10.0.6.2	Colour Status Alarms: None Click for Sentry Data High-Voltage
	GREEN VME Crate 1 IP: 10.0.7.1	GREEN VME Crate 2 IP: 10.0.7.2	Crate 2 is ON Last Polled: 0 minutes ago (2022-04-21 21:51:48 EDT) IP: 10.0.6.2 Number of channels on: 32 Number of channels ramping: 0 Nominal Fan Speed: 3200 RPM
	GREEN Pulser IP: 10.0.8.0	GREEN UPS IP: 10.0.9.0	
	GREEN Upper PDU 1 IP: 10.0.10.1	GREEN Upper PDU 2 IP: 10.0.10.2	Crate 1 is ON
	GREEN Lower PDU 1 IP: 10.0.11.1	GREEN Lower PDU 2 IP: 10.0.11.2	IP: 10.0.6.1 Number of channels on: 32 Number of channels ramping: 0
114341 237347	GREEN Non-UPS PDU		Nominal Fan Speed: 3200 RPM

0000 0

Challenges

I am relocating from Sudbury to Edmonton and taking a step back in day-to-day issues...

- Expertise rests with a small number of local individuals with much of the collaboration no longer having hands on, onsite experience in addressing the occasional issues that do arise.
- Significant effort went into "housekeeping", documenting the hardware, software and configuration to be well positioned for ongoing operation
- About to ask the Collaboration to ratify some succession / transition plans where leadership responsibility will be shared with a co-spokesperson and a Detector Manager will be designated

The decommissioning of ~70 $^{10}BF_3$ neutron detectors, inherited by HALO along with HALO's lead from the decommissioning of a cosmic ray monitoring station in Deep River, was started as a project for the 2023 PMP. Momentum was lost but we are in a position to complete the project by the end of March 2024.

Questions?